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Abstract 
Resistance to pentavalent antimonial drugs and the lack of vaccines make it 
urgent to find novel therapeutic options to treat Leishmaniasis, a tropical 
disease caused by the Leishmania protozoan parasite. The study reported here 
is to investigate if Streptomycin, an aminoglycoside, and Amphotericin B, the 
second-line treatment drug, exhibit antileishmanial activity through a similar 
mechanism. By using MOE (Molecular Operating Environment), we per-
formed molecular docking studies on these drugs binding to a range of tar-
gets including ribosome targets in Leishmania and H. sapiens. Our study 
shows that the two drugs do not bind to the same pockets in Leishmania tar-
gets but to the same pockets in the human ribosome, with some differences in 
interactions. Moreover, our 2D maps indicated that Amphotericin B binds to 
the A-site in the human cytoplasmic ribosome, whereas streptomycin does 
not. 
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1. Background 

Leishmaniasis is a neglected tropical disease that puts at least 350 million people 
at risk and is one of the most important worldwide [1] [2] [3] [4]. The disease is 
caused by over 20 species of Leishmania, a protozoan parasite transmitted by the 
Phlebotomus sand fly [2] [3]. Cutaneous (CL), Mucocutaneous (MCL), and a 
fatal form, Visceral (VL) are the three types of leishmaniasis [4]. Their common 
clinical symptoms are skin lesions, as well as the increased size of lymph nodes, 
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liver, and spleen. The flagellated promastigote, which is the mobile form of the 
parasite, lives in the sand fly and transforms into an immobile amastigote once it 
is phagocytized in the host immune cell (particularly macrophages) [3] [4] [5]. 
Essentially, Leishmania resides in the lysosome where they survive by switching 
off immune functions of the cell [6]. Amastigotes multiply, eventually rupturing 
the cell, and then spread to new cells [6]. 

Amphotericin B, Miltefosine, and Sodium Stibogluconate have been used as 
standard treatment for leishmaniasis [1] [7] [8] [9]. In addition, Paromomycin 
as an antibiotic became a new recommended drug for treating leishmaniasis [3] 
[9] [10] [11]. More specifically, the antileishmanial activity of paromomycin is 
thought to be primarily because of the -OH group in the 6’ position in Ring I 
[10]. Paromomycin binds directly at helix 44 in the decoding site, causing a 
flipped-out conformation of residues. This conformation interferes with transla-
tion (tRNA is not recognized properly) and causes misreading of the [10] [11]. 
Those current chemotherapeutic drugs target the amastigote form of the para-
site, however there is evidence showing that the susceptibility of different drug 
may vary with Leishmania spp. For example, the resistance to pentavalent anti-
monial drugs and immunosuppression in co-infections with HIV, have lowered 
treatment efficacy [12] [13] [14]. Amphotericin B has been used to treat VL 
caused by L. donovani as well as cases of MCL; however, it is administered slow-
ly because of toxicity. The Food and Drug Administration approved lipid for-
mulations have reduced toxicity but are costly [12] [15]. The aminoglycoside an-
tibiotic Paromomycin has been shown to exhibit antileishmanial activity and 
Phase 2 trials have shown 90% of VL patients cured [12] [16]. Its mechanism of 
action is inhibition of protein synthesis by binding it to the ribosome [10] [11] 
[12]. Formulations of paromomycin are in development for CL [12]. In sum, 
treatment using Amphotericin B, antimonial drugs, and paromomycin are li-
mited by resistance, high cost, and toxicity. 

In brief, the reality is that none of those drugs can completely cure the illness. 
In addition, there are no effective vaccines for the illness either [12] [17] [18]. 
There is first, second, and third generation vaccines that have been developed 
but issues such as the broad scope of the problem, identification of appropriate 
candidate antigens and animal models, as well as cost have limited their effec-
tiveness [17] [18] [19]. Even non-drug strategies such as vector management 
with nets have been only mildly successful [20]. There is also increasing concern 
regarding potential increases of infections due to climate change and increased 
urbanization [20] [21] [22]. This is especially concerning in poor, urban endem-
ic areas [12]. More research is needed regarding leishmaniasis for not only a 
standard vaccine but new treatment strategies, which involves the discovery of 
new targets and new effective and low toxic drugs [12]. 

In this study, we propose streptomycin (molecular weight 581.6 g/mol), an 
aminoglycoside, as a potential drug candidate for leishmaniasis (Figure 1(a)). 
Krasner [23] observed that the drug inhibited the growth of L. tarentolaein cul-
ture and Katoof [24] showed that 20% streptomycin solution cured patients of  
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(a)                                                   (b) 

Figure 1. Chemical structures of Streptomycin (left) [29] and Amphotericin B (right) [30]. 

 
cutaneous leishmaniasis. Streptomycin is well known as an antibiotic, but studies 
on its effects in eukaryotes such as protozoa are limited. Streptomycin consists of 
streptidine, a streptose sugar, and L-glucosamine. The streptidine component 
has a 6’ -OH in the aminocyclitol similarly to paromomycin. Cole and Danielli 
[25] found that streptomycin-sensitive amoebae had ribosomes that showed a 
high affinity for streptomycin, thus the sensitivity to streptomycin was related to 
how well the compound was absorbed by the ribosomes [23]. There is some 
dispute as to where the primary action of aminoglycosides occurs in the parasite, 
namely the cytoplasmic ribosome or the mitochondrial ribosome. Maarouf et al. 
[26] concluded that paromomycin binds with the mitochondrial ribosome. Oth-
er studies determined that itis the cytoplasmic ribosome [10] [27] [28]. 

Amphotericin B (Amp B) (molecular weight 924.19/mol) is considered the 
best drug treatment for visceral Leishmaniasis as well as severe mycotic infec-
tions (Figure 1(b)) [8] [30] [31]. It is known that Amphotericin B binds to ste-
rols in the lipid-bilayer; in this study, we evaluate its affinity to cytoplasmic and 
mitochondrial sites. Amp B exerts antileishmanial activity by binding to sterols 
such as ergosterol in the parasite cell membrane. The Amp B complex is hydro-
phobic and is stabilized by sterol; conversely, it is hydrophilic on the inside, con-
sisting of multiple hydroxyl groups [31]. This results in pores forming in the 
membrane, thus killing the cell [8] [31] [32]. 

Recently, crystallographic studies have allowed the reconstruction of molecu-
lar targets for drug design [33] [34]. In addition, molecular docking can be used 
to determine the lowest energy conformation of the ligand-target complex, 
which indicates the most possible active binding conformation. Moreover, mo-
lecular docking software has helped to visualize ligand-receptor interactions 
through modeling in Leishmania [10] [33] [34]. Parasite targets such as Leish-
manolysin zinc-metalloprotease (GP63), a major virulent factor for Leishmania-
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sis and Kinetoplastid Specific Ribosome Protein (KSRP), a scaffold for Trypa-
nosome ribosomes, have been investigated using cryo-electron microscopy 
modeling [34] [35]. 

It is somewhat unclear whether streptomycin (and other aminoglycosides) 
exert antileishmanial activity at the ribosome of the cytoplasm or the ribosome 
of the mitochondria. Both streptomycin and Amphotericin B are good probes 
for determining precisely where aminoglycosides exert their activity. We hy-
pothesized that both drugs exhibit antileishmanial activity through a similar 
mechanism, meaning that they prefer to bind in the same binding site when in-
teracting with their target. In this study, the two ligands streptomycin and Am-
photericin B were docked into a group of targets, including the cytoplasmic ri-
bosome, the mitochondrial ribosome, GP63 and KSRP to investigate if there are 
targets with which the streptomycin and Amphotericin B bind to the same 
binding site with similar interactions. 

2. Materials and Methods 

In this theoretical study, the two compounds streptomycinand Amphotericin B 
were docked into a group of targets, including the cytoplasmic ribosome, the 
mitochondrial ribosome, GP63 and KSRP. 

All molecular docking studies were conducted using Molecular Operating En-
vironment (MOE) 2019.01; Chemical Computing Group ULC, 1010 Sherbrooke 
St. West, Suite #910, Montreal, QC, Canada, H3A 2R7, 2019 [36]. The software 
was operated using Microsoft Windows 7 Professional operating system on an 
Intel Xeon 3.40 GHz dual processor with 64.0 GB memory. 

The two compounds (Streptomycin and Amphotericin B) were built using the 
Builder module, with the energy minimized, and stored in the software. 

Seven target molecules were selected for the study and their names and PDB 
IDs were listed in Table 1. 

Bacterial, Human and Leishmania targets were selected for comparison. We 
selected Leishmania and H. sapiens targets (cytoplasmic and mitochondrial ri-
bosome) because of their homology (In fact drug interaction may explain oto-
toxic effects in humans) [37] [38]. Because it is known that streptomycin targets 
the bacterial ribosome, and its structure is not like eukaryotes, we used it in our 
study as a control (Mycobacteria) [28] [38]. GP63 is expressed on the surface of 
Leishmania and plays a critical role in virulence. We selected it along with the 
novel Leishmania ribosome protein, Kinetoplastid Specific Ribosome Protein 
[34] [35]. 

In our computational model, the oxygen atoms were colored red, the nitrogen 
atoms were colored blue, and the carbon atoms were colored grey. The carbon 
atoms in the drugs were highlighted as green to distinguish binding. 

Water molecules were removed in the Sequence Editor and the active site of 
each target was determined using Site Finder module. Dummy atoms were 
created from alpha spheres and the top five atom/residue sizes were selected for 
ligand-target interaction calculations. The lowest free energy was calculated by  
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Table 1. Names and PDB IDs of the selected targets. 

Name PDB ID 

Leishmania Cytoplasmic rRNA 4K31 

Homo-sapiens Cytoplasmic rRNA 2G5K 

Leishmania Mitochondrial rRNA 3JCS 

Homo-sapiens Mitochondrial rRNA 3BNN 

Mycobacterium ribosome 5XYU 

GP63 1LML 

Kinetoplastid Ribosome Protein 5OSG 

 
the Triangle Method and Rescoring 1: London dG [34] [39] [40]. The five lowest 
energy poses were kept and the interactions between the ligand and target were 
further analyzed. 

3. Results and Discussion 

Tables 2-8 list the lowest energy docking complex of the two ligands binding in 
the different targets. We compared the binding affinity of streptomycin and 
Amphotericin B to the selected cytoplasmic and mitochondrial targets. We 
found that streptomycin and amphotericin only bind in the same pockets prefe-
rentially on human targets (2G5K, 3BNN) but not the Leishmania targets (4K31, 
3JCS) (Tables 2-5). 

Moreover, the two compounds did not bind at the same pockets preferentially 
in the Mycobacterium ribosome (5XYU), GP63 (1LML) or the Kinetoplastid 
Specific Ribosome (5OSG) (Tables 6-8). Figure 2 shows the 3D diagrams and 
the closeup views illustrating the streptomycin and Amphotericin B bound in 
Pocket 1 of Homo-sapiens cytoplasmic rRNA (2G5K). Both drugs bind to the 
similar location on the target. Interestingly, 2D maps indicated that both strep-
tomycin and Amphotericin B bind at the A-site in Homo-sapiens cytoplasmic 
rRNA (2G5K) preferentially in pocket 1 (Figure 3). Specifically, surrounding the 
A-site residue 39, Amphotericin B interacted with residues 4 - 10 and 32 - 40. 
Streptomycin interacted with residues 7 - 11, 35 - 38, and 40. Figure 4 shows the 
3D ribbon diagrams and the closeup views illustrating the streptomycin and 
amphotericin B bound in Pocket 1 of Homo-sapiens mitochondria rRNA 
(3BNN). 2D maps also indicated that streptomycin and Amphotericin B bind in 
Homo-sapiens mitochondria rRNA (3BNN) preferentially in pocket 1 (Figure 
5). Amphotericin B interacted with residues 4 - 12 on A chain and 6 - 15 on 
chain B, which covers the A-site residue 16 on chain B. Streptomycin interacted 
with residues 7 - 13 and 6 - 15, and basically away from the A-site on both 
chains. 

Based on these screening results of the selected seven targets, we narrowed 
down the preferential targets of both streptomycin and Amphotericin B to Ho-
mo-sapiens mitochondria rRNA and Homo-sapiens cytoplasmic rRNA.  
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Table 2. Top Binding Scores of Amp B and Strep bind in Leishmania Cytoplasmic rRNA 
(4K31). 

Amp B 4K31 Pocket Size Strep 4K31 Pocket Size 

−9.5150 1 287 −9.4493 2 85 

−9.1718 2 85 −8.9408 1 287 

−8.3044 4 7 −7.2215 7 16 

−7.9928 3 11 −7.1268 3 11 

−8.9086 5 8 −6.9539 4 7 

 
Table 3. Top Binding Scores of Amp B and Strep bind in Homo-sapiens Cytoplasmic 
rRNA (2G5K). 

Amp B 2G5K Pocket Size Strep 2G5K Pocket Size 

−9.4166 1 431 −9.5038 1 431 

−9.2217 5 39 −9.3125 3 42 

−8.7914 4 38 −9.1567 2 43 

−8.3146 6 17 −7.9291 5 39 

−8.0008 7 4 −7.5662 4 38 

 
Table 4. Top Binding Scores of Amp B and Strep bind in Leishmania Mitochondria 
rRNA (3JCS). 

Amp B 3JCS Pocket Size Strep 3JCS Pocket Size 

−5.1662 2 36 −3.9663 16 29 

−5.1239 1 54 −3.8804 1 54 

−5.0242 14 29 −3.8775 2 36 

−4.6723 4 36 −3.6897 4 20 

−3.7957 7 19 −3.6524 5 36 

 
Table 5. Top Binding Scores of Amp B and Strep bind in Homo-sapiens Mitochondrial 
rRNA (3BNN). 

Amp B BNN Pocket Size Strep 3BNN Pocket Size 

−9.8324 1 241 −9.3799 1 241 

−8.6298 2 27 −9.1375 5 11 

−8.6015 6 19 −8.5765 4 30 

−8.4047 4 30 −8.2261 3 33 

−8.1414 3 33 −8.0428 2 27 

 
Table 6. Top Binding Scores of Amp B and Strep bind in Mycobacterium ribosome 
(5XYU). 

Amp B XYU Pocket Size Strep 5XYU Pocket Size 

−11.4038 4 412 −9.2959 8 406 
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Continued 

−11.4636 13 225 −9.1717 9 342 

−11.4038 3 618 −8.8174 15 150 

−11.2420 8 406 −8.7250 20 111 

−10.9383 29 93 −8.6965 13 225 

 
Table 7. Top Binding Scores of Amp B and Strep bind in Leishmanolyin GP63 (PDB id 
1LML). 

Amp B LML Pocket Size Strep 1LML Pocket Size 

−15.8880 12 20 −7.1208 8 22 

−15.4921 1 214 −6.4338 7 17 

−13.9027 24 30 −6.2473 1 214 

−13.4397 2 22 −6.1527 9 46 

−13.2043 17 14 −5.7204 23 18 

 
Table 8. Top Binding Scores of Amp B and Strep bind in Kinetoplastid Specific Ribosome 
Protein (5OSG). 

Amp B 5OSG Pocket Size Strep 5OSG Pocket Size 

−9.5004 1 1176 −8.1102 2 109 

−9.1523 4 58 −7.9978 5 81 

−8.8866 5 81 −7.8831 1 1176 

−7.9667 2 109 −6.9908 4 58 

−7.8802 9 46 −6.8994 9 46 

 

 
(a)                                                   (b) 

Figure 2. Ribbon diagrams and the closeup views illustrating the streptomycin (a) and Amphotericin B (b) bound in Pocket 1 of 
Homo-sapiens cytoplasmic rRNA (2G5K). For emphasizing the relative binding location of drugs in target the pocket was pre-
sented with space filling model and all carbon atoms of both drugs are highlighted green. 
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(a)                                                   (b) 

Figure 3. 2D diagrams of interactions between streptomycin (a) and Amphotericin B (b) with Homo-sapiens cytoplasmic rRNA 
(2G5K) in Pocket 1.The sequence has been shown on the right with residues interacting with ligand highlighted yellow. 
 

 
(a)                                                   (b) 

Figure 4. Ribbon diagrams and the closeup views illustrating the streptomycin (a) and Amphotericin B (b) bound in Pocket 1 of 
Homo-sapiens mitochondria rRNA(3BNN). For emphasizing the relative binding location of drugs in target the pocket was pre-
sented with space filling model and all carbon atoms of both drugs are highlighted green. 
 

 
(a)                                                   (b) 

Figure 5. 2D diagrams of interactions between streptomycin (a) and Amphotericin B (b) with Homo-sapiens mitochondria rRNA 
(3BNN) in Pocket 1. The sequence has been shown on the right with residues interacting with ligand highlighted yellow. 
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Streptomycin and Amphotericin B both attack the same binding sites on these 
human targets. It is important to note that our molecular docking results indi-
cate that streptomycin and Amphotericin B do not preferentially bind to the 
same pocket in Leishmania. This is plausible because the mechanism of action 
for both drugs is not the same. Amphotercin B targets ergosterol in the Leish-
mania plasma membrane [8] [31] [32]. Moreover, streptomycin and Amphoteri-
cin B do not bind to the same binding sites to the bacteria target in our study, as 
ergosterol is not found in the plasma membrane of bacteria [41]. However, 
streptomycin is a common antibiotic used against gram-negative bacteria [42]. 
In addition, streptomycin and Amphotericin B did not bind similarly to our 
other parasite targets, GP63 and the Kinotoplastid Specific Ribosome. We 
therefore conclude that both drugs dock similarly to both human targets, and 
not the other selected targets.  

Streptomycin and Amphotericin B are current drugs used for treatment for 
antibacterial and antifungal infections, respectively. Our results show that strep-
tomycin has less interaction with the A-site in human ribosomal RNA (Figure 3 
and Figure 5). Specifically, our 2D maps indicate that Amphotericin B binds to 6 
more residues (covers/on A-site) to the RNA in the cytoplasm, however, strep-
tomycin does not touch the A-site residue in the cytoplasmic RNA. To our 
knowledge, this is a novel finding using molecular docking analysis. Nephrotox-
icity from Amphotericin B is dose-dependent and is absorbed poorly upon ad-
ministration [43]. Lipid formulations of Amphotericin B are used to overcome 
toxicity, but it is relatively expensive and is not as accessible, particularly in en-
demic areas [43]. Streptomycin is a potential drug candidate along with paro-
momycin, which is now used in combination with Amphotericin B for the 
treatment of Leishmaniasis [43] [44] [45]. In fact, drug combinations using pa-
romomycin loaded into nanoparticles have reduced parasite burden in both in 
vitro and in vivo studies that were more effective than the use of liposomal Am-
photericin B and miltefosine alone [45] [46]. Thus, our group and others have 
given more attention to aminoglycosides and the use of novel drug-delivery me-
thods to overcome toxicity and poor absorption in treatment. 

The subtle difference in interactions to the human ribosome of both drugs 
should be studied further to investigate whether they have clinical implications 
such as absorption and toxicity. 

4. Conclusion 

Our results show that streptomycin and Amphotericin B bind to the same pock-
ets in the ribosomes of the human mitochondria and cytoplasm. Future studies 
should further evaluate the differences in interactions at these pockets to assess if 
there are any clinical implications. 
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