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Abstract 
LINEX means linear exponential loss function which used in the analysis of 
statistical estimation and prediction problem which rises exponentially on 
one side of zero and almost linearly on the other side of zero. It is used in 
both overestimation and underestimation problems. Ali Shadrokh and Has-
san Pazira [1] presented Shrinkage estimator in Gamma Type-II Censored 
Data under LINEX loss function. In that paper, they have explained how the 
LINEX loss function works however no practical or detail explanations were 
given in terms of changing the shape parameter and the error function. In 
this study we have explained how the LINEX loss function works through 
practical or detail explanations in terms of changing the shape parameter and 
the error function, also see how the loss function works with the data gener-
ated from gamma distribution through resampling methods to compare the 
performance of LINEX loss function considering the relative estimation error 
and usual estimation error through generating random numbers from gam-
ma distribution like randomization method and by using bootstrapping sam-
ples. The very intention is to find out which resampling method performs 
well in using the LINEX loss function. Using Monte Carlo Simulations these 
estimators are compared. It is doing draw random number from the gamma 

distribution and finds the maximum likelihood estimate of θ is 1
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using this estimator to explain the LINEX loss function 

( ) ( )e 1cL c∆= −∆ ∆ − ; 0c ≠ , 
ˆ

1θ
θ
 

∆ = −  
 

 or θ̂ θ∆ = − , where c is the 

shape parameter and θ̂  is any estimate of the parameter θ . The shape of 
this loss function is determined by the value of c. In the analysis we use the 
values of shape parameter c = −0.25, −0.50, −0.75, −1 and c = 0.25, 0.50, 0.75, 
1. The same procedure is done by using bootstrapping method, and finally 
compared between this two methods. The relative estimation error should be 
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used instead of the estimation error where the LINEX loss function works 
better in both of the cases. Between the two estimators, bootstrap method is 
better work because although the characteristics are same, bootstrap method 
is more dispersed than others. 
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Gamma Distribution, LINEX Loss Function, Bootstrap Method, Estimation 
Error, Relative Estimation Error 

 

1. Introduction 

In some estimation and prediction problems, the use of a symmetric loss func-
tion is appropriate. However, a given positive error may be more serious than a 
given negative error of the same magnitude or vice versa. Ali et al. [1] presented 
shrinkage testimators for Gamma Type II censored data under the invariant ver-
sion of the LINEX loss function. They explained how the LINEX loss function 
worked, but there were no details or practical explanations given on how the 
LINEX loss function works in changing the shape parameter and the error func-
tion. This study is initiated to see how the LINEX loss function works with the 
data generated from Gamma distribution by using resampling methods such as 
Bootstrapping to compare the results in Ali et al. [1]. Andreou et al. [2] consi-
dered the problem of model uncertainty in forecasting volatility using forecast 
combinations and a flexible family of asymmetric loss functions that allow the 
possibility that an investor would attach different preferences to a high vis-a-vis 
low volatility period. Despite the flexibility of the LINEX loss function for the es-
timation of a location parameter, it appears not to be suitable for the estimation 
of scale parameters and other quantities. For these reasons Basu and Ibrahimi [3] 
defined a modified LINEX loss function. Christoffersen et al. [4] used linex loss 
function in a study of optimal point prediction where different asymmetric loss 
functions are tested. Bayes and frequentist estimators for two parameters Wei-
bull with uncensored observations under survival and hazard functions used in 
life testing and survival analysis are considered (Guure et al. [5]). On the other 
hand, when the underestimation is more serious than the overestimation or 
vice-versa then an asymmetric loss function should be used. For two parameter 
exponential families it is difficult to estimate the parameters when both are un-
known. To obtain an optimum decision for two parameter exponential families a 
two-parameter conjugate utility function is used. In this case, optimum decision 
for one parameter exponential family under conjugate utility function is ob-
tained and thereafter extends the results to the two-parameter exponential fami-
ly. To have optimum decisions, for example, for normal, trinomial and inverse 
Gaussian distribution parameters under two-parameter conjugate utility 
function are used. Jasim [6] derived Bayes estimator for the scale parameter θ in 
Gamma distribution when lamda is known and equals to 2. The estimator 
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is obtained under the squared error and LINEX loss function and comparison of 
risks are made. Pandey and Malik [7] proposed an improved estimator for the 
variance in exponential distribution and studied the properties under the LINEX 
loss function. Patton and Timmermann [8] considered the evaluation of forecast 
optimality in economics and finance has almost exclusively been conducted un-
der the assumption of mean squared error loss. The optimal forecast should be 
unbiased and forecast errors should be serially uncorrelated at single period ho-
rizon with increasing variance as the forecast horizon grows. Analytically they 
have shown that the standard properties of optimal forecasts can be invalid un-
der asymmetric loss and non-linear data generating processes in turn may be 
very misleading as a benchmark for an optimal forecast. In a practical situation, 
Sengupta [9] obtained that the asymmetric loss functions are preferred over 
squared error loss functions as the former is more appropriate than the latter in 
many estimation problems. The problem of fixed precision point estimation of a 
linear parametric function in betas for a multiple linear regression model using 
asymmetric loss function is considered. Due to the presence of nuisance para-
meters the sample size for the estimation problem is not known before and 
hence the recourse of adaptive multistage sampling methodologies is considered. 
Singh [10] suggested an improved estimator for the mean using the LINEX loss 
function that dominates the estimator under the same loss function. The ma-
thematical expression of the improved estimator of fourth power of mean and an 
improved estimator for the common mean in negative exponential distribution 
are obtained under the LINEX loss function Singh [11] proposed a pooled esti-
mator for the common variance in normal distribution to study the properties 
under the LINEX loss function. Singh et al. [12] obtained the Bayes’ estimator of 
the Generalized-Exponential scale and shape parameters using Lindley’s ap-
proximation under asymmetric loss function. The proposed estimators have 
been compared with the corresponding MLE for their risks based on simulated 
samples from the Generalized-Exponential distribution. LINEX loss function 
rises approximately exponentially on one side of zero and approximately linearly 
on the other side (Soliman et al., [13]). Varian [14] found that an asymmetric li-
near loss function also rises exponentially on the one side of the zero and rises 
linearly on the other side of the zero.  

2. Materials and Methods  

Ali et al. presented shrinkage testimators for Gamma Type II censored data un-
der the invariant version of the LINEX loss function. They have explained how 
the function works however no practical details or explanations were given in 
terms of changing the shape parameter and the error function used. In this re-
gard, the present study initiated the idea to see how the loss function works with 
the generated gamma distribution through resampling methods like 
randomization method and bootstrapping method. The very intention is to find 
out which resampling method performs well in using the LINEX loss function. 
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The distribution mentioned is the widely used two parameter gamma distribution  
inherently related with the exponential family distribution. The density of two 

parameter Gamma distribution is given by ( )
( )

1

; , e ; 0, , 0
xxf x x

λ
θ

λ
λ θ λ θ

λ θ

−−

= ≥ ≥ .  

In order to use the two resampling methods to generate data let fix the scale pa-
rameter θ = 1 and shape parameter λ = 2 for the two parameter gamma distribu-
tion. Draw a random sample of size 100 repeating 100 times to have maximum 
likelihood estimate of θ which can be used to explain the LINEX loss function. 
This is very much the matter of randomization method. For bootstrapping draw 
a random sample of size 100 there after using the first sample to draw 100 sam-
ples of the same size with replacement to have the bootstrap estimate of θ which 
can be used to explain the LINEX loss function. Consider the LINEX loss function 

( ) ( )e 1cL c∆= −∆ ∆ −  where the shape parameter 0c ≠  and 
ˆ

1θ
θ
 

∆ = −  
 

  

where ( )θ̂ θ−  is the pitman difference and θ̂  is any estimate of the parame-
ter θ. It rises approximately exponentially on one side of zero and approximately 
linearly on the other side. It is convex while its shape is determined by the value 
of c. It is identified a family of loss functions L(Δ) where Δ is either the estima-
tion error ( )θ̂ θ−  or the relative estimation error ( )θ̂ θ θ− . Such a loss func-
tion is useful whenever the actual losses are nonnegative, increases with estima-
tion error, the overestimation is more (less) serious than the underestimation of 
the same magnitude and losses increase at a faster (slower) rate with the overes-
timation error. Note that ˆ

nT θ=  is a statistic which is an estimator of θ, 

nT θ∆ = −  is the error, c is the shape parameter. In this study, the values {c = 
(−0.25, −0.50, −0.75, −1); c = (0.25, 0.50, 0.75, 1)} of the shape parameter are 
used.  

3. Results and Discussion 

In order to understand well the behavior of the LINEX loss function a numerical 
illustration with real life data and simulated data from two parameter gamma 
distribution with varieties of scale parameter with the other parameter constant. 
In first place, a real life numerical data of rainfall of Dhaka station, Bangladesh 
for the month of January from 1968 to 2013 is considered. Draw a random sam-
ple of size 100 repeating 100 times to have maximum likelihood estimate of θ 
which can be used to explain the LINEX loss function. This is very much the 
matter of randomization method. For bootstrapping draw a random sample of 
size 100 there after using the first sample to draw 100 samples of the same size 
with replacement to have the bootstrap estimate of θ which can be used to ex-
plain the LINEX loss function. Generate 100 random number from gamma dis-
tribution with the scale parameter θ = 1. The maximum likelihood estimate of θ  

is 1ˆ 8.218002
2

n
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In this phase, the comparison between estimation error and relative estima-
tion error is made for the LINEX loss function considering the real life data. 

3.1. LINEX Loss Function Using Relative Estimation Error:  

Consider the Relative Estimation Error as 
ˆ 

  
 

1∆ = −
θ
θ

 

The negative value of c gives more weight to overestimation that reflects the 
asymmetry (Figure 1(a)). For large positive values of the shape parameter re-
flects the asymmetry (Figure 1(b)). For small values of |c| the LINEX loss func-
tion is asymmetric (Figure 1(c)). For large values of |c| the LINEX loss function 
is almost asymmetric (Figure 1(d)). For c < 0, it rises almost linearly when the 
estimation error is ( )ˆ 0θ θ− >  (Figure 1(e)) and it rises almost exponentially 
when the estimation error is ( )ˆ 0θ θ− <  Figure 1(f)). 
 

 
(a): with c < 0                           (b): with c > 0 

 
(c): with c = 0.01                          (d): with c = 5 

 

(e): with 1c = −  and ( )ˆ 0θ θ− >           (f): with 1c = −  and ( )ˆ 0θ θ− <  

Figure 1. Linex loss functions considering relative estimation error. 
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3.2. LINEX Loss Function Using Estimation Error: Consider the  
Estimation Error as ( )ˆ∆ = −θ θ  

The negative value of c provides more weight to underestimation compared to 
the overestimation that reflects the almost symmetry (Figure 2(a)). For large 
positive values of the shape parameter reflects the degree of symmetry (Figure 
2(b)). For small values of |c| the LINEX loss function is almost symmetric 
(Figure 2(c)). For large values of |c| the LINEX loss function is almost symme-
tric (Figure 2(d)). For c < 0, it rises almost linearly when the estimation error is 

( )ˆ 0θ θ− >  (Figure 2(e)) and almost exponentially when the estimation error is 

( )ˆ 0θ θ− <  (Figure 2(f)).  
 

 
(a): with c < 0                          (b): with c > 0 

 
(c): when c = 0.01                          (d): with c = 5 

 

(e): with 1c = −  and ( )ˆ 0θ θ− >            (f): with 1c = −  and ( )ˆ 0θ θ− <  

Figure 2. Linex loss functions considering estimation error. 

3.3. LINEX Loss Function Using Relative Estimation Error:  

Consider the Relative Estimation Error as 
ˆ 

  
 

1∆ = −
θ
θ

 

The negative value of c gives more weight to overestimation that reflects asym-
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metry (Figure 3(a)). The positive value of c gives more weight to overestimation 
for c = 1 that reflects the degree of asymmetry (Figure 3(b)). For small values of 
|c| the LINEX loss function is almost asymmetric (Figure 3(c)). For large values 
of |c| the LINEX loss function is almost asymmetric (Figure 3(d)). For c < 0, it  

rises almost linearly when the estimation error is 
ˆ

1 0θ
θ
 

∆ = − >  
 

 (Figure 3(e)) 

and almost exponentially when the estimation error is 
ˆ

1 0θ
θ
 

∆ = − <  
 

 (Figure 

3(f)). 
 

 
(a): with c < 0                          (b): with c > 0 

 
(c): with c = 0.01                          (d): with c = 5 

 

(e): with 1c = −  and 
ˆ

1 0θ
θ
 

∆ = − >  
 

     (f): with 1c = −  and 
ˆ

1 0θ
θ
 

∆ = − <  
 

 

Figure 3. Linex loss function considering relative estimation error. 

3.4. LINEX Loss Function Using Estimation Error: Consider the  
Estimation Error as ( )ˆ∆ = −θ θ  

The negative value of c provides more weight to underestimation whose magni-
tude reflects the degree of asymmetry (Figure 4(a)). The positive value of c does 
not provide more weight to overestimation whose magnitude reflects the degree 
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of asymmetry (Figure 4(b)). For small values of |c| the LINEX loss function is 
almost symmetric but not far from squared error loss function (Figure 4(c)). 
For large values of |c| the LINEX loss function is almost asymmetric (Figure 
4(d)). For c < 0, it rises almost linearly when the estimation error is  

ˆ
1 0θ

θ
 

∆ = − >  
 

 (Figure 4(e)) and it rises almost exponentially when the esti-

mation error is 
ˆ

1 0θ
θ
 

∆ = − <  
 

 (Figure 4(f)). 

 

 
(a): with c < 0                           (b): with c > 0 

 
(c): with c = 0.01                           (d): with c = 5 

 

(e): with 1c = −  and ( )ˆ 0θ θ− >           (f): with 1c = −  and ( )ˆ 0θ θ− <  

Figure 4. Linex loss function considering estimation error. 

3.5. LINEX Loss Function Using Bootstrapping 

In second place, simulated data from two parameter gamma distribution with 
scale parameter θ = 1 is considered. Samples are drawn using bootstrapping 
method to generate n = 100 bootstrap samples of size 100 each. The bootstrap 
estimate of θ is found to be 15. 14ˆ 92θ = . In this phase, the comparison between 
estimation error and relative estimation error is made for the LINEX loss func-
tion considering the simulated bootstrapping data. 

https://doi.org/10.4236/ojs.2020.101004


N. Khatun, M. A. Matin 
 

 

DOI: 10.4236/ojs.2020.101004 60 Open Journal of Statistics 
 

3.5.1. LINEX Loss Function Using Relative Estimation Error: Consider the  

Relative Estimation Error as 
ˆ

1∆ = −
θ
θ

 

The negative value of c gives more weight to overestimation that reflects asym-
metry (Figure 5(a)). The positive value of c gives more weight to overestimation 
whose magnitude reflects the degree of asymmetry (Figure 5(b)). For small val-
ues of |c| the LINEX loss function is almost asymmetric and for large values of 
|c| the LINEX loss function is almost asymmetric (Figure 5(c), Figure 5(d)). For 
c < 0, it rises almost linearly when the estimation error is ( )ˆ 0θ θ− >  and it 
rises almost exponentially when the estimation error is ( )ˆ 0θ θ− <  (Figure 
5(e), Figure 5(f)). 

 

 
(a): with c < 0                          (b): with c > 0 

 
(c): with c = 0.01                          (d): with c = 5 

 

(e): with 1c = −  and ( )ˆ 0θ θ− >           (f): with 1c = −  and ( )ˆ 0θ θ− <  

Figure 5. Linex loss function considering relative estimation error. 

3.5.2. LINEX Loss Function Using Estimation Error: Consider the  
Estimation Error as ( )ˆ∆ = −θ θ  

The negative value of c gives more weight to underestimation that reflects the 
asymmetry (Figure 6(a)). The positive value of c gives more weight to overesti-
mation whose magnitude reflects the asymmetry (Figure 6(b)). For small values 
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of |c| the LINEX loss function is almost symmetric and for large values of |c| the 
LINEX loss function is almost asymmetric (Figure 6(c), Figure 6(d)). For c < 0, 
it rises almost linearly when the estimation error is ( )ˆ 0θ θ− >  and it rises al-

most exponentially when the estimation error is ( )ˆ 0θ θ− <  (Figure 6(e), Fig-

ure 6(f)). 
 

 
(a): with c < 0                           (b): with c > 0 

 
(c): with c = 0.01                          (d): with c = 5 

 

(e): with 1c = −  and ( )ˆ 0θ θ− >          (f): with 1c = −  and ( )ˆ 0θ θ− <  

Figure 6. Linex loss function considering estimation error. 

4. Conclusions 

It is concluded that using relative estimation error, the LINEX loss function, for 
the negative values of the shape parameter, gives more weight to overestimation 
in showing that the distribution is asymmetric while for the positive values it 
gives weight to overestimation in showing that the distribution is asymmetric 
too. So, for the positive values of the shape parameter, the condition of the 
LINEX loss function is satisfied. On the other hand, using the estimation error 
for negative values of the shape parameter, it gives more weight to underestima-
tion in showing that the distribution is asymmetric while for the positive values 
of c it gives more weight to overestimation that reflects the asymmetry. It may be 
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concluded that for positive values of the shape parameter, the condition of the 
LINEX loss function is satisfied. So, the estimation error rather than the relative 
estimation error works better in the application of the LINEX loss function.  

In using repeated samples, for the negative values of the shape parameter, the 
LINEX loss gives more weight to overestimation showing that the distribution is 
asymmetric. For positive values of c it gives more weight to overestimation that 
reflects the degree of asymmetry. It may be concluded that for positive values of 
the shape parameter, the condition of the LINEX loss function is satisfied how-
ever, it is more spreader compared to the original random sample. On the other 
hand, using estimation error for negative values of the shape parameter gives 
weight to underestimation in showing that the distribution is asymmetric. So, 
the condition of the LINEX loss function is satisfied. For positive values of c it 
gives more weight to overestimation that reflects the degree of asymmetry. So, 
for positive values of the shape parameter, the condition of the LINEX loss func-
tion is satisfied however, it is more widely compared to the original random 
sample. In this case, it is also seen that estimation error rather than the relative 
estimation error works better in the application of the LINEX loss function. 

It is thus concluded that the estimation error should be used instead of the 
relative estimation error where the LINEX loss function works better. Out of the 
two estimators, the bootstrapping performed better compared to the randomiza-
tion methods since under the same characteristics bootstrap method is more 
spreader than the others. All the conditions of the LINEX loss function have 
been fulfilled in both the cases but in each of the characteristics of the LINEX 
loss function bootstrapping is outperformed. 
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