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Abstract 
Dengue fever is a serious vector-borne infectious viral disease found world-
wide. Dengue fever forecasting is in demand in the front line of epidemic 
prevention and control work. The goal of this study was to evaluate the feasi-
bility of using only notified case home locations to predict new cases and vil-
lage locations. We took the Tainan City dengue fever outbreak in 2015 as the 
research subject and divided it into 5 periods according to epidemic temporal 
change. In each period, the predicted variable was the location of the reported 
cases in the previous week, the previous 2 weeks, and the previous 3 weeks. In 
addition, we used 21 preset distances with a radius of 0 to 2000 m at intervals 
of 100 m to predict the villages where new cases would appear. Accounting 
for 4 predictors of a confusion matrix at each preset distance, these predictors 
were used in calculations using the Matthews correlation coefficient (MCC) 
as the basis for model evaluation. In the lag phase, the optimal predictor was 
within 1700 m in the 3-week forecast. In the exponential phase, the optimal 
predictor was within 300 m in the 1-week forecast. In the stationary phase, 
the optimal predictor was within 100 m in the 3-week forecast and within 200 
m in the 2-week forecast. In the early decline phase, the optimal predictor was 
0 m in the 1-week forecast. In the late decline phase, the optimal predictor 
was within 200 m in the 2-week forecast. According to MCC calculations and 
comparisons among the 5 studied periods, the best MCC score was in the ex-
ponential phase, a stage of rapid increase of new cases. The results of this 
study suggest that the epidemic forecasting model based on the location of 
notified cases has a high reference value for epidemic control and prevention. 
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1. Introduction 

Of all the currently existing virus-borne diseases, dengue fever (DF) has the 
greatest clinical impact, with approximately 96 million infections per year and 
nearly 4 million life-threatening cases [1] [2]. Dengue is transmitted by Aedes 
mosquitoes, primarily by the highly urban-adapted vector Aedesaegypti and a 
secondary vector A. albopictus [3]. Taiwan is geographically located in a region 
that spans both tropical and subtropical climates (22 - 25˚N and 120 - 122˚E). 
The latitude of 23.5˚N divides the island into two climatic zones: 1) a tropical 
monsoon climate in the South and 2) a subtropical monsoon climate in the 
North. The latitude, topography, ocean currents, and prevailing East Asian 
summer monsoon over Taiwan contribute to the island’s high temperature, hu-
midity, and rainfall, as well as tropical cyclones during summer [4]. Although 
both A. aegypti and A. albopictus are prevalent in Taiwan, they have different 
distributions [5] [6]. A. albopictus is extensively distributed at elevations of less 
than 1500 m throughout the island, whereas A. aegypti appears only in the 
south, below the Tropic of Cancer (i.e., 23.5˚N) and the Penghu Islet [6]. DF is a 
travel-related disease in Taiwan because travelers can carry the dengue virus 
from endemic areas to the island. After this virus is transported to the island, it 
is passed to Aedes mosquitoes, which can cause an outbreak of indigenous DF 
[7] [8] [9] [10]. Historical epidemics of DF in Taiwan have been documented in 
1902, 1915, and 1922 in the Penghu Islet; in 1924, 1927, and 1931 in southern 
Taiwan; and in 1942 to 1943 across Taiwan [11]. Since 1998, the Taiwan Centers 
for Disease Control (CDC) have recorded 9 outbreaks, with more than 1000 cas-
es of DF or dengue hemorrhagic fever/dengue shock syndrome in 2002, 2006, 
2007, 2009, 2010, 2011, 2012, 2014, and 2015, respectively [12]. With a few ex-
ceptions, these outbreaks occurred in the south of Taiwan, where A. aegypti is 
prevalent and coexists with A. albopictus. 

In Taiwan, for more efficient control and prevention of dengue transmission, 
it is necessary to establish a simple and accessible model for predicting dengue 
outbreaks. Several models have been developed. One focuses on monitoring 
large dengue epidemic areas, such as a city district [13] or a whole city and 
county [14] [15] [16], neglecting smaller administrative areas such as urban vil-
lages. Targeting these smaller areas is usually considered to be a priority for the 
practical prevention and control of dengue epidemics. Another predicts urban 
villages of new dengue onset but requires many predictors, such as the daily 
number of reported DF cases, population density in each village, and daily 
weather variables of precipitation and temperature, to be measured in advance 
[17]. DF forecasting is generally considered to be too complicated for the use of 
standard methods of prediction. Therefore, the aim of this study was to evaluate 
the feasibility of dengue risk forecasting in urban villages by using only the 
household location of reported cases to develop a simpler and more efficient 
strategy for the control and prevention of dengue transmission. 
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2. Methods 
2.1. Study Area and Data Set 

Tainan City, the study area, is 2191.65 km2 in area and contains 649 urban vil-
lages. It is located in southern Taiwan, south of the Tropic of Cancer, and is a 
tropical climate zone (as shown in Figure 1). The area of the urban villages 
ranges from 0.05 km2 to 82.9 km2, with the average area being 3.38 km2. Because 
of rules regarding personal privacy, patients’ real household locations cannot be 
revealed in any official public information. Therefore, this study used the center 
of the basic statistical unit of area as a substitute. A basic statistical area was es-
tablished using criteria such as uniformity of population density, doorplate 
number, and socioeconomic activity, which is the smallest unit of administrative 
data available for collection in Taiwan. We also considered characteristics of the  
 

 
Figure 1. Geographical location of Taiwan and the study area. The study area is shown in 
yellow. 
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original data, such as the spatial distribution of street corners, roads, and rivers. 
The center of the basic statistical area was defined by coordinates at its house-
hold location with cases of dengue infection. There are 12,774 units of the basic 
statistical area in all of Tainan City, with an average of 19.7 units (range: 1 - 69) 
in each urban village [18]. The data set of daily confirmed dengue cases during 
2015, which included onset day, coordinates, and whether the case was imported 
or indigenous, was obtained from the Taiwan CDC. A total of 21,924 cases were 
identified [19] [20]. According to the change in incidence density during all of 
2015, the pattern of dengue incidence growth was classified into 5 phases: the lag 
phase (period of slow increase in number of new cases), the exponential phase 
(period of rapid increase in number of new cases), the stationary phase (period 
of stagnation in number of new cases), the early decline phase (early period of 
decline in number of new cases), and the late decline phase (new cases declined 
back to the level of the initial period). These phases are shown in Figure 2. Each 
studied phase consisted of 4 weeks. The research design was as follows: In the lag 
phase, the criterion variable was the case spatial distribution in the 29th week, 
and the predictor variables were the number of cases in the 26th, 27th, and 28th 
weeks. In the exponential phase, the criterion variable was the case spatial dis-
tribution in the 33rd week, and the predictor variables were the number of cases 
in the 30th, 31st, and 32nd weeks. In the stationary phase, the criterion variable 
was case spatial distribution in the 37th week, and the predictor variables were 
the number of cases in the 34th, 35th, and 36th weeks. In the early decline phase, 
the criterion variable was the case spatial distribution in the 41st week, and the 
predictor variables were the number of cases in the 38th, 39th, and 40th weeks. 
Finally, in the late decline phase, the criterion variable was the case spatial dis-
tribution in the 45th week, and the predictor variables were the number of cases 
in the 42nd, 43rd, and 44th weeks, respectively. 
 

 
Figure 2. Weekly number of dengue onset cases in the study area (Tainan City) in 2015. 
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2.2. Spatial Analysis and Evaluation Metric for Dengue Forecast 
Models 

In this study, we used coordinates in the center of the basic statistical area in-
stead of in the actual locations of confirmed dengue cases. As shown in Figure 3, 
which displays how the predictor variable was designated from one studied 
week, every case’s coordinates are predicted according to 21 conditions, with 
their radius spanning from 0 to 2000 m in intervals of 100 m. The areas created 
using the predicted radius were used to geographically intersect with urban vil-
lages, with urban villages overlapped for positive prediction; otherwise, they 
were negative. Cases confirmed in the week of the criterion variable were consi-
dered positive cases; otherwise, they were considered negative cases. According 
to a comparison of our predicted urban villages and the locations of actual cases, 
the outcomes of the classification were used to construct a 2 × 2 table, as shown 
in Table 1. The table includes true-positive, false-positive, false-negative, and 
true-negative cases. The 4 classifications are as follows: Actual positive cases that 
were correctly predicted within positive urban villages, called true positives (TP); 
actual negative cases that were falsely predicted within positive urban villages, 
called false positives (FP); actual positive cases that were falsely predicted within 
negative urban villages, called false negatives (FN); and actual negative cases that 
were correctly predicted within negative urban villages, called true negatives 
(TN). 
 

 
Figure 3. Flowchart of data processing. 
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Table 1. The standard confusion matrix. 

 Predicted Positive Predicted Negative 

Actual Positive True Positives TP False Negatives FN 

Actual Negative False Positives FP True Negatives TN 

 
The Matthews correlation coefficient (MCC) is the coefficient of correlation 

between actual and predicted binary classifications [21] [22]. The MCC is also 
commonly used as a balanced measure, even if the classes are of very different 
sizes [23]. It is the optimal metric for the study of various incidences during a 
dengue outbreak period. In terms of the entries of the confusion matrix, MCC 
reads as follows: 

( ) ( ) ( ) ( )
–× ×

=
+ × + × + × +

TP TN FP FNMCC
TP FP TP FN TN FP TN FP

        (1) 

It ranges between −1 and +1. The value +1 represents a perfect prediction; 0 
represents no better than random prediction; and −1 indicates total disagree-
ment between the prediction and observation. 

Spatial analysis and mapping were performed using ArcMap 10.4. 

3. Results 

While studying the cases of DF in 37 administrative districts of Tainan City in 
2015, we observed that the places with a high incidence density had a clustering 
distribution (as shown in Figure 4), which indicated that the incidence was 
highly correlated with population density. In this study, it was substantively 
classified into 5 phases: the lag phase, the exponential phase, the stationary 
phase, the early decline phase, and the late decline phase. The predictor variable 
in each phase was divided into 63 individual conditions. According to weekly 
dengue case positions, predictions were 21 conditions based on radius distances 
ranging from 0 to 2000 m in intervals of 100 m, with 63 (21 × 3) predictions 
spanning 3 weeks. Moreover, the radius distance at 0 m indicates that the pre-
dicted place is at the same location where cases of dengue occurred in the village 
of the predictor. 

In the lag phase, the number of dengue cases predicted using the predictor va-
riables in the 26th week (the 3-week forecast) totaled 9, the number of cases in 
the 27th week (the 2-week forecast) totaled 31, and the number of cases in the 
28th week (the 1-week forecast) totaled 28. The number of cases of dengue in-
fection in the 29th week totaled 116, and those were assigned as a criterion vari-
able. The MCC results are displayed in Figure 5(a). The maximum value of 
MCC in the 26th week was 0.447, and the predictor was within the radius of 
1700 m. A contingency table of the confusion matrix was true-positive cases: 34, 
false-positive cases: 64, false-negative cases: 13, true-negative cases: 538, as 
shown in Figure 5(b). The maximum value of MCC in the 27th week was 0.404,  
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Figure 4. Geographical distribution of confirmed dengue 
cases and incidence density of the study area in 2015. 

 
and the predictor was within the radius of 900 m. A contingency table of the 
confusion matrix was true-positive cases: 36, false-positive cases: 90, false-negative 
cases: 11, true-negative cases: 512, as shown in Figure 5(c). The maximum value 
of MCC in the 28th week was 0.407, and the predictor was within the radius of 
1100 m. A contingency table of the confusion matrix was true-positive cases: 33, 
false-positive cases: 73, false-negative cases: 14, true-negative cases: 529, as 
shown in Figure 5(d). The top six outcomes of MCC values among 21 × 3 pre-
dictions included predictors that are at radii of 1400, 1500, 1600, 1700, 1800, and 
1900 m during the 26th week. 

In the exponential phase, the number of dengue cases predicted using the pre-
dictor variables in the 30th week (the 3-week forecast) totaled 414. That in the 
31st week (the 2-week forecast) totaled 336, and that in the 32nd week (the 
1-week forecast) totaled 512. The number of cases of dengue infection in the 
33rd week totaled 1097, and those were assigned as a criterion variable. The 
MCC results are shown in Figure 6(a). The maximum value of MCC in the 30th 
week was 0.645, and the predictor was in the radius of 1000 m; a contingency ta-
ble of the confusion matrix was true-positive cases: 182, false-positive cases: 64, 
false-negative cases: 43, true-negative cases: 360, as shown in Figure 6(b). The 
maximum value of MCC in the 31st week was 0.667, and the predictor was in the 
radius of 400 m; a contingency table of the confusion matrix was true-positive 
cases: 180, false-positive cases: 54, false-negative cases: 45, true-negative cases: 
370, as shown in Figure 6(c). The maximum value of MCC in the 32nd week  
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Figure 5. Model calculations using the Matthews correlation coefficient (MCC) in the lag 
phase. The criterion variable is the number of reported cases of dengue in the 29th week, 
and the predictor variable is the number of respective cases in the 26th week (3-week 
forecast), 27th week (2-week forecast), and 28th week (1-week forecast). (a) Outcomes 
predicted by the models at radii of 0 to 2000 m at 100-m intervals were calculated using 
the MCC, including 3-week, 2-week, and 1-week forecasts. (b) Dengue risk map of the 
3-week forecast within a radius of 1700 m. (c) Dengue risk map of the 2-week forecast 
within a radius of 900 m. (d) Dengue risk map of the 1-week forecast within a radius of 
1100 m. 

 
was 0.677, and the predictor was in the radius of 300 m; a contingency table of 
the confusion matrix was true-positive cases: 185, false-positive cases: 57, 
false-negative cases: 40, true-negative cases: 367, as shown in Figure 6(d). The 
top six outcomes of MCC values among 21 × 3 predictions included predictors 
that are radius at respective of 400, 500, 600, and 700 m during the 31st week 
and radius at respective of 200 and 300 m during the 32nd week. 

In the stationary phase, the number of dengue cases predicted using the pre-
dictor variables in the 34th week (the 3-week forecast) totaled 1279. That in the 
35th week (the 2-week forecast) totaled 2393, and that in the 36th week (the 
1-week forecast) totaled 2871. The number of cases of dengue infection in the 
37th week totaled 3404, and those were assigned as a criterion variable. The 
MCC results are shown in Figure 7(a). The maximum value of MCC in the 34th  
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Figure 6. Model calculations using the Matthews correlation coefficient (MCC) in the 
exponential phase. The criterion variable was the number of reported cases of dengue in 
the 33rd week, and the predictor variable was the number of respective cases in the 30th 
week (3-week forecast), 31st week (2-week forecast), and 32nd week (1-week forecast). (a) 
Outcomes predicted by the models at radii of 0 to 2000 m at 100-m intervals were calcu-
lated using the MCC, including 3-week, 2-week, and 1-week forecasts. (b) Dengue risk 
map of the 3-week forecast within a radius of 1000 m. (c) Dengue risk map of the 2-week 
forecast within a radius of 400 m. (d) Dengue risk map of the 1-week forecast within a ra-
dius of 300 m. 

 
week was 0.609, and the predictor was in the radius of 100 m; a contingency ta-
ble of the confusion matrix was true-positive cases: 262, false-positive cases: 50, 
false-negative cases: 78, true-negative cases: 259, as shown in Figure 7(b). The 
maximum value of MCC in the 35th week was 0.609, and the predictor was in 
the radius of 200 m; a contingency table of the confusion matrix was true-positive 
cases: 293, false-positive cases: 80, false-negative cases: 47, true-negative cases: 
229, as shown in Figure 7(c). The maximum value of MCC in the 36th week was 
0.603, and the predictor was in the radius of 100 m; a contingency table of the 
confusion matrix was true-positive cases: 291, false-positive cases: 80, 
false-negative cases: 49, true-negative cases: 229, as shown in Figure 7(d). The 
top six outcomes of MCC values among 21 × 3 predictions included predictors 
that are radius at respective of 100 and 200 m during the 34th week, radius at  
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Figure 7. Model calculations using the Matthews correlation coefficient (MCC) in the 
stationary phase. The criterion variable was the number of reported cases of dengue in the 
37th week, and the predictor variable was the number of respective cases in the 34th week 
(3-week forecast), 35th week (2-week forecast), and 36th week (1-week forecast). (a) 
Outcomes predicted by the models at radii of 0 to 2000 m at 100-m intervals were calcu-
lated using the MCC, including 3-week, 2-week, and 1-week forecasts. (b) Dengue risk 
map of the 3-week forecast within a radius of 100 m. (c) Dengue risk map of the 2-week 
forecast within a radius of 200 m. (d) Dengue risk map of the 1-week forecast within a ra-
dius of 100 m. 

 
respective of 0, 100, and 200 m during the 35th week, and radius at respective of 
0 and 100 m during the 36th week. 

In the early decline phase, the number of dengue cases of the predictor varia-
ble in the 38th week (the 3-week forecast) totaled 3023. That in the 39th week 
(the 2-week forecast) totaled 2230, and that in the 40th week (the 1-week fore-
cast) totaled 1613. The number of cases of dengue infection in the 41st week to-
taled 1033, and those were assigned as a criterion variable. The MCC results are 
shown in Figure 8(a). The maximum value of MCC in the 38th week was 0.622, 
and the predictor was in the radius of 0 m; a contingency table of the confusion 
matrix was true-positive cases: 225, false-positive cases: 101, false-negative cases: 
29, true-negative cases: 296, as shown in Figure 8(b). The maximum value of 
MCC in the 39th week was 0.610, and the predictor was in the radius of 0 m;  
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Figure 8. Model calculations using the Matthews correlation coefficient (MCC) in the 
early decline phase. The criterion variable was the number of reported cases of dengue in 
the 41st week, and the predictor variable was the number of respective cases in the 38th 
week (3-week forecast), 39th week (2-week forecast), and 40th week (1-week forecast). (a) 
Outcomes predicted by the models at radii of 0 to 2000 m 100-m intervals were calculated 
using the MCC, including 3-week, 2-week, and 1-week forecasts. (b) Dengue risk map of 
the 3-week forecast within a radius of 0 m. (c) Dengue risk map of the 2-week forecast 
within a radius of 0 m. (d) Dengue risk map of the 1-week forecast within a radius of 0 m. 

 
a contingency table of the confusion matrix was true-positive cases: 216, 
false-positive cases: 92, false-negative cases: 36, true-negative cases: 305, as 
shown in Figure 8(c). The maximum value of MCC in the 40th week was 0.626, 
and the predictor was in the radius of 0 m; a contingency table of the confusion 
matrix was true-positive cases: 208, false-positive cases: 75, false-negative cases: 
44, true-negative cases: 322, as shown in Figure 8(d). The top six outcomes of 
MCC values among 21 × 3 predictions included predictors that are radius at re-
spective of 0 and 100 m during the 38th week, radius at respective of 0 m during 
the 39th week, and radius at respective of 0, 100, and 200 m during the 40th 
week. 

In the late decline phase, the number of dengue cases predicted using the pre-
dictor variables in the 42nd week (the 3-week forecast) totaled 775. That in the 
43rd week (the 2-week forecast) totaled 515, and that in the 44th week (the 
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1-week forecast) totaled 322. The number of cases of dengue infection in the 
45th week totaled 196, and those were assigned as a criterion variable. The MCC 
results are shown in Figure 9(a). The maximum value of MCC in the 42nd week 
was 0.443, and the predictor was in the radius of 0 m; a contingency table of the 
confusion matrix was true-positive cases: 98, false-positive cases: 143, 
false-negative cases: 21, true-negative cases: 387, as shown in Figure 9(b). The 
maximum value of MCC in the 43rd week was 0.466, and the predictor was in 
the radius of 200 m; a contingency table of the confusion matrix was 
true-positive cases: 108, false-positive cases: 166, false-negative cases: 11, 
true-negative cases: 364, as shown in Figure 9(c). The maximum value of MCC 
in the 44th week was 0.451, and the predictor was in the radius of 300 m; a con-
tingency table of the confusion matrix was true-positive cases: 106, false-positive  
 

 
Figure 9. Model calculations using the Matthews correlation coefficient (MCC) in the 
late decline phase. The criterion variable was the number of reported cases of dengue in 
the 45th week, and the predictor variable was the number of respective cases in the 42nd 
week (3-week forecast), 43rd week (2-week forecast), and 44th week (1-week forecast). (a) 
Outcomes predicted by the models at radii of 0 to 2000 m at 100-m intervals were calcu-
lated using the MCC, including 3-week, 2-week, and 1-week forecasts. (b) Dengue risk 
map of the 3-week forecast within a radius of 0 m. (c) Dengue risk map of the 2-week 
forecast within a radius of 200 m. (d) Dengue risk map of the 1-week forecast within a ra-
dius of 300 m. 
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cases: 167, false-negative cases: 13, true-negative cases: 363, as shown in Figure 
9(d). The top six outcomes of MCC values among 21 × 3 predictions included 
predictors that are radius at respective of 0 m during the 42nd week, radius at 
respective of 100, 200, and 300 m during the 43rd week, and radius at respective 
of 200 and 300 m during the 44th week. 

4. Discussion 

Both A. aegypti and A. albopictus are day-biting mosquitoes that exhibit 2 main 
peaks of activity: one in the early morning and the other in the late afternoon 
[24]. A. aegypti is endophilic and endophagic but also moves between indoor 
and outdoor spaces. A. albopictus also exhibits endophilic activity but is consi-
dered exophagic and is an opportunistic feeder, biting a wide range of hosts, 
from cold-blooded to warm-blooded animals [24]. The lower temperature limit 
at which A. aegypti has been found to cease biting is 15˚C, both in the field and 
experimentally in the laboratory [25]. Females are most active at 28˚C and feed 
faster at temperatures between 26˚C and 35˚C than at temperatures between 
19˚C and 25˚C [25]. The upper-temperature limit for blood feeding is above 
36˚C, with the death point being set at 40˚C in A. aegypti [25]. The length of the 
gonotrophic cycle decreases with increasing mean temperatures, and the shortest 
was observed at 26˚C and 30˚C [26]. In A. aegypti, the effects of a diurnal tem-
perature range (DTR) on female adult survival have also been shown to be con-
siderable; an increasing DTR at a mean temperature of approximately 26˚C was 
reported to reduce the survival of females over an experimental period from 70% 
for a DTR of 0˚C to 50% for a DTR of 10˚C and 30% for a DTR of 20˚C [27]. 
Follow-up studies have also found that a DTR of 18.6˚C reduces female survival 
and reproductive output [28] [29]. A higher DTR (20˚C), which can be seen in 
temperate climates in spring and autumn, hurts the vector competence for den-
gue and the survival of A. aegypti compared with a low DTR (10˚C), such as the 
temperature ranges typically experienced in summer [27]. 

Both A. albopictus and A. aegypti are susceptible to dengue virus (DENV). 
However, multiple blood feedings in a single gonotrophic cycle are more fre-
quent in A. aegypti [30] [31] [32]. Such behavioral differences may provide few-
er opportunities for A. albopictus to make contact with humans infected by 
DENV. Thus, A. albopictus has a lower probability of transmitting the virus 
through the intake of blood [33]. One study on field-caught mosquitoes in Sin-
gapore showed that 6.9% of A. aegypti but only 2.9% of A. albopictus were posi-
tive for DENV [34]. Another study in Singapore showed that infected A. aegypti 
were detected as early as 6 weeks before the start of a dengue outbreak, whereas 
infected A. albopictus did not appear until the number of cases was increasing 
[35]. Furthermore, an investigation conducted in southern Taiwan revealed that 
DENV was detected at low levels only from 0.2% positive signs among 
field-caught A. aegypti but not A. albopictus [36]. Notably, large outbreaks such 
as those in 2006 and 2007 occurred 1 year after the detection of virus-infected A. 
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aegypti [36]. These results indicate the possibility that A. aegypti can efficiently 
establish a preliminary dengue case cluster. 

DENV is transmitted to humans through the bites of infected female mosqui-
toes, primarily the A. aegypti mosquito. After a mosquito has fed from a 
DENV-infected person, the virus replicates in the mosquito’s midgut, dissemi-
nates to its salivary glands, and emerges in its saliva; consequently, the virus can 
be transmitted when the mosquito bites again [37]. The minimum time between 
ingestion of virus-infected blood and transmission to a new host is termed the 
extrinsic incubation period (EIP). The EIP is approximately 8 to 12 days when 
the ambient temperature is between 25˚C and 28˚C [38] [39]. Variations in the 
extrinsic incubation period are not influenced solely by ambient temperature; 
several other factors, such as the magnitude of daily temperature fluctuations 
[27] [40], virus genotype [41], and initial viral concentration [42], can also alter 
the time it takes for a mosquito to transmit the virus. Once infectious, the mos-
quito is capable of transmitting a virus for the rest of its life [43]. Hu-
man-to-mosquito transmission can occur up to 2 days before the infected person 
exhibits symptoms of DF, dengue hemorrhagic fever, or dengue shock syndrome 
[44] as well as up to 2 days after the fever has resolved [45]. Risk of mosquito in-
fection is positively associated with high viremia and high fever in the patient, 
and high levels of DENV-specific antibodies are associated with a decreased risk 
of mosquito infection [45]. Most people are viremic for approximately 4 to 5 
days, but viremia can last as long as 12 days [46]. 

Some incentives may affect the flight distance of mosquitoes, such as a female 
mosquito’s search for food (i.e., dew, nectar, or blood), mating partner, and 
spawning opportunities and male mosquito’s search for mating opportunities 
and food, mainly dew and nectar [47] [48]. Moreover, these incentives could 
cause their flight distance to expand because female Aedes mosquitoes have a 
habit of dispersed spawning [49]. As reported in mark-release-recapture expe-
riments, the majority of recaptured mosquitoes (92% - 99%) were recaptured 
less than 100 m from their release site, and most mosquitoes were recaptured in 
the same house as the release location or in an adjacent house. The flight range 
and dispersal distance of A. aegypti were significantly different from the layout 
of the village and the distance between houses, regardless of mosquito age, sex 
(male versus female), release location (indoors versus outdoors), and season 
(high versus low dengue transmission season) [50]. However, the dispersal dis-
tance of A. albopictus was greater than that of A. aegypti; 11.1% of A. albopictus 
mosquitoes were recaptured farther than 100 m from their release point [51]. In 
another study of flight range for female A. aegypti and A. albopictus, a search for 
oviposition sites was implemented using rubidium-marked egg experiments. In 
6 days, rubidium-marked eggs of both species were detected up to 800 m from 
the release point. Eggs of A. albopictus were more numerous and more hetero-
geneously distributed in the study area than those of A. aegypti. Eggs positively 
marked for rubidium were found at all of the studied borders, which strongly 
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suggests that their flight ranges are capable of surpassing the studied limit at 800 
m [52]. The flight ranges and dispersal of gravid females were influenced by the 
availability of oviposition sites [53]. However, the egg-laying site may represent 
the start of the next reproductive cycle for these female mosquitoes. 

5. Conclusion 

Prediction of new-onset DF in an urban village based on the distance from the 
household location of a previously reported case of dengue is simple and effec-
tive. According to the outcomes of 5 studied phases that were based on a large 
wave of an indigenous dengue epidemic, the distance of the optimal predictor 
varies by phase. In the lag phase, the optimal predictor is within 1700 m in the 
3-week forecast. In the exponential phase, the optimal predictor is within 300 m 
in the 1-week forecast. In the stationary phase, the optimal predictor is within 
100 m in the 3-week forecast and within 200 m in the 2-week forecast. In the 
early decline phase, the optimal predictor is 0 m in the 1-week forecast. In the 
late decline phase, the optimal predictor is within 200 m in the 2-week forecast. 
In summary, optimal model predictions during the dengue explosion in Tainan 
City in 2015 were made in the exponential phase, when the number of dengue 
infections was dramatically increasing. 
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