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Abstract

A hyperbolic model for the diffusion of proteins through the blood-cerebro-
spinal fluid (CSF) barrier revolutionized clinical neurochemistry thirty years
ago. The regression curves were informally parametrized based on physiolog-
ically-driven constraints. The current paper readdresses this issue with nu-
merical optimization for unconstrained non-linear regression, implementing
the Levenberg-Marquardt Algorithm (LMA). Astonishingly similar estimates
are obtained, which reconfirms the concepts of H. Reiber proposed in 1990s.
The LMA is discussed in the context of other optimization algorithms.
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1. Introduction

Thirty years ago, Hansotto Reiber proposed a hyperbolic model for the diffusion
of proteins through the blood-cerebrospinal fluid (CSF) barrier [1]. His model
revolutionized the CSF analysis and provided solid foundations for modern clin-
ical neurochemistry. The model was theoretically derived from the laws of diffu-
sion (the Fick’s laws, see [2]) and empirically confirmed on large-scale patient co-
horts, but the parametrization of the hyperbolic functions was originally per-
formed with laborious manual iterations due to important, physiologically-driven
constraints that have to be taken into account but are difficult to formalize. Details
of this procedure are discussed in [3]. In the current paper, I show how to apply a
numerical optimization algorithm to find those parameters. I need to emphasize

that I am not attempting to readdress theoretical derivations of the blood-CSF
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barrier diffusion. I am merely trying to explain the mathematical background for
its optimization. Of course, virtually every statistical package today offers fast and
reliable methods for non-linear regression; however, I believe that it is of para-
mount importance that neuroscientists interested in the CSF protein analysis un-
derstand the process of non-linear optimization and not only use commands built

into a statistical software.

2. Materials and Methods

Consider function
f(x;a,b,c)zgx/x2+b2—c, x>0 (1)

parametrized by three positive real numbers, a, b,and c,which we group into
avector, 6=(a,b, c)T . The first-order derivatives of this function with respect to

the three parameters are:

af(e’x)zl / 2+b2
b

oa
of (6:x) — _ax? (bz [x% + 1?2 )71
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Now, we assume a study with N paired observations, (Xi,yi),i =1---,N,
with the vector of the explanatory variables, X (e.g. albumin quotients, Q,),
and the vector of the corresponding outcome variables, y (e.g. IgG quotients,
Qyyc )» where a quotient is a dimensionless quantity obtained by division of the

concentration of a given protein in the CSF by its concentration in the serum,

[Xcse ]
Qu =77
[XSerum]

Euclidean norm of the vector of the residuals, r=y—y or, stated equivalently,

. Our goal is to find the vector of the parameters, 0, minimizing

minimizing the sum of the squared vertical distances between the empirical ob-
servations, Y, and the model predictions, ¥ . This is an unconstrained optimi-

zation problem in non-linear regression'. Formally:

6 =arg min|r],. (3)
0€R3

This can be achieved, for example, with the Levenberg-Marquardt Algorithm
(LMA) [4] [5].

To do so, first we define the Jacobian N x3 matrix, J, such that its /~th row
contains the three derivatives defined in Equation (2) evaluated at the i-th explan-
atory variable, X, . We also define a dumping parameter, A . After initialization

of the vector of the model parameters and the dumping parameter, in a (k +1) -

!Stringently spoken, since § has to be positive forall x>0, this is a constrained problem, requiring
a> C ; however, since empirical observations in studies this model is developed for are always strictly
positive, we may omit this constrain, only checking if the estimates indeed obey a>¢ .
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th iteration of the algorithm the vector of the parameters is updated by:
0% — g 4 h(k), (4)
where

h=(373+21) 3, (5)

where | is the identity matrix (for notational simplicity, the superscripts refer-
ring to the iteration step were omitted). In each step of the algorithm, the dumping
parameter, A, isadjusted as follows. First, the error is evaluated at the new vector
of the parameters. If the error has increased, the update is rejected and the dump-
ing parameter is increased by some factor (say, 100). This is repeated until the
error decreases below the error of the previous step. If the error has decreased as
the result of the update, the updated parameters are accepted and the dumping
parameter is decreased (say, by factor 100). The algorithm proceeds until conver-
gence, which somehow reflects lack of further significant improvements (for ex-
ample, when the norm of the updating vector, h, gets below some predefined

small positive number, say 107').

3. Results

The algorithm was implemented in R (4.3.2)2. It was first tested with one hundred
repetitions of simulated datasets with 10,000 paired observations each, set such
way that a heteroscedastic Normal random noise (with a constant CV of 10%) was
added to the deterministic hyperbolic function. The empirical bias, variation, and
the Mean Square Error (all multiplied by one thousand for better readability) are
reported in Table 1.

Table 1. Results of the simulation study; the true values were: a=0.2, b=0.1, and
c=0.05.

Parameter Mean 10% x Bias 10% x Var 10® x MSE
a 0.1998 -0.1589 0.0337 0.0337
6 0.0999 —0.0909 0.0061 0.0061
¢ 0.0499 —0.0932 0.0250 0.0251

With those results, clearly indicating that the estimates are characterized with
very low bias and variance, the algorithm was applied on the real-life dataset
kindly provided by H. Reiber. This dataset overlaps with the set used in his paper
in 1994 to optimize the regression curve in the diagnostically most relevant region
of Q,, <0.02. Briefly, the samples were collected from patients aged between 0.5
and 75 years routinely diagnosed for neurologic conditions. Only subjects without
intrathecal synthesis of immunoglobulins and without intracerebral haemorrhage

were included in the study; CSF samples with blood contamination were excluded.

*The code is available at https://github.com/LewczukPiotr/Hyperbolic Function.
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The concentrations of the proteins were measured by automated nephelometry.
All further details are given in [1]. With the arbitrarily chosen initial values
a® =p® =¢® = 29 =0.001, the algorithm converged after 11 iterations and de-

livered the following estimates:
0.0019425+0.0001714

é =
b =0.0031210+0.0002414 (6)
¢ =0.0013078+0.0001258,

with the standard errors resulting from well-known good approximation of the
RSS -1

covariance matrix by ﬁ(JTJ) at the convergence [6]. The same esti-

mates were obtained with different initial values, confirming robustness of the

algorithm. It needs to be emphasized that the estimates published in the original

paper [1] are astonishingly similar to those obtained here. Figure 1 presents the

empirical data points and the fitted hyperbolic curve.
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Figure 1. Empirical data from 4010 patients and the fitted hyperbolic

curve.

4. Discussion and Conclusions

The function in Equation (1) islinear in a and ¢ but non-linear in b, which
makes the problem of its optimization non-linear. Several numerical optimization
methods are available for fitting a non-linear model to a set of data [7]. For exam-
ple, the Gradient Descent (GD) solves Equation (3) by iteratively updating the
parameters of the model in the “downhill” direction of the objective function (the

one to be minimized). The update in Equation (5) is replaced by:
hep = r, (7)

with the positive real number « defining the length of the step in the (steep-
est-)descent direction. The method is simple and computationally cheap, as it re-
quires only the Jacobian matrix. However, this conceptual and computational

simplicity comes at the cost of a large number of iterative steps required for con-
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vergence. In the current setting, a simplistic GD with non-adaptive o =107
needed about 100,000 iterations to converge and turned out very sensitive to the
initial values. The Gauss-Newton Algorithm (GNA) relies on the assumption
that the objective function is approximately quadratic near the optimal solution.
Information on this (quadratic) curvature enters the algorithm as the second-
order differential equations matrix, the Hessian matrix, of which J'J is often
a good approximation. This results in a rapid local convergence. The update
becomes:
how =(373) 37T, 8)
The LMA varies the updates between the two optimization methods, taking ad-
vantages of both, by adaptation of the dumping parameter, A, in each iteration.
Small values make the LMA approach the GNA (as the term Al becomes negli-
gible compared to J'J ). For large values of A, the LMA mimics the GD
method (with « ~1/4 ). The intuition is that if the error increases we are likely
far from the minimum we are looking for; therefore, we need to increase the
dumping parameter in order to turn the algorithm into a simple GD. If the error
decreases, on the other hand, we are probably getting closer to the minimum and
we should emphasize the information on the local curvature of the optimization
function.
Hyperbolic functions can be easily, yet erroneously, mixed with a linear func-
tion. Indeed, for very small, compared to X, positive b the term under the

square root becomes +x*+b? ~x and the hyperbolic function converges to a
«1s P . » ra a : .
linear approximation”, f(x)= BX —c. This, however, leads to an obvious prob-

lem, since for positive ¢, the linear function will become negative for small X,
which is physiologically impossible. Further, it might be tempting to use statis-
tical properties of the regression curve (e.g. the confidence or the prediction
limits) to establish diagnostic references for the disease-related interpretations.
This is not appropriate, because the confidence bands of a regression curve do
not reflect the biological variability, they only show the region where the “true”
curve is expected to lie. Instead, following Reiber’s idea, the upper limit of the
Qi can be defined by finding parameters of a hyperbolic function fitted to the
largest empirical outcomes (stratified according to Q,,, ), again following the
same principle as it is outlined above for the average curve. Finally, it needs to
be emphasized that the diffusion model proposed by H. Reiber applies equally
well to the whole range of Q,, <0.5 (whereas the values beyond that limit are
never seen in practice) and to other proteins (IgA, IgM, prothrombin), too, and
the corresponding hyperbolic curves can be analogously parametrized with the
LMA outlined here.
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