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Abstract 
Determining the causal effect of special education is a critical topic when mak-
ing educational policy that focuses on student achievement. However, current 
special education research is facing challenges from persistent selection bias 
and complex confounding. Bayesian Additive Regression Trees (BART) is em-
ployed in this study to provide a flexible estimation of the academic perfor-
mance. Targeted Maximum Likelihood Estimation (TMLE) is also integrated 
into the BART model, supporting doubly robust estimation of the special ed-
ucation effect. This study extracted survey data from the Early Childhood Lon-
gitudinal Study, Kindergarten Class (ECLS-K), to estimate the causal impact 
of special education status on students’ combined mathematics and reading 
achievement scores. The analysis results of the BART-TMLE model show that 
children receiving special education services demonstrated approximately 9 
points lower scores on average for combined math and reading scores, even 
adjusting for a considerable number of covariates, compared to their peers 
who did not receive these services. The estimated negative treatment effect 
persists after controlling for observed covariates that are closely correlated to 
the combined test score. The negative effect likely reflects unobserved factors, 
such as the underlying severity of learning disabilities, parent involvement and 
other potential traits, which are actual factors that determine the placement of 
special education status, rather than indicating the ineffectiveness of special 
education service. The achievement gap in academic performance reflects the 
current observable status of special education. The estimated effect could be 
improved by future research incorporating educational domain knowledge, 
allowing the model to be constructed more accurately. 
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1. Introduction 

Special education is typically provided for students with disabilities or special 
needs to accommodate their learning abilities, as they may face difficulties under 
traditional instruction. The academic performance of children with disabilities may 
systematically differ from that of their peers, even when holding other relevant 
student characteristics constant. It is challenging for educators and policymakers 
that the academic achievement gap persists between students with and without 
learning difficulties [1] [2]. Previous research has recorded systematic differences 
in academic achievement between students who receive special education services 
and their peers. However, the interpretation of learning outcome disparities is 
contested among researchers, as there is no consensus on the uncertainty of the 
estimation. Complex variable selection processes and unmeasured confounding 
factors in observational data are primary challenges for the analysis [3] [4]. Several 
approaches were utilized in previous studies examining special education effects, 
including propensity score matching, instrumental variables, and regression dis-
continuity designs. However, findings from these studies are inconsistent, limit-
ing the reliability of causal effect estimates [5] [6]. Addressing confounding in ob-
servational data is one of the challenges in determining the uncertainty of the es-
timates, where students’ characteristics simultaneously influence both special ed-
ucation placement and academic outcomes [7] [8]. Advanced causal inference meth-
ods that can flexibly handle complex confounding structures are needed, which is 
ideal for breaking through the current limitations [9] [10]. 

The Early Childhood Longitudinal Study (SCLS) program database provides 
comprehensive information about children’s knowledge, skills and development 
from their birth through elementary school [11]. In order to improve the reliabil-
ity of the estimated treatment effect of special education services, it is necessary to 
weight treatment assignment. Typically, the students receiving special education 
only account for a smaller sample. Therefore, it is necessary to adjust for the imbal-
ance in observations for the treatment and control groups, to get robust results 
with better sensitivity [12]. BART is a flexible method that can model the outcomes 
using covariates under different treatment exposure statuses. BART uses posterior 
simulations to estimate outcomes based on exposure, without the need to meet 
linearity and additivity assumptions like regression models. This allows for an es-
timate of the treatment effect without assuming linearity or additivity. This flexi-
bility is very useful when analyzing complex datasets. 

Studies in the past have used quasi-experimental methods, like propensity score 
matching to estimate the treatment effect of special education [13]. Other meth-
ods like instrumental variables [14], and regression discontinuity designs [15] 
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have also been attempted to study this effect. One of the challenges of these meth-
ods is that they all require strong parametric assumptions that are difficult to ver-
ify. In actual practice, the functional form of the relationship between outcomes 
and confounders can be very complex, and does not necessarily meet the assump-
tions. When the assumptions are not met, the estimated treatment effect can be 
severely biased [10] [12]. The model might fail to adequately adjust for all the 
effects of the observed confounders, if the actual relationship between the covari-
ates and outcomes is nonlinear, or includes interaction effects. The dependency 
on these assumptions could be one of the reasons for inconsistent results among 
the current studies.  

This study is an attempt to provide a reliable estimate for overall academic per-
formance using Bayesian Additive Regression Trees (BART). BART is a machine 
learning model for causal inference that is robust and does not require parametric 
assumptions [16]. It is a flexible model that works well with nonlinear dependent 
variables without the requirement of pre-specified functional forms. This trait 
makes BART models highly robust to misspecification of predicting variables 
[11]. Using data from the Early Childhood Longitudinal Study (ECLS), students’ 
academic performance in their last year of elementary school is analyzed, adjust-
ing for students’ background information, including ethnicity, family context, 
previous math and reading scores, and health conditions. BART’s ability to handle 
high-dimensional data structures and model heterogeneous treatment effects 
makes it particularly well-suited for addressing the imbalance of treatment and 
complex relationships among variables in the special education research [12]. 

Drawing on nationally representative data from the Early Childhood Longitu-
dinal Study, Kindergarten Class (ECLS-K), this research seeks to produce an ac-
curate estimate of how special education services causally affect academic achieve-
ment in math and reading by elementary school graduation. This analysis selects 
a subgroup of baseline confounders, including demographic variables, family back-
ground, earlier academic performance, and school-level characteristics.  

The analysis found a consistent and statistically significant negative effect of 
special education services on combined reading and math scores. On average, 
children not receiving special education scored approximately 9 points higher 
than those who did. This negative effect, showing an average treatment effect of 
approximately −9.1, remained consistent across the full study population, sample, 
and different subgroups. The 95% credible intervals for these estimates, such as 
[−14.353, −3.751] for the sample, were entirely negative, providing strong evi-
dence that the observed decrease in scores is a real and robust effect. 

This research offers some new insights for special education effectiveness liter-
ature and causal inference methodology. The findings of this study indicate a ro-
bust average treatment effect suggesting that, on average, children receiving spe-
cial education services are associated with lower academic achievement. This 
study contributes to the literature in two key ways. The implemented model demon-
strates how BART-TMLE can be used to address confounding in complex educa-
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tional settings. The results also present substantive evidence that calls into ques-
tion the public perception that special education is mostly beneficial. This will 
allow researchers to examine whether individualized customization is needed in 
order to improve the overall quality of special education. Last but not least, this 
study establishes a methodological framework for handling high-dimensional 
confounding in special education research. Future investigations can use this study 
as a reference for heterogeneous treatment effect analysis in educational interven-
tions. 

The remaining sections will elaborate on the research content sequentially: the 
data sources will be outlined alongside analytical methodology, followed by the 
quantitative analysis. The conclusion and discussion of the findings will summa-
rize the results and provide directions for future research. 

2. Data and Method 
2.1. Data Sources 

The study population is retrieved from the Early Childhood Longitudinal Study, 
Kindergarten Class (ECLS-K), with 7362 observations and 34 variables. This da-
taset is part of the survey program for national educational database [17], record-
ing the cohort of US children followed from kindergarten through fifth grade. The 
analytic dataset contains variables recording background information for individ-
ual child, family and school to examine academic performance and whether the 
children receive special education. Demographic and socioeconomic variables are 
also provided as reference, including gender, race/ethnicity and socioeconomic 
status. Academic variables capture baseline kindergarten reading and math scores, 
parental expectations, and whether the child attended the school through head 
start. School compositions measures (e.g. average peer achievement, socioeco-
nomic mix, and behavioral climate) are aggregated at the school level. Family con-
text variables include household receipt of food stamps, family structure, maternal 
age at first birth, and number of siblings. Parent-reported child characteristics in-
clude health status, attentiveness, verbal skills, and disability status. The exposure 
variable indicates receipt of special education services, and the primary outcome 
is the combined final math and reading score at the end of 6th grade. All variables 
are aligned across surveys for consistency in repeated recording over time. Fol-
lowing a thorough examination of the dataset, no missing values were identified; 
Therefore, missing data mechanisms will not be applied to the subsequent analy-
sis. 

2.2. Bayesian Additive Regression Trees and Causal Inference 

Bayesian Additive Regression Trees (BART), Random Forest, and Gradient Boost-
ing Machines (GBM) are popular methods for educational causal inference. Ana-
lyzing large datasets with complex demographic and social information using 
these machine learning methods can be very useful. BART generates full posterior 
distributions for treatment effects to estimate credible intervals and make infer-
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ences based on the estimated effect [10]. Random forests only calculate point pre-
dictions without robust estimation of uncertainty. BART is a relatively better 
choice for robust estimation of the treatment effect compared to Random Forest. 
BART’s Bayesian framework naturally includes regularization using prior distri-
butions, reducing overfitting risks that frequentist methods have in high-dimen-
sional observational data [18]. Additionally, the estimation of treatment effects 
focusses on the causal effect between different treatment groups. Methods like 
Gradient Boosting Machines have good predictive performance, but are not the 
best choice for treatment effect estimation, as they use point estimation that does 
not measure the error or variability well. BART uses a tree-splitting process to 
select variables automatically. The model is very interpretable and does not need 
pre-specified functional form. Policymakers often need the results to be transpar-
ent, which makes BART a better alternative, since methods like neural networks 
do not use “if-then” rules like decision trees to store interpretable decision ra-
tionale. The neural network stores the numerical value of the decision weight im-
plicitly [19]. Additionally, BART is very flexible with nonlinear relationships and 
interaction effects without explicit specification. Complex social and biological 
background of the students receiving special education makes the flexibility of the  
BART model very helpful [20]. The regularizing prior structure ( )2~ 0,ij N µµ σ  

with 
2

2

2
k
mµσ

 
=  
 

 makes individual trees remains weak learners. Limiting the  

contribution of each tree prevents any single tree from dominating the overall re-
sults. This allows the estimated parameter to be robust, when data include extreme 
values, or the functional relationship between outcomes and fitted variables are 
not specified correctly. 

BART is a flexible, nonparametric Bayesian approach designed to estimate an 
unknown regression function: ( ) ( )|f x E Y x= . BART approximates this func-
tion through an ensemble of regression trees:  

( ) ( )
1

; ,
m

j j
j

f x g x T M
=

≈ ∑  

Each component ( ); ,j jg x T M  represents a regression tree characterized by  

its structure jT  and associated terminal node values jM . Methods like boost-
ing or random forest could yield similar results [21] [22], but the BART model 
uses a Bayesian framework. A regularizing prior is placed on the terminal node  
(leaf parameters) values to make each tree a weak learner. The terminal node val-

ues are denoted as ( )2~ 0,jk N µµ σ , where 
2

2 0.5
mµσ

 
=  
 

 and m  denotes the 

number of trees (set to 200 in this study). Additionally, the model assumes a prior 

distribution for the error variance: 2 ~ Inverse-Gamma ,
2 2
ν νλσ  
 
 

 where 3v =   

and λ  is calibrated from the data to ensure reasonable scale. These priors pro-
mote shrinkage and reduce overfitting of the model [16] [23] demonstrated that 
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“as m  is increased, starting with 1m = , the predictive performance of BART 
improves dramatically until at some point it levels off,” with 200m =  repre-
senting a “fast and robust option”. This model specification improves the balance 
between computational efficiency and outcome estimation results. While later 
research suggests that 50 trees are often adequate and sufficient [16] [24], noted 
that “in applications we have typically used a large number of trees ( 100m =  and 

200m = ), as we have found that predictive performance suffers more when too” 
few trees are used, especially when the data is complex. The MCMC parameters 
of 1000 burn-in iterations and 4000 post-burn-in samples are used based on the 
setup from previous studies to ensure the model converges. The convergence of 
the BART model can be verified using trace plot diagnostics for key parameters 
including the residual variance 2σ  [16]. The BART model implementation em-
ployed 200 trees 200m = , with MCMC estimation conducted over 5000 total 
iterations comprising a burn-in period of 1000 iterations followed by 4000 post-
burn-in samples for posterior inference. The regularizing prior was set to  

2
2 0.5 0.00125

200µσ
 

= ≈ 
 

 to ensure each individual tree in the model contrib-

utes only a small amount to the final result, which helps prevent overfitting. 
Model fitting is carried out using a Bayesian backfitting Markov Chain Monte 

Carlo (MCMC) algorithm [16]. In this procedure, each tree is sequentially up-
dated while conditioning on the residuals from the remaining trees:  

( ); ,j k kk jR Y g x T M
≠

= −∑ . This iterative Gibbs sampling scheme, based on ear-

lier MCMC-based variable selection methods [25], generates posterior samples of  
the entire regression function. These samples can then be used to calculate point 
estimates, credible intervals, and measures of variable importance. 

BART is especially useful for causal inference in observational settings, where 
treatment is not randomly assigned, considering its ability to flexibly model com-
plex nonlinear relationships and interactions, without relying on strong paramet-
ric assumptions. Within the potential outcomes framework [26], the observed  
outcome for unit i  is modeled as: ( ) ( ) ( )1 1 0i i i i iY D Y D Y= + −  and estimated 

using: ( ),i i i iY f x D= +   Using posterior draws, the individual treatment effect 

(ITE) can be estimated as: ( ) ( ),1 ,0i i if x f xτ = +  and compute the average 

treatment effect (ATE) can be estimated as: 1

1ATE n
iin
τ

=
= ∑ . [27] formalized 

this approach and demonstrated BART’s advantages for causal analysis, particu-
larly its capacity to account for uncertainty and flexibly adapt to the data structure. 

2.3. Sample-Splitting Framework for Variable Selection in  
High-Dimensional Bayesian Additive Regression Trees 

The validity of causal inference from observational data fundamentally relies on 
the assumption of no unmeasured confounding ( )0 1, |Y Y T X⊥  which requires 
that all variables jointly affecting treatment assignment and potential outcomes 
are included in the conditioning set [28]. In practice, this encourages including as 
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many pre-treatment covariates as possible in the model, as omitting any con-
founder could introduce omitted variable bias: 

[ ]
( )( )

( )|
ˆ omitted Y omitted T

omitted

E X X
E

Var T X
β β

τ τ
′  − =  

where the bias magnitude depends on both the confounder’s relationship with the 
outcome Yβ  and its relationship with treatment Tβ . The flexible, nonparamet-
ric nature of BART makes it particularly compatible for capturing complex con-
founding relationships without requiring correct specification of functional 
forms, as the regression trees can automatically model interactions and nonline-
arities that might be missed by parametric approaches [29]. In applied settings, it 
is generally good practice to adjust for a wide range of potential confounders to 
satisfy the no unmeasured confounding assumption, but practical limitations like 
computational cost can make it difficult to effectively incorporate high-dimen-
sional covariate sets. 

BART’s computational demands increase substantially with both the number 
of covariates and the sample size. With moderate to high-dimensional datasets, it 
is often impractical to implement the BART model with large burn-in samples 
and numbers of chains. At each iteration of the Markov Chain Monte Carlo 
(MCMC) sampler, BART must evaluate potential splits across all p  variables, 
for each terminal node of the m  trees. With sample size n , this would result in 
( )O mnp  per iteration [16]. ECLS-K dataset is consisting of 7362n =  observa-

tions and 34p =  variables, and requires thousands of MCMC iterations for con-
vergence, the memory requirements exceed typical computational resources as the 
algorithm must maintain and update m  separate tree structures while storing 
the full n p×  design matrix. Furthermore, the posterior sampling becomes in-
creasingly inefficient in high dimensions due to the dilution of the splitting prob-
ability across many covariates, leading to poor mixing of the Markov chain and 
requiring substantially more iterations for convergence [30]. The effective sample 
size of the posterior draws decreases as irrelevant variables introduce noise into  
the tree-growing process, where the probability of selecting an informative varia-

ble at each split is only q
p

 if q p  variables are truly relevant [31]. 

Among the available regularization techniques for high-dimensional variable 
selection, LASSO (Least Absolute Shrinkage and Selection Operator) was chosen 
over alternatives such as SCAD (Smoothly Clipped Absolute Deviation) and Elas-
tic Net due to its theoretical properties and practical advantages in the causal in-
ference context. LASSO provides a convex optimization problem with guaranteed 
global convergence and efficient algorithms [32]. SCAD, needs the model to be 
tuned using additional hyperparameters. Computational instability is another dis-
advantage of SCAD method compared to LASSO. Elastic Net combines parti-
tioned sample L1 and L2 penalties on the partitioned sample to optimize corre-
lated predictors. The priority of the double LASSO selection is not to manage mul-
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ticollinearity within a single model. It focuses on identifying the minimum set of 
predictors in the two distinct partitioned samples [33]. Instead of shrinking the 
values of the parameter using a penalty term, LASSO’s exact sparsity property 
forces the coefficient of predictor to be exactly zero for less relevant variables, 
providing clean and well-defined variable selection for a for the BART model. 
[34]. LASSO is well developed for post-selection inference, making the estimated 
parameters and their confidence interval robust when using established methods 
[31]. LASSO is computationally efficient, it adapts well to the large-scale admin-
istrative datasets, with substantial numbers of potential predictors and observa-
tions. 

A sample-splitting strategy is used to estimate the treatment effect, to balance 
valid BART analysis under high-dimensional predictors, and adequate uncer-
tainty for the parameter in the simulation process. Following the principles estab-
lished by Chernozhukov et al. [31] for double/debiased machine learning, data  

were randomly partitioned ( ){ } 1
, ,

n
i i i i

D Y T X
=

=  into two independent subsets: 

1D  for variable selection and 2D  for BART inference, where 1 2D D∩ =∅ .  

The 1:1 sample split was used as a conservative strategy to optimize the outcome 
controlling for both bias and variance in the sample-splitting procedure. This al-
lows the treatment effect to be estimated accurately, with less uncertainty. Using 
more observations for variable selection (e.g., 7:3 ratio) would provide larger sam-
ple sizes for the dual-LASSO procedure. An increased number of observations 
might identify confounders more accurately. However, this would cause reduced 
statistical power of the BART analysis for treatment effect on 2D . Alternatively, 
allocating more samples to the analysis sample (e.g., 3:7 ratio) would maximize 
power for treatment effect estimation but risk inadequate variable selection due 
to insufficient data in 1D  that might not meet the assumption of conditional in-
dependence ( ) ( )0 , 1 | SY Y T X⊥  [31]. The equal 1:1 split allows each group to 
have adequate sample sizes for analysis and variable selection. This is critical, as 
students receiving special education only account for a small proportion of study 
population (approximately 6% in the ECLS-K sample). The evenly split samples 
also facilitate robustness checks through sample re-splitting. Specific composition 
of 1D  and 2D  will have manageable impact on the analysis if there is no prefer-
ence given to either of the partitioned samples. Previous research suggests that an 
equal split of the study sample can be asymptotically optimal under mild regular-
ity conditions theoretically, especially when estimation of the parameter of inter-
est and covariate selection are equally important [35]. Although the partitioned 
data is not able to use the full sample to estimate the treatment effect of special 
education, thus sacrificing the efficiency of the estimated parameter, the model is 
able to model the estimation uncertainty at this cost, accounting for loss of pa-
rameters in the selection process. 

Variables associated with treatment assignment T  and outcome Y  is se-
lected from the dual-LASSO procedure, focusing on confounding by solving two 
separate regularized regression problems:  
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 ( )
1 1

1

1arg min ,T
i i Ti D T X

Dββ β λ β
∈

+′= ∑   for treatment prediction and an-

other for prediction of the outcome. Penalty parameters Tλ  and Yλ   are cho-
sen using cross-validation [36]. The selected variable set  

{ } { }: 0 : 0T Y
j jS j jβ β= ≠ ≠  captures potential confounders satisfying the con-

ditional independence assumption ( )0 1, | SY Y T X⊥  necessary for causal iden-

tification [28]. Critically, because 2D  is independent of the selection event 

{ }S s= , the fitted BART model on 2D  produces posterior intervals for the av-

erage treatment effect 1 0E Y Yτ  = −   with nominal frequentist coverage prop-

erties. The posterior distribution ( )2| ,p D Sτ  is computed on data that played  

no role in determining S  [37] [38]. This method avoids post-selection inference 
bias that would occur when identical data gets used for both variable selection and 
effect estimation, where posterior credible intervals would fail to account for the 
extra uncertainty from the selection procedure, causing under-coverage [20]. The 
sample-splitting framework therefore offers a practical solution balancing com-
putational complexity with model validity, ensuring causal estimates captures ad-
equate uncertainty with reduced dimensionality (Figure 1) (Table 1). 
 

 
Figure 1. LASSO regularization paths for doubly robust variable selection in special edu-
cation causal inference (Variables selected from both models: Kindergarten Reading Score, 
Kindergarten Math Score, Public School Attendance, First-Time Kindergartener Status, 
Approaches to Learning). 
 
Table 1. Shrinkage coefficient of variables selected by both treatment and outcome varia-
ble. 

Shrinkage Coefficient From LASSO Selection Process 

Variable Type Treatment Coefficient1 Outcome Coefficient 

RIRT Confounder −0.004 0.204 

MIRT Confounder −0.02 2 

S2KPUPRI Confounder 0.065 0.605 
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Continued 

P1FIRDGE Confounder −0.543 13.819 

apprchT1 Confounder −0.268 5.322 

C1FMOTOR Confounder −0.089 2.195 

P1SOLVE Confounder 0.163 −2.736 

P1PRONOU Confounder 0.491 −2.521 

18 variables selected. 
 

The regularization path graph shows that the full model with 34 variables is 
reduced to a smaller variable set after the LASSO procedure. The coefficients of 
the treatment model (F5SPECS: special education condition) shrinks with higher 
lambda values. Most coefficients reach zero by ( )log λ  around 4, selecting 10 
variables at λ = 1.5λ1st. The outcome model (all score: total score of math and 
reading) shows a similar pattern selecting 19 variables at the specified penalty. The 
dual-selection procedure identified 8 confounding variables (RIRT: Kindergarten 
Reading Score; MIRT: Kindergarten Math Score; S2KPUPRI: If the child attended 
public school; P1FIRKDG: if the child is first time kindergartener; apprchT1: Ap-
proaches to Learning Rating; C1FMOTOR: Fine Motor Skills; P1SOLVE: Problem 
Solving; P1PRONOU: Verbal Communication) The 8 selected variables are re-
lated to the treatment group the child receives and the combined academic score, 
meeting the conditional independence assumption for unbiased estimation of the 
treatment effect. Instead of using the union of the selected variables from the treat-
ment and outcome model, the intersection of the two models is used. The actual 
confounding variables are related to the estimated outcome, as well as the treat-
ment group assigned. Using intersecting variables that related to both special ed-
ucation placement and combined test score is more likely to capture the true con-
founders requiring adjustments. By focusing on the intersection, the model re-
duces complexity by avoiding variables that may introduce unquantifiable uncer-
tainties and reduced precision on the estimation. Indeed, using the intersection 
could lead to potential problem for quantifying uncertainty in the model. Less 
variability of the data is captured by the model when using the intersection. How-
ever, the trade-off is carefully considered between bias and variance. Using inter-
section risks omitting more predictors and potentially sacrificed precision, it pri-
oritizes the inclusion of variables that are vital for confounding control. Under the  
assumption the true confounders C satisfy y AC S S⊆   (confounder effect both 

treatment and outcome), the mean squared error ( ) ( ) ( )2ˆ ˆ ˆMSE Bias Varτ τ τ= +  
is minimized by the intersection. Since LASSO procedures independently sort out 
the intersecting variables, the risk of omitting key confounders is reduced. The 
role of intersecting variables in both treatment mechanism ( )|P A X  and out-

come mechanism [ ]| ,E Y A X . For a variable, j y AX S S∈  , both  

( )1|
0

j

P A X
X

∂ =
≠

∂
 and [ ]| ,

0
j

E Y A X
X

∂
≠

∂
, consisting with the definition of con-
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founding. Selecting variables that predict the outcome well but are not useful for 
propensity score estimation can introduce post-treatment bias to the estimation. 
Post-treatment variables refer to the relationship, where the treatment assignment 
does not directly affect the outcome, but operates through a mediator, such as 
student’s learning habits. Post-treatment bias could fluctuate the total effect, re-
ducing the efficiency of the estimator. LASSO selection does not explicitly distin-
guish mediators from confounders, as it emphasizes prediction accuracy.  

3. Quantitative Analysis 
3.1. BART Framework Estimating Treatment Effect 

BART framework estimates two response surfaces: ( ) [ ]0 | 0,i i i iX E Y T Xµ = =  

for the control potential outcome and ( ) [ ]1 | 1,i i i iX E Y T Xµ = =  for the treated  

potential outcome. Each response surface is approximated by a sum of m  re-
gression trees, shrinkage factor is applied to the result to avoid model overfitting 
[28]. From these fitted models, three causal estimands are derived using posterior 
simulation. The Population Average Treatment Effect (PATE) estimates the ex-
pected causal effect for the entire sample by integrating over the population’s  
covariate distribution: ( ) ( )1 0PATE XE X Xτ µ µ= −   . The Sample Average Treat-

ment Effect (SATE) is representing the average effect specifically for sample obser-
vations by averaging individual treatment effect:  

( ) ( )1 01

1
SATE

n
Xi E X X

n
τ µ µ

=
= −  ∑ . The Conditional Average Treatment Effect 

(CATE) estimates the heterogeneous treatment effect by estimating the effect for 
a specific set of variables used in the model: ( ) ( ) ( )1 0i i iX X Xτ µ µ= − . The credi-
ble intervals record the variability of the three estimands, showing the uncertainty  
from the study sample and predictors used to specify the model, with posterior 
samples. Each tree of the BART model recorded the local pattern of the response 
surface. The additive combination models global trends. CATE has the advantage 
of estimating average treatment effect without requiring too much information 
on the structure of the sample, or the relationship between the covariates and out-
come. Compared to PATE and SATE, CATE is a better choice for estimating the 
effect while adjusting for used variable used, which makes the results more inter-
pretable [39]. 

3.2. Targeted Maximum Likelihood Estimation 

Combining Targeted Maximum Likelihood Estimation (TMLE) and BART helps 
to produce doubly robust results that offsets potential biases in models that solely 
rely on outcome, using BART’s flexible nonparametric property [40]. TMLE uses 
a two-stage procedure: first, initial estimates of the outcome regression  

( ) [ ]0 , | ,Q A W E Y A W=  and propensity score ( ) ( )0 1 |g W P A W= =  are ob-
tained, allowing the outcome model to reflect nonlinear relationships and interac-
tions without relying on pre-defined parametric assumptions. Following the first 
step, TMLE performs a targeted bias-correction step that refines the original out-
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come predictions using information from the propensity score model through  

a cleverly constructed covariate ( ) ( ) ( )
1,

1
A AH A W

g W g W
−

= −
−

. The clever co-

variate up-weights observations that are under-represented in their treatment  
group [41]. This fluctuation step involves fitting a parametric model (typically lo-
gistic regression) with the clever covariate as the sole predictor and the initial pre-
dictions as offset, yielding updated predictions 1Q  that solve the efficient influ-
ence function equation, thereby achieving asymptotic efficiency under correct 
specification of either model.  

The BART model generates flexible, non-parametric initial estimations  
( ) ( )0 0,W Wµ µ  and ( )0g W  through the ensemble of regression trees. TMLE uti-

lize the flexible estimates generated by BART and refine the results using the tar-
geting step. TMLE updates the initially predicted outcome 0Q  to *Q̂  by fitting 

the fluctuation parameter ε  in the model ( )1 0logit logit ,Q Q H A Wε= + , where 

the clever covariate ( ),H A W  leverages information from propensity scores  

produced in the BART model. By integrating TMLE’s targeting procedure, BART 
model provides a flexible machine learning estimate that accommodate complex 
data patterns. The targeting procedure of TMLE correct the remaining bias from 
the BART model by optimally utilizing information from both the outcome and 
propensity score.  

The Clever-covariate allows observations to receive higher weights in the data 
when they have extreme propensity scores (students who are either very unlikely 
to receive special education services but do receive the service; ( 1A = , 
( ) 0g W ≈ ), or very likely to receive them but do not receive the service ( 0A = , 
( ) 1g W ≈ )). The property of double robustness is necessary since the clever co-

variate corrects for misspecification in either the outcome model or the propensity 
score model. Double robustness allows the clever covariate to reduce bias, even 
when the outcome model is not correctly specified. Similarly, the fluctuation step 
has minimal impact on whether the propensity score is correctly estimated, if the 
outcome model is correctly specified [42]. By focusing on the observations with  
extreme propensity scores the clever covariate helps to refine estimates *Q̂  in the 
fluctuation step, such that the efficient influence function condition is satisfied; 

( )* *ˆ; ; 0n D O Q g = , where ( )* *ˆ; ;D O Q g  represents the canonical gradient for  

the target parameter [43]. This procedure allows that treatment effect estimates to 
achieve the semiparametric efficiency bound if one of the outcome or propensity 
score models is correctly specified. This provides a layer of protection against mis-
specified model bias. Furthermore, under certain conditions, the variance of the 
TMLE estimator captures uncertainty from both the outcome and propensity 
score models. Under certain conditions, TMLE reaches the lowest possible long-
run variance allowed by theory, which is a trait not achieved by any other model 
[1]. 

Although BART-TMLE framework flexibly controls for observed confounders, 
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it is difficult to verify the assumption of no unmeasured confounding, which is 
important for valid inference. Many aspects of the students’ characteristics can be 
challenging to quantify, which could be actual confounders in the context of spe-
cial education. These factors that correlate with the treatment and outcome could 
bring unintended bias to the estimated treatment effect, under the current under-
standing of instruction methodology that can be observed. Future educational 
studies that provide additional routes to measure learning quality or individual-
ized classification for academic difficulty could calibrate the estimation of special 
education efficacy. 

The consistent estimate of the average treatment effect without correctly speci-
fying both models makes doubly robust estimation a good characteristic of TMLE 
[44]. As BART does not assume a fixed form, it is likely that the model accurately 
captures at least one part of the data generation process. Additionally, TMLE 
mostly concentrates on reducing bias in treatment effect estimation, rather than 
on prediction accuracy. As the project’s primary interest is the causal effect of 
special education, TMLE’s focus on treatment effects makes it very compatible 
with the main objective. 

The double LASSO variable selection methodology was selected based on its 
advantages for addressing the fundamental identification problem in causal infer-
ence under the no unmeasured confounding assumption. It allows the model to 
balance the tradeoff between high dimensional data overfitting and reducing the 
bias of insufficient variables [31] [34]. This dual optimization is closely related to 
semiparametric efficiency theory. The efficient influence function for the average  
treatment effect depends on both the propensity score ( ) ( )1|x P T Xπ = =  and 

the outcome regression functions ( ) ( )0 0 |X E Y Xµ =     and  

( ) ( )1 1 |X E Y Xµ =     [45] [46]. One major disadvantage of the univariate selec-

tion method is that it only optimizes a single loss function. Dual LASSO select 
covariate set S  satisfies the approximate sparsity conditions necessary for n  
consistent estimation of treatment effects in high-dimensional settings:  

( )0
0 2

loˆ g
p

s p
O

n
θ θ

 
 − =
 
 

 where 0s  represents the effective sparsity parameter  

[47]. The method’s theoretical advantage over alternatives such as Boruta stems 
from its explicit targeting of the nuisance parameters essential for unbiased causal 
estimation, rather than general predictive accuracy which may include noise 
variables that inflate variance without improving identification [48]. Additionally, 
using a sample-splitting strategy helps to the results valid by satisfying the Ney-
man orthogonality condition, eliminating the bias that typically results from using 
the same data for both variable selection and estimation [31]. The regularization 
parameter selection via cross-validation provides an adaptive procedure that  

achieves the optimal convergence rate 
( ) ( )0log log

min ,
p s p

n n

  
 
  

 for the treat-

ment effect estimator, where p  represents the ambient dimension and 0s  de-
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notes the true sparsity level [49]. 
A BART model is fitted in conjunction with TMLE, with the 8 variables selected 

from the dual-LASSO selection process; The outcome model is specified as 
( ) ( )i A i iY A Xµ ε= + , { }0,1A∈ . ( )1iY  and ( )0iY  denotes the combined test 

score under treatment and control for student i , respectively, for student  
1, ,i n=  . The conditional mean function for the combined test score under 

treatment level A can be expressed as ( ) ( )1 ; ;A A
A i i j j

m
jX g X T Mµ
=

= ∑ ,  

( )2| , ~ 0,i i iX A Nε σ , where iX  represents the vector of confounders,  

( ); ;A A
i j jg X T M  is the regression tree function, where A

jT  represents the tree 

structure that determines splitting rules, { }1 , ,A A A
j j bjM µ µ=   denotes the termi-

nal node parameters for tree j . In this study, 200 trees are used to fit the BART 

model. Tree structure prior for each A
jT  is specified as  

( )( ) ( )1A
jP depth T d d βα −= = + , 0.95α = , 2β = .  β controls the tree depth 

penalization. 2β =  is used to moderately control complexity of the model to 
prevent overfitting, with a good trade-off between flexibility and regularization. 
Terminal node parameter prior is specified as ( )2| ~ ,A A

ij j sT N µµ µ σ , where 

s
y
m

µ =  and max min

2
y y

k mµσ
−

=  with 2k = . k  controls the prior variance of 

the terminal node, similar to the choice of β , 2k =  is selected to ensure mod-
erate shrinkage and regularization toward the prior mean. Residual variance prior 

is specified as 2 ~ InverseGamma ,
2 2
v vλσ  

 
 

, 3v = . This set the prior weakly in-

formative, allowing the data dominate the posterior and provide mild regulariza-
tion to prevent the variance towards zero.  

Similarly, Treatment assignment model is also specified, represented by the fol-
lowing expression: ( )( )| ~ Bernoullii i iA X Xπ , ( ) ( )( )i iX h Xπ = Φ ,  

( ) ( )1 ; ;i i j jj
mh X g X T Mπ π
=

= ∑ . ( )( )ih XΦ  is the standard normal cumulative 

distribution, where ( )ih X  is the latent propensity score, and ( ); ;i j jg X T Mπ π  

represents tree function structures similar to that of the outcome model. The prior 

of the treatment model is specified as ( )( ) ( )1jP depth T d d βπ α −= = + ,  

0.95α = , 2β = , with terminal node prior ( )2
,| ~ ,ij j sT Nπ π

µ πµ µ σ . The average 

treatment effect of the fitted model is estimated as  

( ) ( ) ( ) ( ) ( ) ( ){ }1 1 0 0
1 011 0 ; ; ; ;i i i i i j j i j jE Y Y E X X E g X T M g X T Mτ µ µ   = − = − = −       , 

with 1000 burn-in iterations and 4000 posterior samples, assuming unconfound-
edness. The model is fitted assisted with bartCause package version 1.0-9 in R [10]. 

It is critical to check for the common support before conducting analysis. Com-
mon support is a critical assumption to make for causal inference in observational 
studies for valid results. Graphical diagnosis is typically used to check this assump-
tion. The graph for propensity score density, also known as the positivity or over-
lap condition, among treatment and control group is a common choice for such 
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diagnosis. The positivity assumption states that for every set of observed covari-
ates W , the probability of receiving either treatment is greater than zero and less 
than one: ( )0 1| 1P A W< = < . The assumption of common support is satisfied if 
propensity score density plot for treatment and control overlaps well. The pro-
pensity score, ( )1|A W=  is a scalar summary of the covariate vector W . By 
plotting the density of these scores, a high-dimensional problem is reduced to a 
one-dimensional one, making the common support region readily apparent. When 
the common support is strong, an individual in control group can be matched to 
similar treated ones to estimate the outcome for the other group. If there’s a sig-
nificant overlap between the treated and control groups, the curve overlap indi-
cates sufficient number of observations from both groups. Sufficient common 
support is an important condition to check, that for every treated individual, a 
credible effect can be estimated with or without treatment. If the density curves 
do not overlap well, this suggests that the common support assumption is not sat-
isfied. In these cases, the model is not able to find a comparable treated and control 
individual since there’s no observation with similar propensity score. Causal effects 
cannot be empirically estimated in the region with no common support, and any 
inference would rely on extrapolation [26]. Any inferences made without com-
mon support can result in biased estimation of the treatment effect with high un-
certainty. In order to ensure the research results can be applied broadly and hold 
true under different conditions, it is important to show sufficient overlap between 
the treatment and control groups definitively, which helps to confirm the findings 
is reliable and relevant for analysis beyond the current sample [6] (Figure 2). 
 

 
Figure 2. Density of propensity score for control and treated groups. 
 

The propensity density scores show the propensity score distribution for con-
trol (blue) and treated (red) groups. The significant overlap between these two 
density curves in the middle of the distribution indicates a robust common sup-
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port region. The plots show some potential issues with propensity scores that is 
more extreme, where the two groups do not overlap well. The control group has 
a dense peak at very low propensity scores (near 0), while the treated group shows 
a long tail extending to higher propensity scores (up to 0.5) with minimal density 
overlap. When the area of common support is not significant, the model has to 
rely on extrapolation. If a student’s score cannot be matched by a comparable ob-
servation, the estimation of the effect only accounts for a small proportion of the 
sample. This can make the results biased and unreliable (Figure 3). 
 

 
Figure 3. Common support diagnosis under different observation removal rule. 
 

The current model shows a high posterior uncertainty if no observation is ex-
cluded from the fit. Based on a common support diagnosis, 22.14% of cases would 
have been removed based on chi-squared rule, whereas only 0.027% of cases 
would have been removed under the standard deviation rule. Therefore, using the 
Standard deviation rule allows the sample to be retained, excluding fewer obser-
vations to avoid extrapolation and meet the common support assumption. The 
rule identifies observations for removal if their predicted counterfactual standard  
deviation ( ), 1i f zs −  is excessively large compared to the observed predictions’ 

standard deviations, which can be expressed as: ( ) ( )( ), 1 ,zi f z j f zs m a sd s− > + × . To 

test the sensitivity of the model and check the potential issue of standard deviation 
rule being too lenient, a chi-square common support criterion is also used. The 
chi-square rule uses a more conservative exclusion compared to the standard de-
viation rule. Under this alternative approach, observations get excluded from the 

inferential sample if ( )

( )

2

, 1

,

i f z

i f z

s
q

s α
− 

  >
 
 

, where ( ), 1i f zs −  and ( ),i f zs  represent the 

predicted counterfactual and observed standard deviations respectively, and, and 

qα  denotes the upper α  percentile of a 2χ  distribution with one degree of  

freedom [16]. With 0.05α = , this criterion tests the null hypothesis of equal var-
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iance between observed and counterfactual predictions, offering a stricter assess-
ment of extrapolation risk than the standard deviation rule. The chi-square 
method removed 22.14% of observations, keeping 2866 observations out of 3,681. 
The observation exclusion rate hikes from 0.027% with the standard deviation rule 
to 22.14% using the chi-square criterion. Choosing different exclusion strategies 
shows the key tradeoff between higher statistical power and reliable treatment ef-
fect by reducing extrapolation. Comparing causal estimates from both approaches 
helps to show if the model relies too much on certain observations. This will help 
to identify if the common support assumption is met by the fitted model, and still 
reduce potential bias from extrapolation. 

3.3. Results for BART-TMLE Model 

 
Figure 4. Propensity score density after standard deviation removal rule is adapted.  
 

Observation removal based on standard deviation rule is used to improve the 
common support for posterior samples. Before conducting formal analysis, a di-
agnosis is completed in order to ensure for any individual in the treatment group, 
a comparable individual with similar characteristics exists in the control group. 
This will allow the model to give relatively robust estimates, as observations with 
low common support are not used to extrapolate the interpretation of the treat-
ment effect (Figure 4). 

The graph for common support shows treatment and control groups overlap 
well across the propensity score distribution. This makes the results from the anal-
ysis reliable without excessive extrapolation. Treatment (green) and control (blue) 
observations throughout the propensity score range from 0.05 to 0.50 mix well in 
the trace plot. This suggests children with similar characteristics are represented 
in both treated and controlled groups. Most children in the controlled group ap-
pear at lower propensity scores. This is realistic, since these children did not re-
ceive special education services. The treated children are located in a wider range 
of propensity score from low to high, representing their diverse background of 
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these students. The graph only identified one excluded observation (red), using 
the standard deviation common support rule. This shows that almost all observa-
tions in the sample contributed to the analysis. The model is able to have a good 
statistical power while still using the maximum number of observations it can uti-
lize for treatment effect estimation, allowing results to have minimal bias resulting 
from case exclusion (Figure 5). 
 

 
Figure 5. Convergence plot of fitted BART model (Standard deviation removal rule). 

 
The trace plot for the error variance parameter (σ) shows MCMC convergence 

for three independent chains. All three chains reached a stationary distribution, 
with σ ranging from 27.5 to 29.5, and a mean around 28.5 after the 1000-iteration 
burn-in period. The extensive mixing of the post-burin in samples for the three 
chains (red, green, and blue lines) shows that the three independent chains have 
successfully explored the posterior distribution and the variance of the distribu-
tion without showing systematic difference. The stationary post-burn-in samples 
and absence of the chain-specific patterns, provide strong evidence that the 
MCMC algorithm has achieved convergence for this parameter. This will allow 
the BART model to draw reliable inference based on the stable samples after 5000 
total iterations is completed (Figure 6). 

The trace plot for average treatment effect gives additional evidence for the con-
vergence of treatment effect for all three chains of the posterior samples. The treat-
ment effect (ATE) of the posterior samples of the three chains (red, blue and 
green) is consistently well-mixed around −8 to −10 points for post-burn-in sam-
ples. This shows stationary negative treatment effect for the post-burn-in samples. 
The three distinct chains show similar distribution for the post-burin-in samples 
without significant discrepancies and major divergence. The spread of post-burn-
in samples is fairly concentrated around the central value, showing the uncertainty 
of the post-burn-in samples is stable. The stable. The convergence of both error 
variance and estimated treatment effect shows a stable patten, which indicates that 
joint posterior distribution was successfully captured by MCMC sampling pro-
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cess, making the estimands robust.  
 

 
Figure 6. Average treatment effect estimates of 3 different chains of BART model 
(BART model based on standard deviation removal rule). 

 
The analysis shows a negative effect of special education on combined reading 

and math scores. Children who did not receive special education scored about 9 
points higher on average than those who did. The average score for children did 
not receive special education and children who received special education were 
282.872 and 273.820, respectively. The estimated negative effect is consistent, for 
different subgroups and samples of the record population. The 95% credible in-
tervals for these estimates [−14.330, −3.753] for the sample average treatment ef-
fect, do not include zero, indicating a high probability that the effect is real. The 
conditional average treatment effect also suggests that the treatment effect is dif-
ferent for distinct student groups. 
 

 
Figure 7. Academic performance difference between special education cohort and 
control: (BART model based on standard deviation removal rule). 
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Figure 8. 95% confidence interval of treatment effect: (BART model based on standard 
deviation removal rule). 

 
The estimated treatment effects for the population (PATE), sample (SATE), 

and subgroups (CATE) are all approximately −9.1. The 95% credible intervals for 
these estimates are entirely in the negative range, indicating a high posterior prob-
ability that the treatment effect is entirely below zero, which shows that the treat-
ment effect is negative using different methods. This provides strong evidence that 
receiving special education is associated with a decrease in combined reading and 
math scores, both on average and across subgroups (Figure 7, Figure 8). 
 

 
Figure 9. Propensity score density after chi-square removal rule is adapted. 

 
In order to check the sensitivity of the model under different exclusion strate-

gies, the chi-square rule is also used to fit the model under using fewer observa-
tions. Using the strict exclusion criteria leads to similar but different results, com-
pared to the standard deviation exclusion method. The common support plot 
heighted a dense concentration of excluded observations (red) in the low propen-
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sity score region (0.0 - 0.1). The chi-square criterion identifies numerous control 
group observations with high counterfactual uncertainty that were retained under 
the more lenient standard deviation rule (Figure 9). 

Obviously, the chi-square rule trims the data in a significantly aggressive way. 
The cluster of excluded observations in the lower-left region of the common sup-
port plot suggests children with low probability of receiving special education are 
marked as having unreliable counterfactuals estimates under a conservative strat-
egy. The chi-square method tends to use observations with higher propensity 
score, at the cost of losing more samples, with possible risk of extrapolation for 
estimated treatment effect.  

An aggressive observation removal rule creates a more homogeneous sample 
with higher common support in the 0.1 - 0.4 propensity score range, at the cost of 
substantially reduced external validity. The remaining common support region 
shows the treatment and control group are better matched, but a considerable 
number of observations are lost in the process, which could be a source for bias if 
the treatment effect is estimated from this sample. 
 

 
Figure 10. Convergence plot of fitted BART model (Chi-square removal rule). 

 

 
Figure 11. Average treatment effect estimates of 3 different chains of BART 
model (BART model based on chi-square removal rule). 
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Similarly, the trace plot of the error variance and treatment effect shows good 
convergence of the three chains for the post-burn-in samples, even though a sig-
nificant number of samples are removed by the chi-square exclusion strategy. 
There is no significant shift of a specific chain compared to the others, showing 
no systematic difference between chains. The well-mixed chain shows an average 
error variance around 28.5 - 29.0. This shows the stationary convergence of the 
post-burn-in samples regardless of the exclusion strategy used (Figure 10, Figure 
11). 

The trace plot for average treatment effect trace plot shows consistent treatment 
effect around −10 to −12 points, compared to the estimated effect using the sample 
under standard effect sample, the estimated negative treatment effect using less 
samples is slightly greater (−8 to −10 points using standard deviation rule). The 
greater negative effect might be masked by the observations excluded by stricter 
chi-square rule. However, this is a hypothesis that need to be validated by statisti-
cally significant results. 

The results from the BART model show a consistent negative treatment effect 
on the students’ combined score across all estimands. Children receiving special 
education services are associated with approximately 8 - 9 points reductions in 
combined academic scores, compared to their peers. The estimated overall score 
suggests that students would score an average of 282.872 points without special 
education services compared to 273.820 points with special education services, 
yielding a raw difference of −9.052 points. 

The three causal estimands, PATE, SATE and CATE give consistent point esti-
mates for the treatment effect: the Population Average Treatment Effect (PATE) 
at −8.395, Sample Average Treatment Effect (SATE) at −8.453, and Conditional 
Average Treatment Effect (CATE) at −8.395. Although the estimands rely on dif-
ferent assumptions and target different and target different groups, the similarity 
of the point estimates suggest that the observed effect is mostly consistent regard-
less of the estimation method (Table 2). 
 

Table 2. Comparison of treatment effect estimates under different exclusion criteria. 

BART Causal Inference Results Comparison 

Standard Deviation vs. Chi-Square Common Support Rules 

Metric 
Standard Deviation Rule Chi-Square Rule 

Estimate 95% CI Lower 95% CI Upper Estimate 95% CI Lower 95% CI Upper 

E[Y(0)]: Control 
Potential Outcome 

282.872 208.874 336.233 282.875 208.773 336.205 

E[Y(1)]: Treated 
Potential Outcome 

273.82 200.596 334.498 273.758 200.649 334.035 

Difference (Raw) −9.052 − − −9.117 − − 

Mean Propensity 
Score 

0.059 − − 0.06 − − 
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Continued 

1PATE: Population 
Average Treatment 

Effect 
−9.051 −14.607 −3.407 −8.395 −13.346 −3.43 

1SATE: Sample 
Average Treatment 

Effect 
−9.041 −14.33 −3.753 −8.453 −12.953 −3.954 

1CATE: Conditional 
Average Treatment 

Effect 
−9.051 −14.497 −3.606 −8.395 −13.11 −3.679 

1The SATE and PATE involve calculating predicted response values under different treatment conditions. E[Y(Ai)] shows read and 
math scores for the most recent school year, 1 = special education. 

 
The 95% credible interval provides additional information on the magnitude 

and uncertainty of the estimated effect. The SATE interval [−12.953, −3.954] in-
dicates the true effect is very likely negative, considering the entire interval is less 
than zero. The PATE interval [−13.346, −3.430] is relatively wider, reflecting ad-
ditional uncertainty when applied to the general population outside of the current 
sample. All three intervals of the estimands are entirely negative, providing strong 
Bayesian evidence against the null hypothesis of no treatment effect. 

The mean propensity score of 0.060 confirms that children receive special edu-
cation are a relatively small population in the sample, accounting for approxi-
mately 6% of students. The low prevalence rate of special education and substan-
tial common support between the treatment and control groups support the reli-
ability of the estimated results. Notably, the estimated treatment effect applies to 
the specific subset of students with characteristics that make them eligible for spe-
cial education services. 

4. Conclusions  

The conclusion of the analysis is formed based on the sample produced after the 
standard deviation rule is applied to exclude observations lacking common sup-
port. (approximately 99.97% of the original data). In order to check the sensitivity 
of the BART model, the chi-square rule was also used, removing 22.14% of obser-
vations. The estimated treatment effect yielded consistent results, with slightly 
more negative point estimates in the same direction. The similarity of estimated 
results suggests robustness of the negative treatment effect using different com-
mon support distribution and exclusion methods. The observed negative effects 
may reflect the stigmatization of students receiving special education and reduced 
academic expectations. The concept of special education could be significantly ef-
fective, but a lack of individualization can diminish the effort of the educator. 
There are also several drawbacks and limitations to this study. Treatment assign-
ment could be significantly influenced by potential confounding and measure-
ment error. Research in the future should focus on differentiating heterogeneous 
treatment effects based on individualized characteristics, such as disability type 
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and family background. Investigating underlying reasons for the academic per-
formance discrepancy will benefit the children receiving special education in the 
long term with nuanced customization of instruction. 

Although implementing the model with BART and TMLE helps to address po-
tential confounding factors that might introduce bias to the results on the overall 
academic score, the exclusion strategies used could also make the methodologies 
used in this study not applicable to other educational studies. Although the BART 
sample used almost all observations under the standard deviation rule, the con-
servative exclusion method still shows high uncertainty for out-of-sample estima-
tion, as a fairly large portion of the sample is discarded. If similar studies use an 
exclusion strategy that eliminates a substantial number of observations, the re-
maining part might produce biased results with high uncertainty. The negative 
average treatment effect could be a reference for further investigation, but the re-
searchers should consider the context of their study cohort and modify the model 
specification based on their needs.  

5. Discussion 

There are also several limitations to acknowledge based on the data source and 
structure. One of the potential issues of the study is using special education ser-
vices as a single binary exposure variable. In reality, special education has a set of 
highly heterogeneous interventions that could be considerably different based on 
the duration and method of delivery. The resources allocated to each student 
could be a wide range of selections. For example, a student can simply be granted 
extended test time as a form of supported instruction or a fully customized in-
struction with one-on-one interactions. Different types of disabilities may also 
impact the student differently. For example, a disorder of intellectual development 
may stall a student’s learning ability, while a student with hearing loss might not 
have reduced learning ability, but a limited pathway to learn. Collapsing the com-
plex dimension of disability to a single binary factor of whether students receive 
special education could omit heterogeneity in treatment effect across different 
special education service types. The negative estimated average treatment effect 
from this study could represent a weighted average across different types of inter-
ventions that are substantially different. This aggregated result could obscure cer-
tain positive effects for some type of special education service type, with ambigu-
ous boundaries compared to the other service type. Research in the future should 
emphasize distinguishing the special education service by disability category, in-
tensity, instructional setting and other specific intervention types to better under-
stand the efficacy of each unique category.  

The math and reading scores only reflect the student’s performance over a short 
period. The educational potential of the students can also be expressed by other 
performances in their life, such as their ability to socialize with their peers, apti-
tude or special talent in a specific knowledge domain or the ability to adapt to the 
environment. Educators might want to explore other aspects of children’s lives to 
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fully determine the efficacy of the special education program. The negative treat-
ment effect of the traditional test score might not reflect special education’s po-
tential for improving educational outcomes in other ways. Instead of abolishing 
the service, the policymaker might want to consider how to individualize the in-
struction, to make the program beneficial for traditional test-based education.  

It is possible that there is potential unmeasured confounding that led to a neg-
ative treatment effect. Factors such as physical development delay, severity of 
learning disability are not recorded in the dataset, but could influence both special 
education placement and academic performance substantially. The estimated ef-
fect of the current model could reflect pre-existing conditions related to physical 
disadvantages of the children rather than the actual causal impact of special edu-
cation services. For example, special education emphasizing basic skills could also 
limit the student’s potential in grade-based classes, where adequate support is 
scarce. [50]. Children receiving special education also have limited access to learn 
with their peers who do not receive special education, giving them fewer oppor-
tunities to learn from classmates with higher academic performance on average 
[51]. If a more comprehensive dataset is available, a broader set of observed co-
variates could be considered, mitigating the issue of unmeasured confounding 
that was not adjusted in the current model, but has an impact on both treatment 
assignment and outcomes. 

Future Research could dive deeper into several aspects. A full analysis of the 
CATE could reveal the generality of the estimated treatment effect for different 
schools and student subgroups, or only students with specific characteristics (e.g. 
students with a certain type of learning disability or family background). If the 
treatment effect differs for distinct subgroups, checking the discrepancies based 
on student characteristics could reveal the key covariates that drive heterogeneity, 
allowing investigation of potential effect modifiers, making the estimated effect of 
the special education service more accurate. 
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