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Abstract 
A complete study of adsorption processes will be less complete if the structure 
and dynamics of its different elements and how they interact is not well cap-
tured. Therefore, the extensive study of adsorption thermodynamics in con-
junction with adsorption kinetics is inevitable. Measurable thermodynamic 
properties such as temperature equilibrium constant and their non-measurable 
counterparts such as Gibbs free energy change, enthalpy, entropy etc. are very 
important design variables usually deployed for the evaluation and prediction 
of the mechanism of adsorption processes. 
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1. Introduction 

Although adsorption theory proposes a reduction in adsorption as temperature 
increases because adsorbates that were initially adsorbed on the surface of the 
adsorbent desorb at high temperatures [1], research reports have shown that 
different trends have been observed for porous, microporous and mesoporous 
adsorbents since higher temperatures facilitate the uptake of adsorbates into 
their pores and cavities [2] [3]. The effect of heat and time on the interaction 
between adsorbates and adsorbent surfaces during sorption processes is very 
important, because these interactions have been found to be temperature and 
time dependent [4] [5]. The experimental data obtained from adsorption 
processes monitored at different temperatures can be used to determine ther-
modynamic parameters such as free-energy change [6], enthalpy change [7], en-
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tropy change [8], activation energy [9], sticking probability [10], etc. Similarly, 
information obtained from adsorption experiments at different contact time(s) 
defines the kinetic behavior of adsorbates on adsorbents [11]. This paper is in-
tended to give further insights to scholars, academics and students alike, easy 
tools that will facilitate a better understanding on interpretation and applications 
of experimental data using kinetic and thermodynamic models. 

2. Adsorption Thermodynamics 

Thermodynamic parameters of adsorption processes are easily evaluated because 
adsorption is a temperature dependent process [8]. Thermodynamic considera-
tions for adsorption experiments are required in order to establish the spontane-
ity and feasibility of such processes. Therefore, experimental data obtained from 
adsorption procedures are employed to determine thermodynamic parameters 
such as Gibbs free energy change (∆G0), change in enthalpy (∆H0), change in 
entropy (∆S0), Isosteric heat of adsorption (∆HX),adsorption potential (A), hop-
ping number (n), sticking probability (S*) adsorption density (ρ) and activation 
energy (Ea). 

2.1. Gibbs Free Energy of Change (∆G0) 

Gibbs free energy of change is used to evaluate the spontaneity and feasibility of 
adsorption processes. A negative ∆G0 value validates a spontaneous process 
while a positive ∆G0 value is indicative of a non-spontaneous process as shown 
in Table 1. 

The free energy change in an adsorption process is usually related to the equi-
librium constant by the Gibbs fundamental equation [9]. 
 

Table 1. Thermodynamic parameters for adsorption of different pollutants onto some low cost adsorbents. 

Thermodynamic parameter Adsorbent Adsorbate Value Remark Reference 

Gibbs free energy (∆G0) 
kJ∙mol−1∙K−1 

Bakers yeast Nickel −23.519 Spontaneous 10 

Pleurotuseryngii Malachite green −10,388.3 Spontaneous 11 

Coconut copra meal Cadmium −7.4 Spontaneous 12 

Enthalpy change  
(∆H0) kJ∙mol−1 

Chemically modified rice husk Malachite green 63.76 Endothermic 13 

Mansonia wood Basic dye 67.1 Endothermic 14 

Wheat shell Basic dye 33.4 Endothermic 15 

Hematite Cadmium −13.09 Exothermic 16 

Entropy change 
(∆S0) J∙mol−1 

Lateritic nickel Ore Lead 28.56 chemisorption 17 

Bentonite Copper 0.108 chemisorption 18 

Modified oak sawdust Copper 240 chemisorption 19 
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0 ln CG RT K∆ = −                          (1) 

where R = Universal gas constant (Jmol−1∙Kg−1∙K−1) 
T = Temperature (K) 
KC = Equilibrium constant. 
This equation measures the changes in equilibrium constant with variations of 

temperature. Padmavathy reported the Biosorption of nickel (II) ions onto bak-
er’s yeast was a spontaneous and exothermic process [10]. Wu et al., also proved 
that the uptake of malachite green by a bio-sorbent Pleurotuseryngii was spon-
taneous [11]. In another report Y-S. Ho and A. E. Ofomaja showed that the bio-
sorption of Cd2+ on coconut copra meal was feasible and spontaneous due to 
negative ∆G0 [12]. 

2.2. Enthalpy Change (∆H0) 

Change in enthalpy (∆H0) can be described as the energy supplied as heat at 
constant pressure when the system does no extra work. Enthalpy change is typi-
cally measured with a calorimeter by monitoring the temperature change that 
happens at constant pressure [12]. In adsorption study enthalpy change gives an 
insight into the nature and mechanism of adsorption processes and it is usually 
determined from the Van’t Hoff equation [13]. 

0

log
2.303 2.303C

S HK
R RT

∆ ∆
= −                     (2) 

where R = Universal gas constant (J∙mol−1∙K−1), T = Temperature (K) 

( ) a
C

e

CK
C

=Distribution coefficient                  (3) 

Ca = Amount of adsorbate adsorbed at equilibrium (mg∙L−1) 
Ce = Equilibrium concentration of adsorbate in solution (mg∙L−1). 
A negative value of ∆H0 implies an exothermic adsorption process while a 

positive ∆H value is indicative of an endothermic process (see Table 1). In their 
report Chowdhury et al. showed that the positive value of ∆H0 (89.13 KJ∙mol−1) 
confirmed that the adsorption of malachite green onto chemically modified rice 
husk was endothermic [14]. Endothermic adsorption have also been reported for 
basic dye on mansonia wood (67.1 KJ∙mol−1) [15] and wheat shell (33.41 
KJ∙mol−1) [16]. 

2.3. Entropy Change (∆S0) 

A change in entropy during an adsorption process can be determined from the 
Vant’ Hoff equation, where a positive ∆S0 shows the affinity of the adsorbent 
towards the adsorbate, it also suggests increased randomness at the solid/liquid 
interface with some structural changes in the adsorbent and adsorbate. Mohapa-
tra et al. showed that ∆S0 was positive in their study on the kinetics and thermo-
dynamics of Pb2+ adsorption onto lateritic nickel ores of Indian origin. This is 
typical of chemisorption [17]. In another research report Gupta, V. K. revealed a 
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positive ∆S0 (0.108 kJ∙K−1∙mol−1) which reflects the affinity of Bentonite for cop-
per (II) ions [18]. 

2.4. Isosteric Heat of Adsorption (∆HX) 

The Isosteric heat of adsorption is the ratio of the infinitesimal change in the 
adsorbate enthalpy to the infinitesimal change in the quantity adsorbed under 
constant temperature and pressure [16] heat of adsorption established at con-
stant amount of adsorbate adsorbed. This parameter is essential in the characte-
rization of adsorption processes and it is usually calculated using the Clausius- 
Claperyron Equation (4) [17]. 

( )
2

d ln
d

e XC H
T RT

=
∆

−                         (4) 

Chowdhury et al. observed that the Isosteric heat of adsorption (∆HX) for the 
adsorption of malachite green onto treated ice husk was chemisorption because 
Isosteric heat of adsorption (∆HX) obtained in their investigation was between 
78 and 89 KJ∙mol−1 [19]. Isosteric heat of adsorption could also be used as a 
means of characterizing the surface of adsorbents since it has been proven that 
an adsorbent is homogeneous if its Isosteric heat of adsorption is independent of 
the amount of adsorbate it adsorbs and heterogeneous if it varies with the 
amount of adsorbate adsorbed [16]. This parameter also has a direct influence 
on hydrogen storage capacity of Metal Organic Frameworks (MOFs), Bae, -S 
and Snurr, R. Q. reported the optimal Isosteric heat of adsorption for hydrogen 
storage and delivery using MOFs. Their investigation showed that increasing 
Isosteric heat of adsorption for MOFs with large surface area results in higher 
hydrogen storage capacity [18]. 

2.5. Hopping Number (n) 

The Hopping number describes the number of hopping done by the adsorbate 
molecule while finding a vacant site on the adsorbent surface during sorption 
processes [20]. The expression relating the hopping number (n) to the surface 
coverage is given as; 

( )
1

1
n

θ θ
=

−
                          (5) 

The hopping number (n) can be used to describe how fast an adsorption 
process happens, thus the smaller the hopping number (n) the faster the sorp-
tion process [20]. In their report Menkiti et al., observed that acid treated chry-
sophyllumalbidium biomass exhibited faster uptake of Solid and Dissolved Par-
ticles (SDP) than the salt treated chrysophyllumalbidium biomass because the 
former had a smaller hopping number than the latter [21]. 

2.6. Adsorption Potential (A) 

Adsorption potential can be described as the chemical potential that occurs as an 
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adsorbate molecule moves from solution to the surface of an adsorbent during 
an adsorption process [18]. This parameter can be used to calculate the capabili-
ty of an adsorbent to adsorb adsorbate molecules at a fixed temperature. Ad-
sorption potential (A) can be evaluated by using the following expression  

ln o

e

CA RT
C

= −                          (6) 

Co and Ce are initial and final concentration of the adsorbate solution (mol∙mg−1), 
R = universal gas constant (KJ∙mol−1∙K−1) and T = absolute temperature at which 
the sorption occurred. This parameter has been utilized to add value to data ob-
tained from adsorption experiments using modified biomass as adsorbent [21] 
[22] [23] 

2.7. Adsorption Density (ρ) 

Adsorption density is a parameter used for the evaluation of the packing of ad-
sorbates on the surface of an adsorbent. It is usually analyzed at a fixed temper-
ature [19]. The value of adsorption density (ρ) of an adsorption process can be 
obtained using the following expression; 

0

expr e
GZ C

RT
ρ ∆ 
= −  

 
                     (7) 

where; 
ρ = adsorption density 
Z = valency of adsorbed ion 
R = effective radius of adsorbed ion 
Ce = equilibrium concentration of adsorbate solution (mol∙mg−1) 
R = universal gas constant (KJ∙mol−1∙K−1) 
T = absolute temperature (K) 
Benjamin, M. M, used this parameter as the basis for comparing the mul-

tiple-site adsorption of Cd, Cu, Zn and Pb ions on amorphous iron Oxyhydrox-
ide [24]. 

2.8. Sticking Probability (S*) 

Sticking probability (sorption probability) is a parameter that shows the potential 
of an adsorbate to remain on an adsorbent indefinitely. It is a function of the ad-
sorbate/adsorbent system and it serves the best purpose when its value lie between 
zero and unity (0 < S* < 1) and it is independent of the system’s operating temper-
ature [25]. Sticking probability can be evaluated from the following equation: 

( ) *ln 1 ln aES
RT

θ− = +                        (8) 

where; θ = surface coverage and Ea = activation energy. 
In their report Horsfall and Spiff showed how acid treatment enhanced the 

sticking probability of nickel ions on fluted pumpkin waste [20]. 
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2.9. Activation Energy (Ea) 

Activation energy is the minimum energy required to cause a chemical reaction. 
For sorption processes, a negative Ea suggests a low temperature favours the 
process in which case the sorption process is termed to be exothermic [26] [27]. 
Conversely, a positive Ea is an indication of the presence of an energy barrier in 
the sorption process which means the system requires energy (increased tem-
perature) to drive the sorption process therefore such a sorption process is 
termed endothermic [23] [28]. The activation energy of adsorption processes 
can be estimated by the Arrhenius Equation (9) [23]. 

2 0ln lnaEk k
RT

= − +                         (9) 

where k0 = Arrhenius factor 
A plot of lnk2 against 1/T gives a straight line from which the activation ener-

gy (Ea) can be evaluated (slope of the linear graph). Chowdhury et al. showed 
that the activation energy of the adsorption of malachite green on chemically 
modified rice husk was 68.1 kJ∙mol−1 [19]. In another report Podder and Ma-
jumder reported the activation energy of As(III) and As(V) biosorption onto 
TW/MnFe2O4 composite were 11.6 and 10.71 kJ∙mol−1 [29]. These reports ac-
tually confirm the sorption processes to be endothermic. 

3. Adsorption Kinetics 

The kinetic behaviour of adsorbates on adsorbents has been studied using the 
effect of time on sorption. Due to the large collection of kinetic models the selec-
tion of suitable models for the analysis of sorption data is quite challenging. 
Scientific reports have shown how mathematical models were proposed and 
used to describe adsorption experiments [30] [31] [32] [33] [34]. Thus, adsorp-
tion kinetic models have been classified into two groups namely; adsorption 
reaction models and adsorption diffusion models. Adsorption reaction models 
reveal the rate of adsorbate uptake by adsorbents but they do not show the actual 
cause of adsorption. On the contrary adsorption diffusion models take into cog-
nizance external diffusion, internal (pore) diffusion and effect of mass action (i.e. 
adsorption/desorption between adsorbates and active sites of adsorbents [35]. 

Pursuant to the aforementioned adsorption reaction models should be consis-
tent with proposed mechanisms defined by fitting adsorption diffusion models. 

4. Adsorption Reaction Models 

4.1. Pseudo-First-Order (Lagergren) Model 

The pseudo-first-order model is mostly used to analyze adsorption data obtained 
from the adsorption of adsorbates from aqueous solutions. It describes the rate 
of adsorption which is proportional to number of unoccupied binding sites on 
adsorbents [36]. This kinetic model is usually represented in the following equa-
tion [37]. 
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( ) 1log
2.30

log
3e e

Kq ke q  −  
 

=                   (10) 

Several researchers have employed this model to evaluate the rate of uptake of 
different adsorbates by specific adsorbents in aqueous media. Kazeem et al., re-
ported a high correlation coefficient (r2 = 0.9778) using this model while inves-
tigating the removal of cationic dye from wastewater using aluminum activated 
carbon ad adsorbent [38]. In like manner Tran et al. investigated the uptake of 
Methylene green 5 by activated carbon using the pseudo-firs-order kinetic model 
(r2 = 0.37). The low correlation coefficient obtained is an indication that this 
model is not the best fit [39]. A high correlation coefficient (r2 = 0.989) was ob-
tained by Fungaro et al. in their study of the removal of reactive orange 16 from 
wastewater using zeolite from cyclone ash [40]. Although the correlation coeffi-
cient was high, experimental data was best described by the pseudo-second-order 
kinetic model due to higher correlation coefficient.  

4.2. Pseudo-Second-Order Model 

The pseudo-second-order kinetic model describes the adsorption of adsorbates 
onto adsorbents where the chemical bonding (interaction) between adsorbates 
and functional groups on the surface of adsorbents are responsible for the ad-
sorption capacity of adsorbent. It is based on equilibrium adsorption, which is 
dependent on the amount of adsorbate adsorbed onto the surface of an adsor-
bent and the amount of adsorbate adsorbed at equilibrium [41]. This model is 
used to predict the order of the sorption process, it also facilitates the evaluation 
of sorption capacity [42] [43]. The pseudo-second-order kinetic rate expression 
in the linearized form is shown in Equation (10). 

2
2

1 1

t ee

t t
q qK q
= +                        (11) 

For this model to emerge the best fit for sorption data a plot of t/qt against t 
should show a linear connection, from which the amount of adsorbate adsorbed 
at equilibrium (qe, mg/g) and the equilibrium rate constant of pseudo-second- 
order sorption (K2, g/mg min) can be evaluated from the slope and intercept re-
spectively [44]. The pseudo-second-order kinetic model has been applied suc-
cessfully to determine chemisorption in several sorption systems. Crini et al. 
proved the removal of malachite green from aqueous media with a cyclodex-
trin-based adsorbent followed the pseudo-second-order kinetic model (r2 = 
0.9998) [45]. In another research Gong et al. reported the sorption of basic dye 
onto phosphoric acid esterified soya bean hull was best described by this model 
(r2 = 0.999) [46]. Similar reports have been published by Tsai et al. [47] and 
Santhi et al. [48]. 

4.3. Elovich Model 

This model is used to describe adsorption processes that follow second-order 
kinetics with the assumption that the surface of the adsorbent is energetically 
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heterogeneous in nature as such they show evidence of different activation ener-
gies [49] [50]. It has been extensively applied in the elucidation of chemisorption 
processes [51]. 

The Elovich model is represented by the following expression 

( )ln ln
t

tq
αβ
β β

= +                        (12) 

where; 
qt = adsorption capacity at time t (mg∙g−1) 
α = Initial adsorbate adsorption rate (mg∙g−1∙min−1) 
β = Adsorption constant (mg∙g−1∙min−1) 
Initial adsorption rate (α) and adsorption constant (β) can be evaluated from a 

linear plot of qt versus ln t.  
Hussien et al. utilized this model to analyze adsorption data obtained from the 

of adsorption process using spent-FCC catalyst and their report confirmed that 
the adsorption process is chemisorption [52]. Wu et al. showed the Elovich ki-
netic model was the most suitable kinetic model for describing the adsorption 
kinetics in dye-Chitosan systems [53]. Juan and Chen also established that the 
sorption of Fe3+, Co2+, Ni2+, Cu2+ and Zn2+ by solvent-impregnated resins as best 
described by the Elovich equation [54]. Other similar investigations have been 
reported [55] [56] [57] [58] [59].  

4.4. Brouers-Sotolongo Fractal Kinetic Model 

This model was developed specially to address sorption processes that occur at 
the solid-liquid interface of nanomaterials which usually present unique envi-
ronments such as heterogeneous surfaces and complex reactions [60]. Reports 
have it that adsorbents made of nanomaterials have boundaries that separate 
mass and pore spaces (fractal surfaces) [61]. The fractality of nanomaterials 
could have arisen from the well defined pore network built up during synthesis 
and post synthesis processes, thus fractality is a foreseeable feature that can in-
fluence the adsorptive properties of adsorbents. The complex nature of adsorp-
tion on nanomaterials and its effects on kinetics are not often taken into account 
as such they are mostly illustrated using classical kinetic equations [62]. 

The fractal differential equation is given as; 

( )
( ),

d

d
t n

a n ta

q
k q

t
− =                        (13) 

where  
q(t) = mass of adsorbate adsorbed per mass of adsorbent at time t,  
n = apparent reaction order 
a = global fractal time index due to supposed fractal diffusion and sorption 

kinetics arising from geometric and energetic heterogeneity of adsorbent. 
If particular values are assigned to the apparent reaction order (n) and global 

fractal time index (a) Equation (13) then corresponds to pseudo-first-order ki-
netics (n = 1, a = 1), pseudo-second-order kinetics (n = 2, a = 1), Weibull kinet-
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ics or Avrami kinetics (n ≠ 1, a = 1) and Hill kinetics or fractal second-order- 
kinetics (n = 2, a ≠ 1) [63]. 

Pseudo-first-order kinetic and pseudo-second-order kinetic models have been 
previously discussed (sections 3.1 and 3.2), thus the Weibull kinetic model can 
be represented with the following expression; 

( ) ( )( )1 exp a
mtq q t τ= −                      (14) 

where, 

( )150% ln 2 aτ τ=                         (15) 

τ50% represents the time required to adsorb one-half of the maximum adsorbed 
quantity. 

The Hill kinetics model is expressed as follows; 

( )
( )1

a

t m a

t
q q

t
τ

τ

 
 =
 + 

                       (16) 

where, ( ) 1
2 , a

mk aqτ −=  and 50%τ τ=  
Hamissa et al., reported the modeling of Methylene blue sorption onto Agave 

Americana fibre using fractal kinetics, the study showed that Methylene blue 
sorption were satisfactorily fitted by the Brouers-Sotolongo kinetic model with 
no systematic variation of the global fractal time index (a) which varies in the 
limits 0.6 - 0.9 [64]. In another study Al-Musawi et al., reported the modeling of 
kinetic data obtained from the adsorption of two antibiotics onto three nanoad-
sorbents using the Brouers-Sotolongo fractal equation [60]. 

5. Adsorption Diffusion Models 
5.1. Boyd Model 

This model predicts the rate determining step (slow step) involved in the ad-
sorption process. The Boyd kinetic model is represented by the following ex-
pression [65]; 

0.4978 ln 1t
qB

q∞

 
= − − − 

 
                    (17) 

where;  
q = Amount of adsorbate adsorbed at time t (mg∙g−1) 
q∞ = Amount of adsorbate adsorbed (mg∙g−1) 
Meng, F. W., applied this model for the study of phenol adsorption by a po-

lymeric adsorbent (NDA-100) [66]. Nethaji et al., used this model to prove that 
external mass transfer is the rate determining step for the adsorption of cationic 
and anionic dyes onto carbonaceous particles prepared from Juglansregia shell 
biomass [44]. 

5.2. Intra-Particle Diffusion Model 

Webber-Morris observed that in most adsorption processes the uptake of ad-
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sorbates varies proportionally with the square root of time (t1/2) [66]. The linea-
rized form of this model is given as [67]; 

1 2
IPDtq K t C= +                         (18) 

where; 
KIPD = Intra-particle diffusion constant (mg∙g−min1/2) 
C = Thickness of boundary layer (intercept). 
When intra-particle diffusion alone is the rate determining step then a plot of 

qt vs t1/2 appears as a linear graph that passes through the origin. However, if film 
diffusion also takes place simultaneously then the intercept “C” gives a clue on 
the thickness of the boundary layer [63]. Wang et al explored the kinetics of ni-
trate adsorption onto modified wheat residues and their results showed that the 
intra-particle diffusion model generated the best agreement with experimental 
data, which means intra-particle diffusion was the main rate determining step 
during the sorption process [64]. Similarly, Baduzzman et al. evaluated the re-
moval of arsenic in aqueous solution using Ganular Ferric Hydroxide (GFH) 
and their results showed that intra-particle diffusion in an important mass 
transport process in the removal of arsenic using packed-bed treatment systems 
[65]. Several researchers have used this model to show that sorption processes 
they investigated were not only controlled by intraparticle diffusion but that film 
diffusion also played a role [66]-[71]. 

5.3. Model Performance Indicators 

The linear forms of kinetic models discussed here are usually employed to plot 
graphs from which associated parameters are determined (intercepts and 
slopes). Thus the models are usually subjected to accuracy tests using model 
performance indicators (error functions) such as coefficient of determination 
(R2) and Chi square (x2), all in a bid to determine the model that fits the experi-
mental data best. 

5.4. Coefficient of Determination (R2)  

The coefficient of determination represents the variance about the mean, it is 
used to analyze the fitting degrees of kinetic models with experimental data [27] 
[39] [72] [73] [74]. The coefficient of determination (R2) is defined by the fol-
lowing equation [75]. 

( )
( ) ( )

2
exp2

2 2
exp exp

ecal m

ecal m cal m

q q
R

q q q q

−
=

− + −

∑
∑

               (19) 

where  
qexp = amount of adsorbate adsorbed by adsorbent during the experiment 

(mg∙g−1) 
qcal = amount of adsorbate obtained by kinetic isotherm models (mg∙g−1) 
qmexp = average of qexp (mg∙g−1)  
Moussavi et al., applied this model as a criteria of goodness of fitness. Their 
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results showed that the coefficient of determination (R2) for the pseudo-second- 
order kinetic (PSO) is higher than that for pseudo-first-order kinetic (PFO) for 
the adsorption of all tested concentrations of amoxicillin onto ammonium chlo-
ride induced activated carbon (NAC) and standard activated carbon (SAC) is an 
indication that the kinetic data were best described with the pseudo-second-order 
kinetic model [76]. Similarly, Velinov et al. used the coefficient of determination 
as the basis for evaluation the best fit kinetic model for the Biosorption of lope-
ramide by lignocellulosic-Al2O3 hybrid. The obtained result showed that the 
pseudo-second-order fitted better than the pseudo-first-order model because of 
higher coefficient of correlation [77]. 

5.5. Chi-Square Test (x2) 

This function is very important in the determination of the best fit for experi-
mental data obtained from sorption procedures. It can be obtained by judging 
the sum square difference between experimental and calculated data, with each 
square difference divided by its corresponding values [78]. The value of this 
function can be evaluated from the following expression; 

( )2

1
n ecal emeas
i

emeas

q q
q=

−
∑                      (20) 

Elbardiji et al., evaluated the predictive performance of the modified f-mexp 
equation for the modeling of adsorption kinetics of experimental systems using 
chi square (x2), and results revealed that the f-mexp equation can fit the experi-
mental data very well over the whole adsorption range [79]. Podder and Ma-
jumder also used this model to evaluate the goodness of fitness of adsorption 
kinetic data for As(III) and As(V) on MnFe2O4 composite [29]. 

6. Conclusion 

In this review, we have discussed several thermodynamic and kinetic parameters 
with respect to how they impinge on adsorption processes. Thermodynamic pa-
rameters described herein are essential in determining the effect of heat on ad-
sorption procedures and ultimately they help to define the spontaneity of ad-
sorption processes. On the other hand, kinetic models were discussed under two 
basic categories namely: adsorption reaction models which in most instances de-
fine the rate at which adsorption takes place without providing exact insights 
into the mechanism of adsorption. Conversely, adsorption diffusion models de-
scribe basic steps that envisage mechanisms of adsorption processes. 
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