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Abstract 
A perspective in the philosophy of mathematics is developed from a consid-
eration of the strengths and limitations of both logicism and platonism, with 
an early focus on Frege’s work. Importantly, although many set-theoretic 
structures may be developed each of which offers limited isomorphism with 
the system of natural numbers, no one of them may be identified with it. 
Furthermore, the timeless, ever present nature of mathematical concepts and 
results itself offers direct access, in the face of a platonist account which gen-
erates a supposed problem of access. Crucially too, pure mathematics has its 
own distinctive method of confirming or validating results - mathematical 
proof - which supplies a higher level of confidence and objectivity than that 
available elsewhere. The dichotomy of invention and discovery is too jejune a 
framework for analysing creative mathematical activity. The Gödelian plato-
nist perspective is evaluated and queried through scrutiny of the part played 
by mathematical resources and constraints in relation to human activity. It 
appears that there can be non-causal mathematical explanations and mathe-
matical constraint on purely natural processes. Valuable implications of 
Quine’s naturalism are explored, but one must be cautious of his thesis of 
confirmational holism. The distinction between algebraic and non-algebraic 
mathematical theories usefully contributes to our understanding of the inter-
nally differentiated nature of the subject. 
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1. Introduction 

Four main schools were prominent in the philosophy of mathematics in the 
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twentieth century, logicism, intuitionism, formalism and predicativism (Hor-
sten, 2019: section 2) and Wittgenstein had his own distinctive approach (Witt-
genstein, 1956; Startup, 2020). Each of the first three schools is anti-platonist in 
character and each for an extended period, but for differing types of reason, 
came under sustained attack or serious criticism, which led to renewed interest 
in the possibilities for the historically important platonist approach. Further-
more, in respect of the ontological assessment of mathematics, two views have 
become particularly prominent in recent decades, platonism and the contrasting 
position of nominalism. The aim of this article is to make progress in the phi-
losophy of mathematics by developing a position which draws particularly from 
both logicism and platonism, but also departs from them. It may well be that an 
accurate appraisal leads to the conclusion that mathematics has an essentially 
hybrid nature. 

Logic is an ancient intellectual discipline, with beginnings going back at least 
to the 4th century BCE, but being very actively pursued today; it has always been 
intimately connected with philosophy and mathematics. It was revolutionised 
around the turn of the twentieth century through the use of newly developed 
mathematical techniques. (Priest, 2000: Preface; for an account of classical logic, 
see Shapiro & Kouri Kissel, 2024) The thesis of logicism has two main elements: 
that the concepts of mathematics can be defined in terms of logical concepts; 
that the theorems of mathematics may be derived from logical axioms through 
purely logical deduction (Savitt, 1986: p. 26). The early Wittgenstein seems in-
clined in this same direction when he strikingly affirms: “Mathematics is a 
method of logic” (Wittgenstein, 1922: 6.234). It is widely agreed, however, fol-
lowing the contributions particularly of Frege (1974) and Whitehead & Russell 
(1956) that the logicist programme substantially succeeds in respect of arithme-
tic, but finds the remainder of the discipline beyond its scope. This striking par-
tial success rather points up the strategic importance of logic in relation to 
mathematics while also suggesting that it is in need of supplementation. 

Platonism in general is the view that “there exist such things as abstract ob-
jects—where an abstract object is an object that does not exist in space or time 
and which is therefore entirely non-physical and non-mental.” (Balaguer, 2016: 
Introduction) While related to Plato’s ideas, it is unclear that he fully endorsed 
this view. Regarding mathematics, a central idea of platonist ontology is that 
mathematical objects, together with mathematical relations and structures, exist 
and are abstract, in the sense that they are not located in space and time and 
have no causal connection with us (Linnebo, 2018). It may be readily judged that 
this way of putting it tends to make problematical the issue of how we can gain 
access to mathematical entities. A further recurrent idea of platonism is that an 
analogy may be drawn between mathematical entities and physical objects, par-
ticularly in respect of their objectivity and the constraint they impose upon us. 
Against this, but again with many versions, nominalists posit that mathematical 
objects, mathematical relations and structures either do not exist, or need not 
exist for mathematics to make sense as a discipline (Bueno, 2020). Hence there is 
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a startling divergence between the two positions. To make progress in the 
evaluation of platonism there is evidently a need to scrutinise the idea of a 
mathematical object, and clarify the sense in which mathematical results are 
constraining. This task is addressed here while also establishing links between 
that approach and logicism. 

2. Enumeration, Arithmetic and Geometry 

A useful first step in clarifying issues concerns the understanding of numbers. 
There are two very different aspects to consider: empirical propositions of enu-
meration and statements of arithmetic. The latter are not empirical propositions, 
although the validity of simple statements may be suggested empirically to an 
observer (e.g. a child). Indeed, one may well tend to agree with the view attrib-
uted to Plato himself that, “arithmetic, and pure mathematics generally, is not 
derived from perception” (Russell, 1946: p. 177). On the other hand, a statement 
of enumeration, such as ‘I have four books’ does involve perception while also 
involving conceptualisation. The indicated statement says something about what 
exists. The formalist approach within the philosophy of mathematics holds that 
the propositions of mathematics can be considered to be propositions about the 
consequences of the manipulation of strings—sequences of symbols, usually 
equations—using established rules of manipulation, Hilbert being a major pro-
ponent of this position (Weir, 2022). The symbols may even be taken simply as 
marks on paper. However, as far as enumeration is concerned, Ramsey offers an 
effective rebuttal: “...I do not see that it can be seriously held that a cardinal 
number which answers the question ‘How many?’ is merely a mark on paper” 
(Ramsey, 1990: p. 235).  

Just as the experience of discrete entities is the source of arithmetic, the ex-
perience of spatial relations is the source of geometry and also gives rise to 
mensuration. The statement that a building has a pyramidal structure involves 
perception but it also involves conceptualisation. Yet geometry - both planar and 
solid - as it develops is not derived from perception, although the understanding 
of the subject is powerfully assisted by the systematic use of appropriate dia-
grams, pictures and models. A reason for the latter is that a model of a pyramid 
on a desk forms part of empirical reality and is no more or less a pyramid than is 
one of those at Giza; similarly a picture of a square is as much a part of reality as 
is Trafalgar Square. There is an important difference, however, between the de-
velopment of arithmetic and geometry - in the form of Euclidean geometry. 

By way of context, Euclidean geometry is the body of work in Elements, a 
textbook on geometry attributed to the ancient Greek mathematician Euclid. 
Within the volume a small set of intuitively appealing axioms is assumed and 
many other theorems are deduced from these. Many of its results were previ-
ously indicated but Euclid was the first to organize the set of propositions into a 
logical system whereby each result is proved from axioms and previously proved 
results. Elements starts with plane geometry, still taught in some secondary 
schools today as an axiomatic system with associated proofs, and proceeds to 
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consider the solid geometry of three dimensions. (For issues raised by Euclid see 
Gray & Ferreirós, 2021: section 1) 

A key difference from arithmetic is that Euclidean geometry is understood to 
apply to ideal elements. Thus Pythagoras’ theorem is understood to apply exactly 
to a Euclidean right-angled triangle but it may not apply exactly to one drawn on 
paper. This particular assertion may seem to have the effect of distancing geo-
metrical results from empirical reality. However, an important part of our un-
derstanding is that when we set about drawing triangles with ever greater accu-
racy on smoother and flatter plain surfaces we are entitled to expect the theorem 
to apply to an ever closer approximation. Had this been found not to be the case, 
the development of geometry would never have proceeded as it did. What is also 
true is that at a much later date in the subject’s development there emerged un-
derstanding that there could be alternative geometries - besides the Euclidean - 
which the physicist might employ because they have more exact application to 
spatial reality.  

3. Reasoning and Mathematics 

Mathematics is primarily an activity and its product; to understand that activity 
one must foreground the fact and nature of human reasoning. A key distinction 
in this respect is between theoretical and practical reason (Blackburn, 2009: pp. 
48-52). The former is concerned with cognition or knowledge of circumstance. 
We make use of it so that our beliefs and actions may be brought into line with 
the actualities of the situation. By contrast, we use practical reason to choose ac-
tions taking appropriate account of both cognition and our desires. The tradi-
tional division made within theoretical reasoning is between the a priori and the 
a posteriori. Regarding the former it should be the case that anyone under-
standing the issue should conclude that it holds. Thus the a priori inference that 
if four people live in a house, there are more than three, should readily find as-
sent, without it even being necessary to evaluate the conditional claim. The af-
finity of mathematics and logic is indicated by the fact that they are the spheres 
of a priori inferences. By contrast, the hallmark of an a posteriori inference is 
that it depends upon knowledge of particular circumstance. 

Two points tend to arise regarding a priori inferences, which hinge on the is-
sue as to how we can know something without using actual experience (Black-
burn, 2009: pp. 50-51). In this connection it may be claimed that we are ‘hard- 
wired’ i.e. that some ability to make these inferences is innate—which is not to 
say that we could never be mistaken. Reflecting on the context of human evolu-
tion it seems plausible that some ability along these lines could have survival 
value. A further, rather different, idea is that these types of inference are essen-
tially trivial. This would be because they are matters of convention or follow 
from linguistic rules that humans lay down and teach children. However, this 
suggestion seems totally inadequate in respect of logic and mathematics. We can 
change conventions or linguistic rules but feel confident—even certain—that 
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three plus four is still going to equal seven. Conventionalism does not explain 
why we have no choice about arithmetical sums. It must be noted, however, that 
there are minor but strategically important exceptions here—as when the rule 
that (−1) × (−1) = +1 may be understood as conventional and adhered to so as to 
maintain the rules governing the use of the rational arithmetical operations. 
Further examples of this type of important conventional rule within mathemat-
ics are n0 = 1, where n is an integer, and 0! = 1. 

In general, however, when the seemingly a priori is successfully challenged, far 
from being a relatively minor occurrence, it is an intellectual upheaval. Thus 
when Euclidean geometry was challenged in the 19th century by the idea that the 
angles of a triangle might not total two right angles, this was not felt to have 
arisen simply from a change of convention or linguistic rule; it had something of 
the character of an intellectual revolution. Indeed, examples such as this may 
even give rise to the thought that a priori inference may be unreliable; even that 
what we call the a priori is essentially what we are most reluctant to give up. 
Hence we must remain aware of the possibility that what we take to be 
‘self-evident’ at a particular time and place may be mistaken, that what we find 
difficult to imagine may be correct.  

4. Gottlob Frege’s Impact on Logicism 

In seeking to evaluate logicism and platonism, it is vital to situate the work of 
Gottlob Frege (1848-1925); he and Bertrand Russell (1872-1970) were centrally 
important early contributor’s to the analytical tradition in philosophy (Beaney, 
2017: p. 4). Frege addresses the question as to what numbers are and how we 
gain knowledge of arithmetic. He views arithmetic as essentially a form of logic 
and numbers as a kind of logical object. In developing this approach he is a ma-
jor proponent of logicism—defined earlier—in short the view that mathematics 
may in some sense be reduced to logic. 

Centrally important is his work The Foundations of Arithmetic, published in 
1884, in which a key assertion is that statements about numbers are assertions 
about concepts (Beaney, 2017: p. 9). For Frege, the street has 50 houses means 
that the concept ‘house of the street’ has 50 instances. He sees the property of 
having an instance as a logical property, in that it can be defined purely logically. 
Indeed, Frege views an object falling under a concept as the most basic element 
needed to understand what numbers are. As Beaney (2017: p. 10) puts it, “It is 
not things in themselves to which numbers are assigned but the concepts by 
means of which we think of things.” He proceeds to develop an account involv-
ing distinct levels. Thus to say that a street has 50 houses is to say that the 
first-level concept of house of the street falls within the second-level concept of 
‘has 50 instances’. Furthermore, for every concept there is a class or set of things 
which falls under it, which is referred to as the extension of the concept. In this 
connection, concrete objects belong to the empirical world, while abstract ob-
jects belong within out rational thought. 

Turning specifically to the natural numbers, these may be defined relatively 
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straightforwardly using the logical concepts of identity, negation and disjunc-
tion. (See Beaney, 2017: pp. 13-14; as Beaney points out, in what immediately 
follows Frege is simplified.) The first step is to form the concept ‘not identical 
with itself’. This is true of nothing, so the corresponding class has no members; 
this is called the ‘null class’ and the number 0 may be identified with it. The next 
step is to form the concept ‘is identical to 0 (i.e. the null class)’. The number 1 
may be identified with this class i.e. the class of things identical with 0. Proceed-
ing further, one can form the concept ‘is identical with 0 or 1’ (using ‘or’, the 
logical concept of disjunction): this generates a class which may be identified 
with the number 2; again, the class generated by the concept ‘is identical with 0 
or 1 or 2’ may be identified with three. This process may be successively iterated 
to define the other natural numbers. There is little reason to doubt that, given 
any natural number however large in magnitude, a definition in these terms may 
in principle be provided for it; also given any number one could form its suc-
cessor i.e. the next greater one. Proceeding further, it proves possible to define 
addition and multiplication operations so that the familiar mathematical state-
ments involving them come out to be true. 

Taking stock of these basic elements of Frege’s contribution, there are some 
sound reasons to accept his central claim that statements about numbers are 
statements about concepts. However, the status of his attempt to define the 
natural numbers is more problematical and in need of further comment. Con-
sider, for instance, the definition just given for the number 2: ‘the class of things 
identical with 0 or 1’. Given near-universal recognition of the number 2 and our 
familiarity with elementary sums such as 2 + 2 = 4 and 2 x 2 = 4, it is a striking 
fact that almost no-one would recognise this as a definition of 2. At least one 
may say that there is a substantial gulf between that definition and the everyday 
understanding of a very familiar—if abstract—idea.  

This is not for a moment to contest the magnitude of Frege’s overall contribu-
tion—developed further by Russell and others—towards showing that mathe-
matics may in some sense be reduced to logic. As is well-known, Frege’s work 
fed into Whitehead and Russell’s [1910] (1956) Principia Mathematica which 
inter alia led on to Gödel’s seminal contribution to mathematical logic and 
metamathematics. Potter (2021) gives this contemporary assessment: “Logicism 
is a brilliant view but it does not work because of Gödel. Regarding logicism, 
Hume’s principle together with second order logic delivers arithmetic - but not 
much more.” (Hume’s principle says that the number of Fs is equal to the num-
ber of Gs if and only if there is a one-one correspondence between the Fs and the 
Gs.) Nevertheless, despite the partial nature of the achievement, this line of work 
has proved incredibly fertile in its illumination of the relation between logic on 
the one hand and number and arithmetic on the other. Prior to Frege that rela-
tion was very imperfectly understood. (That body of work also stimulated the 
development of the computer.) 

In point of fact, however, a further line of analysis due to (Benacerraf (1965; 
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1973); see also Benacerraf & Putnam, 1983: pp. 272-294) is strongly suggestive of 
the idea that the natural numbers are not sets at all (Horsten, 2019: section 4.1). 
This is an implication of the fact that there is an indefinitely large number of 
ways of identifying the natural numbers with pure sets of which that given above 
is simply one. Benacerraf draws particular attention to the following alternative 
set, which differs from the above iterated pattern from the number 2 onwards. 
Instead of 2 being ‘the class of things identical with 0 or 1’, it is ‘the class of 
things identical with the class of things identical with 0’; following on in this 
same vein 3 is ‘the class of things identical with the class of things identical with 
the class of things identical with 0’, and the other natural numbers may be simi-
larly generated successively. Again, addition and multiplication operations may 
be so defined as to yield the expected outcomes. 

So given two differing structures of identification, one may reasonably inquire 
as to which of them consists solely of true identity statements. In this connec-
tion, what does seem clear is that one is evaluating two isomorphic structures. 
What is meant by the italicised mathematical and set-theoretic word is that the 
items in the two structures may be put into one-one correspondence i.e. to each 
item in the first structure there corresponds a single item in the second and vice 
versa; also there is appropriate correspondence of outcomes when the operations 
of addition and multiplication appropriate to each structure are put to use on 
corresponding items. 

Despite the seeming arithmetical equivalence of the two structures, however, 
problems arise once one asks extra-arithmetical questions, such as does 1 belong 
to 3 (Horsten, 2019: section 4.1)? Perusal of the above two definitions of 3 pro-
vided within each structure yields different answers. Since each structure pro-
vides an item whose identity is supposedly that of the natural number 3, it fol-
lows that they should be identical with each other, but in actuality what is gener-
ated is a set-theoretic falsehood (Horsten, 2019: section 4.1). This is so given a 
context where neither structure is superior to the other; yet the accounts cannot 
both be correct. The issue here is referred to as Benacerraf’s identification prob-
lem. There is good reason to conclude that neither structure fully does the job 
for which it was designed. The overall conclusion is that, although many 
set-theoretic structures may be developed each of which offers limited isomor-
phism with the system of natural numbers, no one of them may be identified 
with it. 

5. Frege’s Significance for Platonism 

At this point attention may usefully be directed at a strategically important con-
cept that Frege deploys in his account: that of an abstract object which is under-
stood to belong to our rational thought. The reference is to logical objects such 
as classes and sets and is plainly to be sharply distinguished from the notion of a 
physical object. It is an idea that fits neatly into his system of thought and was 
certainly taken up by others within the wider framework of the subject of logic. 
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However, there is reason to be wary of too readily accepting an implied assign-
ment of ontological status leading to incorporation into a platonist account. 

Frege’s own thinking indeed rather points in this platonist direction. As 
Brown (2008: pp. 9-10) points out Frege distinguishes among our ideas (which 
are psychological in their nature), thoughts and the sentences used to express 
them. Seemingly thoughts are neither ‘things of the outer world’ i.e. physical en-
tities nor are they ideas of a psychological nature. He points to the need for us to 
recognise a third realm and says: “What belongs to this corresponds with ideas, 
in that it cannot be perceived by the senses, but with things, in that it needs no 
bearer to the contents of whose consciousness to belong. Thus the thought, for 
example, which we express in the Pythagorean theorem is timelessly true, true 
independently of whether anyone takes it to be true. It needs no bearer.” (Frege, 
1974: p. 523) The point may be well taken that the truth of Pythagoras’ theorem 
is in no way qualified by considerations of time and it will be readily agreed that 
it is true irrespective of its place within any individual consciousness. However, 
one must be more wary of the suggestion that thoughts and the sentences used 
to express them are to be considered as ‘things’, if that mode of expression sup-
posedly bears on their ontological status. 

To situate the topic it is helpful briefly to refer to the way the notion of exis-
tence is employed in standard semantics and to note some examples. The key 
point is that the objects denoted by singular terms in true sentences are taken to 
exist. Thus if we formulate the true sentence, ‘Fred loves his bike.’, ‘Fred’ refers 
to an identifiable person, ‘bike’ refers to a physical object and ‘loves’ refers to a 
particular relation. Given that the sentence is true, it follows that Fred exists. 
Where the subject of such a true sentence is a physical object of some type - and 
often it is a person - the point is well taken. In passing, one notes, however, the 
difficulty in analysing in similar terms the fictional but prima facie true sentence, 
‘Cinderella had difficulty loving her two step-sisters.’ But what then of sentences 
involving numbers? To conform to the same pattern, if we take the true sen-
tence, ‘13 is greater than 12’, then 13 (and seemingly also 12) would be taken to 
exist. But, one is inclined to ask: exist as what? In this case certainly not as a 
physical object; conceivably the response might be: it exists as a number. None 
of this clarifies its ontological status. The most appropriate response is to say 
that ‘13’ may, and here does, constitute a meaningful abstract subject of a true 
sentence. That, however, is a point of no small importance: after all most 
mathematical works consist of a series of sentences.  

The Frege quotation above also refers to the Pythagorean theorem. That theo-
rem itself may figure in such a true sentence as: ‘The Pythagorean theorem may 
be proved within pure geometry or analytical geometry.’ The theorem may evi-
dently constitute the subject of a true sentence; so do we therefore conclude that 
it is an object and exists? Again, one may say it exists as a theorem or result 
within mathematics. In point of fact, by the Pythagorean theorem people some-
times mean the summary result and sometimes the whole proof culminating in 
that result. The first essentially consists of one sentence, while the second con-
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sists of a series of sentences doubtless accompanied by diagrams. 
As regards the issue of ontological status the crucial point is as follows. Were 

one to say that numbers and mathematical theorems and results exist as abstract 
(non-physical) objects, it tends to lead on to the question: How do we gain ac-
cess to them? Hence that way of structuring our philosophical thought leads in a 
platonist direction. It may be said, for instance, that we intuit them or in some 
way interact with them, which tends to come across as mystifying. On the other 
hand, if we focus instead on the central point that numbers may constitute the 
subjects of true meaningful sentences and that theorems consist of a series of 
sentences, many taking the form of true meaningful ones, then a different re-
sponse to the supposed problem of access suggests itself: to gain access we need 
simply to understand the sentence or sentences! In practice of course things are 
made more difficult because an intense process of reasoning is needed to under-
stand and follow the series of sentences constituting a mathematical proof.  

Nevertheless a possible, if provisional, anti-platonist conclusion suggests itself. 
The feature of mathematical results that their validity is beyond time - and also 
place - has a striking implication. It is that potentially one can have access to 
them at any time and place. For instance, here and now one can rehearse in one’s 
mind the theorem that there are an infinite number of primes; so too can one 
consider and present a proof of the Pythagorean theorem, which as indicated 
primarily takes the form of a series of sentences. The timeless, ever present nature 
of mathematical concepts and results itself offers direct access, in the face of a 
platonist account which generates a supposed philosophical problem of access. 

6. Proof and the Truth of Mathematical Statements 

So there is reason to query a platonist ontology focused on the notion of 
mathematical objects. Does this, however, have implications for the claim that 
mathematical results are objectively true and may be said to be true independ-
ently of whether they are known by us? Let it be said that there is no intention 
here to query the validity of any established mathematical theory or conclusion. 
To sort out the issue, it can help to distinguish between the language in which 
mathematicians make their claims and the language in which philosophers - in-
cluding platonists - make theirs.  

Linnebo (2018: section 1.4) points up this distinction while inviting consid-
eration of the mathematical statement: 

‘There are prime numbers between 10 and 20.’ 
This statement is clearly true. However, a statement of that form or affirming 

that ‘such prime numbers exist’ is itself made in the language of mathematics, 
while the controversy as to whether or not numbers are abstract objects is con-
ducted in the language of philosophy. 

In this case one has an assertion easily established by scrutiny of each number 
successively. One must, however, give full importance to the fact that pure 
mathematics has its own distinctive method of confirming or validating results - 
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mathematical proof - which is totally different from that applying in the empiri-
cal sciences. Mathematical proof consists of a series of sentences sometimes tak-
ing the form of mathematical equations, perhaps also accompanied by diagrams. 
Here is an example: 

Theorem. There are infinitely many prime numbers. 
Proof.  
1) Suppose, contrary to the theorem, that there are only a finite number of 

primes. 
2) Then there will be a largest, which we will call p.  
3) Consider the number n which is 1 more than the product of all the primes:  
n = (2 × 3 × 5 × 7 × ... × p) + 1 
4) Is n prime or composite? (‘composite’ means it can be divided without re-

mainder into primes) 
5) If it is prime, then the original supposition is false, since n is larger than p. 
6) Consider it composite. 
7) Then it must be divisible without remainder by prime numbers. 
8) However, no prime up to p does divide n, so any number which does divide 

n must be greater than p. 
9) This means that there is a prime number greater than p after all. 
10) Hence, whether n is prime or composite, our supposition concerning a 

largest prime is false. 
11) Therefore the set of primes is infinite. 
One’s acceptance of the theorem flows from one’s following a chain of rea-

soning. There are differing types of sentence in the series; it includes questions 
and invitations to ‘consider’ something. The proof establishes the theorem be-
yond doubt; it also gives it the character of an objective proof. Proof is an essen-
tial element of mathematics. Our querying of platonist ontology in no way un-
dermines its role. 

7. Mathematics: Invented or Discovered? 

According to the view attributed to Plato, the abstract universe contains all 
mathematical entities, including numbers, axioms, theorems and geometrical 
figures, which are eternal and unchanging. Consequently, humans do not invent 
mathematics - in the sense of devising or designing it for the first time; instead 
they gradually discover it - in the sense of finding it or finding it out for the first 
time. This kind of view is also maintained by modern platonists. Now, while it is 
undoubtedly the case that the notion of discovery has extensive application, this 
particular dichotomy does not do justice to the development of the subject. This 
is because the creative acts involved break out of this somewhat jejune frame-
work.  

Mathematics is all to do with communication. Given its esoteric concepts and 
with proof taking the form of a series of sentences, it is not surprising that it is 
likened to a language. (In actuality it takes the form of a standardised specialised 
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element belonging to any modern language.) Children now acquire facility in 
elementary arithmetic relatively easily but that is all to do with the nature of our 
modern number system, which is decimal, employs positional value in number 
presentation, and employs 0 as a number which may also be used to distinguish, 
for instance, 930, 903 and 93 (Higgins, 2011: pp. 2-8). The base ten positional 
idea has also been extended into fractional parts within the decimal number sys-
tem. The layout of work is important as when children are encouraged to place 
equal signs directly under one another. All this was not so much invented as de-
veloped over centuries. Generally, effective mathematics has a lot to do with the 
use of notations and methods of presentation and layout which aid thought.  

Newton and Leibniz developed calculus, but they used differing notations and 
methods of presentation. Leibniz’s notation was the more widely adopted for it 
was found to assist and guide thinking; Newton’s notation was taken up more in 
dynamics. Newton—as discussed further below—used his method in working 
out the implications of the theory of gravitation. The various approaches, when 
modified and ‘fine-tuned’, proved their value overtime but it was only later that 
the foundations for the use of calculus were secured in mathematical analysis. It 
is evident you cannot usefully summarise these developments simply by talking 
about invention and discovery. Furthermore, in the eighteenth century particu-
larly, mathematicians such as Euler—an early influential user of functional nota-
tion—developed some results which were only rigorously proved later; again, a 
pattern resisting easy use of the same dichotomy. 

Today we are only two familiar with the axiomatic method but a modern 
presentation may be utterly misleading as to the pattern of development of the 
ideas. Given a modern presentation of Euclidean geometry, which, in fact, owes 
a lot to a much later reworking by the French mathematician Legendre (1794), 
you might think postulates or axioms were first set up which do not require 
proof and then people set about proving theorems i.e. ‘discovering’ the logical 
implications of axioms, but there is every reason to judge that the development 
of the system was much more ragged than that. It is well-known, for instance, 
that centuries were devoted to trying to prove the parallel postulate before its 
status was properly understood. Indeed, following Lakatos (1976) there is good 
reason to believe that concept and rule establishment in mathematics is not done 
on a ‘once and for all’ basis, but proceeds at least partly through stages of con-
jecture and refutation or counterexample.  

8. Internal and External Resources and Constraints 

In an extended evaluation of platonism a useful focus is the way in which 
mathematical entities may be said to resource and constrain activity. A powerful 
mind taking a platonist perspective was that of Gödel who held that “there is a 
strong parallelism between plausible theories of mathematical objects and con-
cepts on the one hand, and plausible theories of physical objects and properties 
on the other hand. Like physical objects and properties, mathematical objects 
and concepts are not constructed by humans. Like physical objects and proper-
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ties, mathematical objects and concepts are not reducible to mental entities. 
Mathematical objects and concepts are as objective as physical objects and prop-
erties. Mathematical objects and concepts are, like physical objects and proper-
ties, postulated in order to obtain a good satisfactory theory of our experience.” 
(Horsten, 2019: section 3.1) So Gödel draws an analogy between the mathemati-
cal and physical spheres but it is important to test its limits; where there are 
analogies one may also find significant differences or disanalogies. 

Considering platonism in general Brown (2008: pp. 11-15) draws out the fol-
lowing core points: mathematical objects are perfectly real and exist independ-
ently of us; mathematical objects are outside of space and time, they are not 
concrete or physical; we can intuit mathematical objects and grasp mathematical 
truths; mathematics is a priori, not empirical; even though mathematics is a pri-
ori, it need not be certain; platonism, more than any other account of mathe-
matics, is open to the possibility of an endless variety of investigative techniques. 

As a response to Gödel particularly, but also to this wider characterisation of 
platonism, it becomes important to explore both similarities and differences in 
respect of the place physical objects and mathematical entities occupy in human 
life. In this connection two ways in which physical objects enter human life are 
as resources (we use a tool such as a spanner) and as obstacles (our passage is 
arrested as we come up against a brick wall). Now, as a first point, one would 
certainly want to say that mathematics is valuable as a resource. However, while 
a tool like a spanner is an externality for which a person reaches, mathematical 
resources may sometimes be purely internal to a person. For instance, one 
checks a bill or bank statement using mental arithmetic. Of course such a check 
might or might not be correct; a mistake could have unpleasant consequences. 
On the other hand, a highly trained pure or applied mathematician might well 
be able to use mathematics to address all manner of problems without leaving 
his or her desk and even without the help of such external resources as books or 
the internet. 

As noted, the way platonists tend to put it is that, ‘mathematical objects are 
perfectly real and exist independently of us’. One has already queried the notion 
of a mathematical object above. Without doubting that mathematics exists be-
yond the consciousness of a single individual, it would seem highly strained and 
artificial to say that mathematical objects as opposed to ideas may be accessed by 
a mental process. It is much more natural to say that the person concerned has 
mastered and can deploy many mathematical concepts and results: these powers 
have become part of him or her as has mastery of a language. Of course, it is also 
the case that additional mathematical resources are available externally - in the 
form of physical books and electronic resources - but these are not the objects to 
which platonists refer. 

Turning next from resources to obstacles, an important difference must be 
pointed up which is of relevance to examples taken up later. In human life when 
a physical object is an obstacle there may be no meaningful relation between the 
intentions of the person concerned and the nature of the physical object. Thus a 
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brick wall may be a barrier to a tottering drunk, to a person trying to escape 
from a confined space or to someone carrying a message from one place to an-
other. It is all to do with the physical facticity of the wall on the one hand and 
the moving human body on the other. Now if a mathematical object really were 
analogous to a physical object some sort of parallelism in this regard might be 
expected i.e. that a constraint, barrier or obstacle might be encountered which 
lacks a meaningful relation to the intentions of the person concerned. However, 
a consideration of examples rather suggests the opposite and that a meaningful 
relation exists between human objectives and the nature of the obstacle. Given 
the position developed here as contrasted with platonism, this is to be expected 
because we have stressed the role of the understanding of meaningful true 
statements and the use of accurate reasoning. This is precisely what is being de-
ployed when mathematics is being used successfully as a resource and what is 
not being deployed adequately when obstacles are encountered. 

Example 1; multiplication. One may ask: does one ever ‘come up against’ the 
result that 11 × 12 = 132? Yes, one does so within the context of practical human 
activity. For instance suppose one is tiling a twelve by eleven rectangle and one 
calculates how many tiles are needed and wrongly calculates that 11 × 12 = 130. 
One proceeds then to acquire 130 tiles and proceeds with the practical tiling 
task. At the end one will ‘come up against’ the irritating consequence that one is 
two tiles short. 

Example 2; Pythagoras’ theorem. Supposing a three yard fence and a four yard 
fence each meet at one end at right angles. One wishes to construct a fence be-
tween their two other ends to create an enclosure. In doing so one will ‘come up 
against’ the feature that no fence under five yards in length will be able to com-
plete the enclosure; acquiring an additional four yard fence, for example, will be 
insufficient.  

Example 3; topology. The Seven Bridges of Königsberg is a historically notable 
problem in mathematics. The city was set on both sides of a river which included 
two islands which were connected to each other and the mainland by seven 
bridges. Experience showed one could not devise a walk through the city that 
would cross each of the seven bridges once and only once. The mathematician 
Euler proved that the problem has no solution, thereby initiating graph theory 
and topology. 

In each example it is apparent that some sort of limit or constraint flows from 
the mathematical result, but does this ‘parallel’ the constraint of a brick wall? 
No, because, as indicated above, the brick wall is a general barrier, while the 
mathematical results function as a constraint or limitation given the specific task 
in hand. We saw that a mistake in multiplication created a practical problem, as 
did a lack of familiarity with Pythagoras’ theorem: specifically, in Example 1 
constraint is experienced because 130 < 11 × 12, while in Example 2 it arises be-
cause 42 < 42 + 32. 

In the last example, the task of devising a walk over the bridges without re-
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tracing one’s steps cannot be followed through because of the topological result. 
Again, the mathematical result figures as a constraint given the precise defined 
task in hand - that result is not a constraint upon the use of the bridges to cross 
the river in general. Contrastingly, a physical object is a constraint external to 
human activity in its generality. 

9. Non-Causal Explanations; Processes Independent of  
Human Activity  

In many areas of science explanation is bound up with an appropriate descrip-
tion of a cause. There is substantial agreement on the point that mathematical 
tools are an excellent means of representing causes. What needs highlighting for 
present purposes is the role of mathematics in non-causal explanations (Man-
cosu, Poggiolesi, & Pincock, 2023). These come into play, for instance, in rela-
tion to processes evident in everyday situations. Supposing one asks, for in-
stance, why we cannot divide 13 sweets equally among three friends or why we 
can display sixty stamps in a rectangular array, the explanations are that 13 is 
not divisible by 3 without remainder, while 60 is composite with many factors. 
Hence one has a non-causal explanation of which arithmetic forms part. Simple 
processes that may (or may not) play out in the world are evidently subject to 
absolute arithmetical limitation.  

So far the discussion of resources and constraints has focused on human ac-
tivity. To advance understanding of the ontology of mathematics it is important 
to clarify whether any similar processes operate in the world beyond the context 
of human activity. There is indeed interesting mathematics in natural processes: 
two such being the evolution of stars and the evolution of life on Earth by natu-
ral selection. A mathematical result in play concerns the relation between the 
volume and surface area of similarly shaped objects - whether stars or animals - 
of varying size. The reader is perhaps familiar with the formula for the surface 
area of a sphere, 4πr2, and that for its volume, (4/3)πr3. It is apparent that surface 
area varies as the square of radius while for volume it is as the cube of radius; 
hence the volume builds up more rapidly. Essentially the same result holds for 
non-spherical objects of identical shape. It is relevant that the mass of an object 
tends to increase linearly with its volume. Roughly speaking a star (like our sun) 
has nuclear fuel according to its mass but radiates energy away according to its 
surface area (and surface temperature). The rapidity of the evolution of stars of 
differing initial masses can be shown to be variable in unexpected ways (as is 
their tendency to become supernovae and even black holes). A whole number of 
factors is involved but the evolution of a star through its various stages is inter 
alia bound up with the ratio of its volume to surface area.  

Passing on to the story of animal (and plant) evolution it is important to in-
quire as to why living organisms are the size they are as opposed to being several 
times smaller or larger. The ratio of mass to surface area is always one of the 
factors involved. The energy developed within a warm-bloodied animal is related 
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to its volume, but the tendency for it to lose heat is related to surface area. Hence 
animals living near the poles benefit from increased size. This is why the polar 
bear is particularly large within the bear family. 

The human understanding of this mathematical result is highly relevant to 
engineering practice. When building a bridge, it would be madness simply to 
scale up the dimensions of a model of a bridge sitting on someone’s desk. This is 
because while the weight of the bridge varies as the cube of the scale factor, the 
strength of the various bonds does not. In the same way, an animal of the shape 
of a brontosaurus with all its dimensions doubled could never evolve, because an 
animal of those dimensions would be instantly crushed by its own weight. 

Biology gives rise to further striking phenomena which bring mathematical 
explanations into play. (Potochnik, 2007; Rice, 2015, 2021) This has to do with 
the detailed implications of the organism-centred Darwinian theory of evolu-
tion which focuses on a population model: various optimization processes, 
sometimes involving maximization or minimization, confer relative fitness on 
populations. Particularly well-known is the example of the lengths of the 
life-cycles of three species of periodic cicadas, which are 13 or 17 years (Baker, 
2005, 2017). The explanation is that prime-numbered life cycles are advanta-
geous in respect of avoiding predators and in the competition for scarce re-
sources. With respect to this phenomenon, analysis of Wakil and Justus (2017: 
p. 927) suggests the following argument: “1. A positive correlation exists be-
tween the number of divisors of a life cycle period and the predation pressure 
the respective species experiences. 2. Prime numbers have the fewest divisors 
possible. Therefore species life cycles cannot minimize predation pressure 
more than prime life cycles.” 

In a further example, the hexagonal shape of honeycomb cells may be shown 
to be optimal (Lyon, 2012; Lyon & Colyvan, 2008; Räz, 2017; Wakil & Justus 
2017). Again, so-called Fibonacci numbers figure quite a lot in plant biology. 
These belong to the sequence 1, 1, 2, 3, 5, 8, 13, 21... where each number is the 
sum of the previous two. ‘In the case of sunflowers, Fibonacci numbers allow 
for the maximum number of seeds on a seed head, so the flower uses its space 
to optimal effect. As the individual seeds grow, the centre of the seed head is 
able to add new seeds, pushing those at the periphery outwards so the growth 
can continue indefinitely.’ (The Flower Council of Holland, 2024) Hence it 
may be concluded that mathematical results are a condition for purely natural 
processes. 

It is, of course, an important fact that mathematics and its powerful methods 
and results also figure prominently in the pure and applied sciences and engi-
neering. Arguments concerned with the sciences and bearing upon platonism 
have been developed by Quine and Putnam. It is important to ask what conclu-
sions about the character of mathematical concepts and results may be drawn 
from that strategically vital context.  
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10. The Uses of Mathematics in the Empirical Sciences and  
Technology  

Quine engaged in a methodological critique of traditional philosophy. Arising 
out of this, he presented a refreshingly different philosophical methodology, 
which has become known as naturalism (Quine, 1969). This is to the effect that 
our best theories are our best scientific theories. His key idea was that we can 
have more confidence in scientific knowledge and understanding than in exist-
ing epistemological or metaphysical theories within philosophy. Far from phi-
losophy being needed as a foundation for science, Quine reckons we would be 
better employed working in the opposite direction. 

Crucially - for present purposes - Putnam applied this approach to mathe-
matical ontology (Putnam, 1972; Horsten, 2019: section 3.2.). He was mindful of 
the fact that developed theories in the empirical sciences are often mathemati-
cally expressed; this is evident, for instance, in Newtonian mechanics and New-
ton's theory of gravitation, also in quantum theory and relativity. Putnam’s 
thought was that it would be a bit odd to claim that mathematical entities do not 
exist given that they inhere in our best scientific theories; hence we have an on-
tological commitment to them. 

This thought gains strength by reference to another thesis of Quine’s, known 
as confirmational holism. It is a familiar enough fact that scientific theories are 
confirmed by evidence but Quine wishes to take a further crucial step. He would 
say that where mathematical theories form part of scientific theories or enter 
into them, where those scientific theories are confirmed so also are the mathe-
matical ideas which inhere in them. Hence, it is argued, there is empirical con-
firmation of mathematical theories. However, on this precise point, one must 
demur. What is undoubtedly confirmed is the value of ideas drawn from 
mathematics including parts of it designated as theories (such as the theory of 
functions or of matrices) but this may fall short of the confirmation of a theory 
as such. Examples may help. 

Example 4; the gravitational attraction of a sphere. Newton introduced the 
inverse square law of gravitation and showed that, if it applied, you would expect 
planetary motion round the sun to be elliptical. As part of this he used the 
mathematical procedures of calculus - which he himself had developed - to show 
that a sphere will attract as though its mass were concentrated at the centre. 
Arising out of this his theories of motion and of gravitation were triumphantly 
confirmed. Specifically on the mathematical side, one would say that the theory 
of functions of a real continuous variable was successfully deployed and the use-
fulness of calculus demonstrated. From a modern perspective it is clear the pure 
mathematical justification for calculus was lacking at that time, but it has since 
been secured within the field of mathematical analysis. 

Example 5; the interaction of light and the electron. It appears that this inter-
action cannot be represented by any physical model or straightforward diagram 
but it can be captured mathematically. This was initially done in two different 
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ways - by Schrödinger’s wave equation, which uses partial differentiation, and by 
Heisenberg’s use of matrices. Empirical evidence confirms the value of these 
mathematical representations of the interaction (which are fully compatible with 
each other). It follows that there is confirmation of the value of the mathematical 
understanding of partial differentiation and of the theory of matrices. 

Further to these pure scientific examples, one may also instance a major 
technological and scientific triumph: the successfully achieved objective in 1969 
of putting men on the moon and returning them to Earth made massive use of 
mathematical techniques and results embedded in the science and technology. 
Now the character of these various scientific and technological achievements 
may be judged to vary but in each case specific mathematical representations 
and results may be said to inhere in the identified human activity. In each case 
too it is fair to say that there is a clear sense in which the mathematics is con-
straining. Had Newton made a mistake in his construction or use of calculus he 
would have been unable to link his inverse-square law to the observed motion of 
the planets; had Schrödinger formulated the wrong equation or misunderstood 
partial differentiation he would not have contributed to understanding the in-
teraction of light and the electron. Had the mathematics used to put men on the 
moon been incorrect they would not have completed their journey. One is enti-
tled to conclude that in these cases mathematical results are constraining in ways 
which are internal to specific human activities. Hence the conclusion to be 
drawn on this point parallels that given earlier for the more mundane tasks.  

In connection with the applications of mathematics, however, an important 
distinction may be made between its role in terms of representation and descrip-
tion. It is plain that elementary arithmetic arises out of our ordinary everyday 
experience; in that case numbers are contributing descriptively. So too in the 
field of statistics - of great importance in human social and policy affairs as well 
as in a scientific field such as natural history - there is description in numerical 
form. Yet it seems that centrally important applications of mathematics in the 
sciences are not of this type. In the example of understanding the interaction of 
light and the electron used earlier Schrödinger and Heisenberg selected particu-
lar mathematical tools which might help to represent a particular physical inter-
action. The very fact that they selected different sophisticated tools makes it clear 
that they were feeling for an equation or mathematical structure which could 
represent an aspect of reality; had a particular tool failed to do this another 
might conceivably have been selected - without there being the implication that 
the first was deficient or erroneous in a mathematical sense. 

This is relevant to an evaluation of the comments of Putnam and Quine, who 
as Brown (2008: p. 56) points out, rather see the role of mathematics in descrip-
tive terms. That viewpoint probably links to their remarks about the applications 
of mathematics to the sciences possibly leading to the revision of mathematics in 
the light of experience. Now, while it would be churlish not to view many scien-
tific advances and engineering achievements as triumphs of mathematics as well 
as empirical science, it is nevertheless the case that no mathematical theorem or 
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result has been revised in this way, which rather points to the representational 
role of mathematics. By way of illustration attention may usefully be drawn to 
the way in which Newtonian mechanics was overtaken by relativity: there was 
nothing wrong with the mathematics of the Newtonian system, but Einstein 
substituted a new set of equations which more accurately reflected reality. A 
further aspect was that by this time mathematicians had developed non-Euclid- 
ean geometry which could then be employed in the representations used in gen-
eral relativity. No doubt this type of advance stimulated further pure mathe-
matical work—for instance, in differential geometry—but the validity of the 
mathematics at all stages was fundamentally secured by the pure mathematical 
method of proof. 

11. Differing Branches of Mathematics 

So far, in this evaluation of theories within the philosophy of mathematics, there 
has been a tendency to address mathematics as a whole. A reason for so doing is 
that the conceptual interconnections and ramifications within the subject are so 
complex it would seem unwise to carve it up in some summary way; it has been 
noted, for instance, that modern conceptions of number and geometry cannot be 
cleanly conceptually isolated from each other.  

A distinction which may, however, appear to have some utility in this respect 
is that between algebraic and non-algebraic mathematical theories (Shapiro, 
1997; see also Shapiro, 2000). As Horsten (2019: section 4.2) puts it, “Roughly, 
non-algebraic theories are theories which appear at first sight to be about a 
unique model: the intended model of the theory. We have seen examples of such 
theories: arithmetic, mathematical analysis… Algebraic theories, in contrast, do 
not carry a prima facie claim to be about a unique model. Examples are group 
theory, topology, graph theory…” The suggestion is that these differ in respect 
of the types of mathematical entities or structures involved. 

The key difference is that the non-algebraic theory is directly concerned with 
mathematical entities, while the algebraic theory is not interested in those enti-
ties as such but is only concerned with structural aspects of mathematical enti-
ties. The reference to structural aspects in the case of algebraic theories may 
represent a move towards the adoption of a formalist perspective in respect of 
those theories i.e. an approach which sees mathematical statements as assertions 
about the manipulation of strings, or sequences of symbols using established 
rules of manipulation.  

The central issue, however, concerns whether or not the distinction between 
non-algebraic and algebraic theories bears upon the adequacy of a platonist ap-
proach and, in particular, helps to refine or qualify the earlier discussion of con-
straint encountered internal to activity. The first point to make in this connec-
tion is that where you have an algebraic theory which is not about a unique 
model, it seems to follow that it will not have direct application in that precise 
form to the empirical sciences; hence it is at least distanced from confirmation in 
the important way to which Quine and Putnam draw attention. However, crea-
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tive mathematical work of that type proceeds subject to logical and mathematical 
constraint. In particular, it is directly relevant to say that although an algebraic 
theory may not be about a unique theory it will typically have application to one 
or more such theories. An example may help. There is abstract algebraic work 
concerned with such structures as groups, rings and fields. These notions are 
judged to have application among other things to the integers and the real num-
bers. It follows that theorems at the more abstract level have application at the 
more specific level, while at least some theorems at the lower level must have 
implications at the upper level; work at the two levels must absolutely marry up, 
which represents constraint for all concerned. Indeed the interdependence of 
levels calls into question the suggestion that a formalist approach might apply to 
one type of theory, while being judged not to apply to the other. 

Topology which was included above within the category of algebraic theories 
may provide further illustration. Topology is akin to geometry but has as its ob-
ject the study of the properties of geometrical figures that persist even when the 
figures are subjected to drastic deformations; it has its own vocabulary of ‘sim-
plexes’ and ‘complexes’. However, a key point is that that elaborate field of 
mathematics is still understood as rooted in everyday experiences - as illustrated 
by our Example 3 above concerned with The Seven Bridges of Königsberg. Con-
straints internal to topology flow from its roots. Also, the interdependencies of 
mathematical fields are complex: topology makes use of algebra but topological 
argument can itself be employed to prove the fundamental theorem of algebra 
(essentially, that in the field of complex numbers every polynomial equation has 
a root) (Courant & Robbins, 1958: pp. 269-271). Furthermore, topology has also 
proved to have application in engineering - so it must not be thought of as a field 
so abstruse as to be beyond the range of confirmability through scientific appli-
cation.  

At this point it is indeed pertinent to take a sharper look at the work of Quine 
and Putnam on the implications of the empirical sciences for the confirmation 
of mathematical theories. That work and argument may be said to apply to a lot 
of mathematics but not to the whole of it; in particular, it might not apply to 
parts of set theory. Horsten (2019) puts the position in this way: 

For it appears that the natural sciences can get by with (roughly) function 
spaces on the real numbers. The higher regions of transfinite set theory appear 
to be largely irrelevant to even our most advanced theories in the natural sci-
ences. Nevertheless, Quine thought (at some point) that the sets that are postu-
lated by [Zermelo-Fraenkel set theory with the Axiom of Choice] (ZFC) are ac-
ceptable from a naturalistic point of view; they can be regarded as a generous 
rounding off of the mathematics that is involved in our scientific theories (Hor-
sten, 2019: section 3.2). 

Without getting lost in technicalities, at least it does seem possible to identify 
mathematical work which may not be subject to the same degree of constraint as 
that experienced elsewhere; Cantor’s theory of transfinite numbers is perhaps a 
clear example. Highly significantly, that work has no known application in the 
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empirical sciences, hence it lacks the kind of confirmation referred to by Quine 
and Putnam. Significantly too, the other work on the number concept is tightly 
integrated while that on transfinite numbers is more loosely tied in; perhaps 
‘semi-detached’. Specifically, the number concept developed from natural num-
bers through the integers, the system of fractions, the integration implied by the 
advent of analytical geometry, and the real numbers (including irrational num-
bers) in a way which was subject to closure under the rational operations; the 
extension to complex numbers is similarly constrained but fundamentally con-
cerned with the provision of solutions to algebraic equations. By contrast, the 
extension to transfinite numbers is not one subject fully to closure under the ra-
tional operations. Russell (1912: p. 87) puts the position for infinite cardinals 
thus: “Addition, multiplication, and exponentiation proceed quite satisfactorily, 
but the inverse operations - subtraction, division, and extraction of roots - are 
ambiguous, and the notions that depend upon them fail when infinite numbers 
are concerned.” The status of some results concerning transfinite numbers has 
even got bound up with debates about the adequacy of proof by reductio ad ab-
surdum (Startup, 2020: section 6). Those adopting an intuitionist philosophical 
approach to mathematics in effect claim that the topic of transfinite numbers has 
developed without sufficient restraint put upon it. If that is going too far, at least 
it may be said that were one to base the ontological status of number on that of 
the natural numbers (or integers), it seems that of all numbers, transfinite num-
bers would have the greatest difficulty sharing in it.  

12. Conclusion 

A position in the philosophy of mathematics is here developed which has an 
eclectic character drawing as it does from both logicism and platonism, while 
also departing from each of them. In this connection, although the philosophy of 
mathematics must ultimately address the whole of that subject including higher 
mathematics and the theory of sets, it is of the essence that the subject developed 
- ubiquitously across human societies from the simplest - commencing with the 
elementary insights concerning the natural numbers together with arithmetic on 
the one hand, and those concerning space and geometry (taking in elementary 
mensuration) on the other. Without grasping the fons et origo of the subject, the 
overall philosophical treatment is bound to be distorted. 

Crucially, mathematics as an activity is fundamentally dependent upon hu-
man reasoning, within which the theoretical and practical may be distinguished. 
The affinity between mathematics and logic is indicated by the fact that they are 
the spheres of a priori inferences. Where the seemingly a priori is successfully 
challenged - as happened to Euclidean geometry in the nineteenth century - it 
has the character of an intellectual upheaval. 

Frege is a centrally important figure both in his impact on the logicist pro-
gramme and in his significance for platonism. He analyses statements about 
numbers and judges that the natural numbers may be defined using logical con-
cepts. However, taking account of Benacerraf’s work, it seems that, although 
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many set-theoretic structures may be developed each of which offers limited 
isomorphism with the system of natural numbers, no one of them may be iden-
tified with it.  

Frege deploys in his account the notion of an abstract object which is under-
stood to belong to our rational thought. He also makes the suggestion that 
thoughts and the sentences used to express them are to be considered as ‘things’; 
but one must be wary if that mode of expression supposedly bears on their on-
tological status. As an alternative one would say that numbers may constitute the 
subjects or objects of meaningful true sentences in the grammatical sense; so also 
do theorems consist of a series of meaningful sentences together constituting a 
proof. To gain access we need simply to understand the sentence or sentences. 
Thus the timeless, ever present nature of mathematical concepts and results itself 
offers direct access, in the face of a platonist account which generates a supposed 
philosophical problem of access. 

To take issue with a platonist ontology is not to query mathematical results 
nor the assertion that they are objectively true. In this connection it can be help-
ful to distinguish between the language of working mathematicians and the lan-
guage of working philosophers including platonists. For one thing, the respective 
criteria for making ‘existence’ claims differ. Crucially, however, pure mathemat-
ics has its own distinctive method of confirming or validating results - mathe-
matical proof - which supplies a higher level of confidence and objectivity than 
that available elsewhere. 

Sometimes platonists assert that mathematical truths are discovered rather 
than invented. Although the notion of discovery undoubtedly has substantial 
application, the dichotomy of invention and discovery is too crude and jejune a 
framework for analysing creative mathematical activity. For instance, creating 
effective notations, methods of presentation and frameworks which guide 
thinking is critically important. Also, a tidy modern presentation taking an 
axiomatic form may be utterly misleading as to the pattern of development of 
the ideas behind it. Concept and rule establishment in mathematics is rarely 
done on a ‘once and for all’ basis, but proceeds at least partly through stages of 
conjecture and refutation or counterexample. 

An attempt is made to evaluate the Gödelian platonist perspective which af-
firms parallelism between theories of mathematical entities and theories of 
physical entities. The approach adopted here is to scrutinise the part played by 
resources and constraints in relation to human activity. Whereas material re-
sources - such as a spanner - are external to the individual (of course know-how 
in its use is also involved), mathematical resources may be purely internal to a 
person as in the case of pure or applied mathematical work, but it would cer-
tainly sound odd to say that mathematical objects as opposed to ideas may be 
accessed by a mental process. As regards constraints on human activity, there 
does seem to be a difference between the way in which a physical object is a gen-
eral constraint external to human activity, while a mathematical result consti-
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tutes a constraint specifically geared to a precise task in hand. Perhaps these 
considerations somewhat diminish the sense of parallelism between the two 
spheres. 

It appears that there can be non-causal mathematical explanations and 
mathematical constraint on processes quite independent of human activity. The 
latter is particularly evident in respect of the natural processes of cosmology and 
biology. For instance, the result that volume varies as the cube of radius while 
surface area varies as the square of radius affects outcomes in stellar evolution 
and in the evolution of organisms. Indeed within the context of the Darwinian 
theory of evolution various optimization - maximization and minimization - 
processes confer relative fitness on populations; this applies to the 
prime-numbered life cycles of cicadas and the occurrence of Fibonacci numbers 
within plant biology. 

Quine’s naturalism as a distinctive philosophical methodology has demon-
strable strengths and there is point to Putnam’s thought that where scientific 
theories are mathematically expressed it would be odd to say the mathematical 
entities do not exist, but one must be cautious of the thesis of confirmational ho-
lism. As an approximation one can say confidence in the science (which may 
involve successful prediction) gives confidence in the associated mathematics. 
There are instances where this is particularly clear-cut e.g. confidence in the use 
of calculus would undoubtedly have grown given its successful employment by 
Newton in relation to the theory of gravitation. However, scrutiny of the main 
uses of mathematics in the sciences suggests that its role is representational 
rather than descriptive. Scientists are feeling for an equation or mathematical 
structure which could represent an aspect of reality and where one is inadequate 
they may adopt another. There is no known case of a mathematical theory or 
result being shown as erroneous by empirical scientific inquiry. Pure mathemat-
ics is disciplined by proof.  

The conceptual interconnections and ramifications within mathematics are so 
complex one must be wary of carving it up in a summary way, but there clearly 
are differing specialisms and levels of abstraction. The distinction between alge-
braic and non-algebraic mathematical theories proves to be of particular signifi-
cance, however, and it seems that an algebraic theory which is not about a 
unique model will lack direct application in that precise form to the empirical 
sciences; hence it is not confirmed in the important way to which Quine and 
Putnam draw attention. It is also noteworthy that, while all the other work on 
the number concept is tightly integrated, that on transfinite numbers is more 
loosely tied in; it being the case that transfinite numbers are not fully subject to 
closure under the rational operations.  

As a wider expression of Quine’s naturalistic approach, it would seem we can 
have more confidence in mathematical knowledge and understanding than in 
existing epistemological or metaphysical theories within philosophy. Far from 
philosophy being needed as a foundation for mathematics, we might be better 
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employed working in the opposite direction: in a highly specific sense, this could 
be said to be Gödel’s direction of travel in his important metamathematical 
proof (Kleene, 1962: p. 206).  

Mathematics is sui generis and rather escapes the clutches of either logicism 
or platonism. One cannot identify set-theoretic structures with the number con-
cept; also a possible analogy between mathematical entities and physical objects 
rather fails because they do not contribute in the same sort of way as resources 
and constraints on activity and the granite quality of mathematics derives from 
proof taking the form of accurate sequential reasoning. While not depending 
upon any individual mind, arithmetic and geometry do depend upon general 
human attempts to represent the world; and mathematics forms part of the con-
ceptual apparatus with which we address the world. 
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