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Abstract 
A hyperbolic model for the diffusion of proteins through the blood-cerebro-
spinal fluid (CSF) barrier revolutionized clinical neurochemistry thirty years 
ago. The regression curves were informally parametrized based on physiolog-
ically-driven constraints. The current paper readdresses this issue with nu-
merical optimization for unconstrained non-linear regression, implementing 
the Levenberg-Marquardt Algorithm (LMA). Astonishingly similar estimates 
are obtained, which reconfirms the concepts of H. Reiber proposed in 1990s. 
The LMA is discussed in the context of other optimization algorithms. 
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1. Introduction 

Thirty years ago, Hansotto Reiber proposed a hyperbolic model for the diffusion 
of proteins through the blood-cerebrospinal fluid (CSF) barrier [1]. His model 
revolutionized the CSF analysis and provided solid foundations for modern clin-
ical neurochemistry. The model was theoretically derived from the laws of diffu-
sion (the Fick’s laws, see [2]) and empirically confirmed on large-scale patient co-
horts, but the parametrization of the hyperbolic functions was originally per-
formed with laborious manual iterations due to important, physiologically-driven 
constraints that have to be taken into account but are difficult to formalize. Details 
of this procedure are discussed in [3]. In the current paper, I show how to apply a 
numerical optimization algorithm to find those parameters. I need to emphasize 
that I am not attempting to readdress theoretical derivations of the blood-CSF 
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barrier diffusion. I am merely trying to explain the mathematical background for 
its optimization. Of course, virtually every statistical package today offers fast and 
reliable methods for non-linear regression; however, I believe that it is of para-
mount importance that neuroscientists interested in the CSF protein analysis un-
derstand the process of non-linear optimization and not only use commands built 
into a statistical software. 

2. Materials and Methods 

Consider function 

( ) 2 2; , , , 0af x a b c x b c x
b

= + − >                   (1) 

parametrized by three positive real numbers, a , b , and c , which we group into 
a vector, ( )T, ,a b c=θ . The first-order derivatives of this function with respect to 
the three parameters are: 
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Now, we assume a study with N  paired observations, ( ), , 1, ,i ix y i N=  , 
with the vector of the explanatory variables, x  (e.g. albumin quotients, AlbQ ), 
and the vector of the corresponding outcome variables, y  (e.g. IgG quotients, 

IgGQ ), where a quotient is a dimensionless quantity obtained by division of the 
concentration of a given protein in the CSF by its concentration in the serum,  

[ ]
[ ]

CSF
X
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X
Q

X
= . Our goal is to find the vector of the parameters, θ̂ , minimizing  

Euclidean norm of the vector of the residuals, ˆ= −r y y  or, stated equivalently, 
minimizing the sum of the squared vertical distances between the empirical ob-
servations, y , and the model predictions, ŷ . This is an unconstrained optimi-
zation problem in non-linear regression1. Formally: 

3 2arg minˆ .
+∈

= r
θ

θ                          (3) 

This can be achieved, for example, with the Levenberg-Marquardt Algorithm 
(LMA) [4] [5]. 

To do so, first we define the Jacobian 3N ×  matrix, J , such that its i-th row 
contains the three derivatives defined in Equation (2) evaluated at the i-th explan-
atory variable, ix . We also define a dumping parameter, λ . After initialization 
of the vector of the model parameters and the dumping parameter, in a ( )1k + -

 
1Stringently spoken, since ŷ  has to be positive for all 0x > , this is a constrained problem, requiring 
a c> ; however, since empirical observations in studies this model is developed for are always strictly 

positive, we may omit this constrain, only checking if the estimates indeed obey ˆ ˆa c> . 
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th iteration of the algorithm the vector of the parameters is updated by: 
( ) ( ) ( )1 ,k k k+ = + hθ θ                            (4) 

where 

( ) 1T T ,λ
−

= +h J J I J r                          (5) 

where I  is the identity matrix (for notational simplicity, the superscripts refer-
ring to the iteration step were omitted). In each step of the algorithm, the dumping 
parameter, λ , is adjusted as follows. First, the error is evaluated at the new vector 
of the parameters. If the error has increased, the update is rejected and the dump-
ing parameter is increased by some factor (say, 100). This is repeated until the 
error decreases below the error of the previous step. If the error has decreased as 
the result of the update, the updated parameters are accepted and the dumping 
parameter is decreased (say, by factor 100). The algorithm proceeds until conver-
gence, which somehow reflects lack of further significant improvements (for ex-
ample, when the norm of the updating vector, h , gets below some predefined 
small positive number, say 10−12). 

3. Results 

The algorithm was implemented in R (4.3.2)2. It was first tested with one hundred 
repetitions of simulated datasets with 10,000 paired observations each, set such 
way that a heteroscedastic Normal random noise (with a constant CV of 10%) was 
added to the deterministic hyperbolic function. The empirical bias, variation, and 
the Mean Square Error (all multiplied by one thousand for better readability) are 
reported in Table 1. 

 
Table 1. Results of the simulation study; the true values were: 0.2a = , 0.1b = , and 

0.05c = . 

Parameter Mean 103 × Bias 103 × Var 103 × MSE 

â  0.1998 −0.1589 0.0337 0.0337 

b̂  0.0999 −0.0909 0.0061 0.0061 

ĉ  0.0499 −0.0932 0.0250 0.0251 

 
With those results, clearly indicating that the estimates are characterized with 

very low bias and variance, the algorithm was applied on the real-life dataset 
kindly provided by H. Reiber. This dataset overlaps with the set used in his paper 
in 1994 to optimize the regression curve in the diagnostically most relevant region 
of 0.02AlbQ < . Briefly, the samples were collected from patients aged between 0.5 
and 75 years routinely diagnosed for neurologic conditions. Only subjects without 
intrathecal synthesis of immunoglobulins and without intracerebral haemorrhage 
were included in the study; CSF samples with blood contamination were excluded. 

 
2The code is available at https://github.com/LewczukPiotr/Hyperbolic_Function.  
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The concentrations of the proteins were measured by automated nephelometry. 
All further details are given in [1]. With the arbitrarily chosen initial values 

( ) ( ) ( ) ( )0 0 0 0 0.001a b c λ= = = = , the algorithm converged after 11 iterations and de-
livered the following estimates: 

0.0019425 0.0001714

0.0031210 0.0002414
0.0013078

ˆ
ˆ

ˆ 0.0001258,

a

b
c

= ±

= ±
= ±

                     (6) 

with the standard errors resulting from well-known good approximation of the  

covariance matrix by ( ) 1T

1
RSS

N p
−

− +
J J  at the convergence [6]. The same esti-

mates were obtained with different initial values, confirming robustness of the  
algorithm. It needs to be emphasized that the estimates published in the original 
paper [1] are astonishingly similar to those obtained here. Figure 1 presents the 
empirical data points and the fitted hyperbolic curve. 

 

 

Figure 1. Empirical data from 4010 patients and the fitted hyperbolic 
curve. 

4. Discussion and Conclusions 

The function in Equation (1) is linear in a  and c  but non-linear in b , which 
makes the problem of its optimization non-linear. Several numerical optimization 
methods are available for fitting a non-linear model to a set of data [7]. For exam-
ple, the Gradient Descent (GD) solves Equation (3) by iteratively updating the 
parameters of the model in the “downhill” direction of the objective function (the 
one to be minimized). The update in Equation (5) is replaced by: 

T ,GD α=h J r                             (7) 

with the positive real number α  defining the length of the step in the (steep-
est-)descent direction. The method is simple and computationally cheap, as it re-
quires only the Jacobian matrix. However, this conceptual and computational 
simplicity comes at the cost of a large number of iterative steps required for con-
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vergence. In the current setting, a simplistic GD with non-adaptive 510α −=  
needed about 100,000 iterations to converge and turned out very sensitive to the 
initial values. The Gauss-Newton Algorithm (GNA) relies on the assumption 
that the objective function is approximately quadratic near the optimal solution. 
Information on this (quadratic) curvature enters the algorithm as the second-
order differential equations matrix, the Hessian matrix, of which TJ J  is often 
a good approximation. This results in a rapid local convergence. The update 
becomes: 

( ) 1T T .GNA

−
=h J J J r                          (8) 

The LMA varies the updates between the two optimization methods, taking ad-
vantages of both, by adaptation of the dumping parameter, λ , in each iteration. 
Small values make the LMA approach the GNA (as the term λI  becomes negli-
gible compared to TJ J ). For large values of λ , the LMA mimics the GD 
method (with 1α λ≈ ). The intuition is that if the error increases we are likely 
far from the minimum we are looking for; therefore, we need to increase the 
dumping parameter in order to turn the algorithm into a simple GD. If the error 
decreases, on the other hand, we are probably getting closer to the minimum and 
we should emphasize the information on the local curvature of the optimization 
function. 

Hyperbolic functions can be easily, yet erroneously, mixed with a linear func-
tion. Indeed, for very small, compared to x , positive b  the term under the 
square root becomes 2 2x b x+ ≈  and the hyperbolic function converges to a  

“linear approximation”, ( ) af x x c
b

= − . This, however, leads to an obvious prob-

lem, since for positive c , the linear function will become negative for small x ,  
which is physiologically impossible. Further, it might be tempting to use statis-
tical properties of the regression curve (e.g. the confidence or the prediction 
limits) to establish diagnostic references for the disease-related interpretations. 
This is not appropriate, because the confidence bands of a regression curve do 
not reflect the biological variability, they only show the region where the “true” 
curve is expected to lie. Instead, following Reiber’s idea, the upper limit of the 

IgGQ  can be defined by finding parameters of a hyperbolic function fitted to the 
largest empirical outcomes (stratified according to AlbQ ), again following the 
same principle as it is outlined above for the average curve. Finally, it needs to 
be emphasized that the diffusion model proposed by H. Reiber applies equally 
well to the whole range of 0.5AlbQ <  (whereas the values beyond that limit are 
never seen in practice) and to other proteins (IgA, IgM, prothrombin), too, and 
the corresponding hyperbolic curves can be analogously parametrized with the 
LMA outlined here. 
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