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Abstract 
In this paper, a modified version of the Classical Lagrange Multiplier method 
is developed for convex quadratic optimization problems. The method, which 
is evolved from the first order derivative test for optimality of the Lagrangian 
function with respect to the primary variables of the problem, decomposes 
the solution process into two independent ones, in which the primary va-
riables are solved for independently, and then the secondary variables, which 
are the Lagrange multipliers, are solved for, afterward. This is an innovation 
that leads to solving independently two simpler systems of equations involv-
ing the primary variables only, on one hand, and the secondary ones on the 
other. Solutions obtained for small sized problems (as preliminary test of the 
method) demonstrate that the new method is generally effective in producing 
the required solutions.  
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1. Introduction 

Whenever a viable decision is made by selecting from a variety of alternatives 
which can be evaluated by some performance measure for quality’s sake, and 
there are some restrictions involving the alternatives, there is an optimization 
problem. An optimization problem is therefore characterized by a set of decision 
alternatives called decision variables, at least a performance measure often called 
objective function (or objective functions), and often restrictions involving the 
decision variables called constraints [1]. The occurrence of optimization prob-
lems is an everyday phenomenon and cuts across diverse disciplines, including 

How to cite this paper: Stephen, T.B., 
John, A. and Etwire, C.J. (2024) A Modified 
Lagrange Method for Solving Convex Qua-
dratic Optimization Problems. Open Journal 
of Optimization, 13, 1-20. 
https://doi.org/10.4236/ojop.2024.131001 
 
Received: July 10, 2023 
Accepted: March 5, 2024 
Published: March 8, 2024 
 
Copyright © 2024 by author(s) and  
Scientific Research Publishing Inc. 
This work is licensed under the Creative 
Commons Attribution International  
License (CC BY 4.0). 
http://creativecommons.org/licenses/by/4.0/   

  
Open Access

https://www.scirp.org/journal/ojop
https://doi.org/10.4236/ojop.2024.131001
https://www.scirp.org/
https://doi.org/10.4236/ojop.2024.131001
http://creativecommons.org/licenses/by/4.0/


T. B. Stephen et al. 
  

 

DOI: 10.4236/ojop.2024.131001 2 Open Journal of Optimization 
 

engineering, computer science, applied mathematics, economics, and manage-
ment, to name a few. Interest in the study of optimization has grown immensely 
from its early days going back to those of Sir Isaac Newton, and given new im-
petus in the 1940s by the seminal work of George B. Dantzig [2] in linear opti-
mization. Today it attracts many researchers and practitioners from diverse 
fields and backgrounds, including engineers, systems analysts, operations re-
searchers, numerical analysts, and management scientists.  

Optimization problems are broadly classified as either linear or nonlinear, 
constrained or unconstrained [3]. Among constrained nonlinear optimization 
problems is a special subclass known as convex optimization with convex qua-
dratic optimization problems being special subset of this subclass. Convex opti-
mization problems in general have gained a lot of interest over the years, with 
applications discovered in many fields including computer science, robotics and 
signal processing [4]. Convex quadratic optimization problems also called con-
vex quadratic programming problems (which are the focus in this study) are 
characterized by either linear or convex quadratic objective function and linear 
or convex quadratic constraints. A convex quadratic programming problem is a 
type of nonlinear programming. A typical form of the problem (see [5]) is:  

 
T T1min

2
subject to

c x x Qx

Ax b

+

=
 (1.1) 

where x is a vector of n decision variables, c is n dimensional constant vector, Q 
and A are respectively n × n symmetric positive semi-definite and m × n con-
stant matrices, and b is m dimensional constant vector [6]. If the objective func-
tion is linear and constraints a mix of linear, nonlinear, or convex quadratic eq-
uations, the problem becomes:  

 
( )

Tmin
subject to 1,2, , ,i i

c x
h x b i m= = 

 (1.2) 

where, ( )ih x  is linear or nonlinear, convex quadratic, for some { }1,2, ,i m∈  . 

1.1. The Classical Lagrange Method 

The Lagrange Multiplier Method, referred to also as Classical Lagrange Method 
(CLM) is well-known for solving equality constrained nonlinear optimization 
problems (Hoffman et al., 1992). The main idea of the method is to convert an 
equality constrained optimization problem into an unconstrained one, by ag-
gregating the objective function and constraint functions into a composite func-
tion called the Lagrangian function, to which the first derivative test for optimal-
ity is applied [7]. The Lagrangian function can be seen as constituting a rela-
tionship between the objective function and the equality constraints which 
simply gives a reformulation of the original problem as unconstrained one [8]. 
For convex quadratic programming problems, the objective function and con-
straint functions are convex and so the Lagrangian function is convex [9]. 
Therefore, for the sake of this work, we can limit the discussion of the CLM to 
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convex problems only. 
Consider a convex optimization problem with equality constraints as: 

( )
( )subject to

min

, , , 1, , ,: n
i i i

f x

h x b b R x R i m= ∈ ∈ = 

 

where f and ih  are respectively convex quadratic objective function and convex 
ith constraint functions. By letting ( ) ( ) 0i i ig x h x b= − = , the problem may be 
posed as: 

 
( )

( )subject to :

min

0, , , 1, , .n
i i

f x

g x x b R i m= ∈ = 

 (1.3)  

The problem (1.3) is transformed into an unconstrained Lagrangian function 
L as: 

 ( ) ( ) ( )Tmin ,L x f x g xλ λ= −  (1.4) 

where ( )g x  is an n vector of constraint functions and λ is an m vector of mul-
tipliers, which are scalars (called Lagrange Multipliers).  

The first order necessary optimality conditions for the Lagrangian function, 
which are also sufficient for a minimum solution for convex unconstrained op-
timization problems [10] are: 

 ( ) ( ) ( )T, 0x x xL x f x g xλ λ∇ =∇ − ∇ =  (1.5a) 

 ( ) ( ) ( ), 0L x f x g xλ λλ∇ = ∇ − =  (1.5b) 

Equations (1.5a) and (1.5b) imply that the gradients of the Lagrangian func-
tion with respect to x and λ independently vanish at the minimum points (solu-
tions) *x  and *λ . Furthermore, it means that if minimum solutions *x  and 

*λ  exist to (1.4), they satisfy (1.5a) and (1.5b). However, for non-convex prob-
lems not all minimum solutions satisfying the first order necessary optimality 
conditions would be minimum solutions [10]; such problems require that suffi-
cient optimality conditions are also satisfied [10]. Observe also that (1.5a) and 
(1.5b) have n + m unknown variables (i.e., n variables in x and m variables in λ) 
whose values have to be determined. 

To find the minimum values *x , *λ  the m + n system of equations result-
ing from (1.5a) and (1.5b) are solved simultaneously in the CLM. The larger m 
and n are, the more computational effort and time are required to solve for the 
minimum values. Therefore, finding a method that reduces the computational 
effort and time demands for finding the solutions is interesting and important, 
since that can have consequent positive impact on solving many real-world con-
vex (quadratic) problems which occur in many disciplines [4]. This, indeed, is 
the motivation behind the pursuit of a Modified Lagrange Method (MLM).  

1.2. Some Previous Works 

A few related previous works in the research area are by [11] who developed a 
Lagrange relaxation-based decomposition algorithm for an integrated off-shore 
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oil production planning optimization problem. The algorithm was used to pro-
vide compact bounds and thus replace the large-scale problem with moderate 
scale ones and therefore solve several single-batch subproblems simultaneously. 
An Adaptive Augmented Lagrangian method by [12] was developed for large 
scale constrained optimization problems. They used a novel adaptive updating 
technique for the penalty parameters which was motivated by techniques for ex-
act penalty methods. A modified augmented Lagrangian multiplier method was 
proposed by [13] who used an outer iteration approach in which the Lagrangian 
multipliers and various penalty parameters were updated and used in the itera-
tion involving constrained problems with simple bounds. Earlier, a class of 
Augmented Lagrangian methods for constrained optimization problems had 
been developed (see [14] [15] [16]) which are similar to the Penalty methods and 
replace a constrained problem with a series of unconstrained ones and add a 
penalty term to the objective function. Komzsik and Chiang [17] investigated the 
effects of the Lagrange multiplier method in solving large-scale problems in a 
parallel environment. 

In the next section, the philosophy and methodology behind the MLM is pre-
sented and discussed. The subsequent section assesses the MLM, in this first in-
stance, in terms of its ability to produce solutions for convex quadratic optimi-
zation problems as does the CLM, using selected test problems. The paper is 
concluded with a section that elucidates the findings of the study and outlines 
prospects and consequences of the MLM for further research. 

2. The Modified Lagrange Method 

The Classical Lagrange Method (CLM) is modified in this section with the in-
tention to improve it. The modification centers on the evolution of a new ap-
proach premised on departure from the classical and conventional thinking to 
finding solution of a convex quadratic nonlinear equality constrained optimiza-
tion problem. While the CLM solves directly the two systems of Equations (1.5a) 
and (1.5b) resulting from the application of the first order necessary optimality 
conditions to (1.4), the Modified Lagrange Method (MLM) avoids this path, and 
rather uses only one of the two sets of Equations (i.e., (1.5a)) to develop a new 
approach to solving the problem. This is considered a major innovation that 
simplifies the solution process. The rest of the section develops the concept be-
hind the MLM. 

Consider the convex quadratic optimization problem given by (1.3). A scalar 
form of the Lagrangian function (1.4) which converts the problem (1.3) into an 
equivalent unconstrained problem and which we seek to minimize over x only, 
is: 

 ( ) ( ) ( )1min , , , 1,2, ,, n
x i i ii

mL x f x g x R R i mxλ λ λ
=

= − ∈ ∈ =∑   (2.1)  

It is clear that if there exist some * nx R∈  for which the second term of Equa-
tion (2.1) vanishes for all ( )ig x , 1,2, ,i m=  , then the constraint equations of 
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(1.3) are satisfied. At such a point, the function ( ),L x λ  and ( )f x  become 
coincident, regardless of λ, and so *x  is a critical vector value that minimizes 
the function ( ),L x λ  and therefore ( )f x . In other words, the Lagrangian 
function is always equal to the objective function for some critical point *x  for 
which ( )* 0ig x = , for all i. It turns out, under the CLM, that such a point, *x , 
is the desired optimal (or minimum) solution of (2.1) or (1.3). This observation 
provides four (4) important facts that serve as bases for the evolution of the 
MLM. They are as follows: 1) At * nx R∈ , ( )* 0ig x =  for all i, in spite of λ; 2) 
This (i.e., (1)) indicate that we may seek to find *x  independently of λ; 3) Since 

( )* 0ig x =  identically for all i and does not vary from zero at *x , it follows that  

( )*

0i

j

g x

x

∂
=

∂
 for all j; and 4) By independently finding *x  we may indepen-

dently find *λ  the optimal value of λ. These four observations derived from 
the CLM means that we can instead find the optimal solutions * *,x λ  of prob-
lem (1.3) and problem (2.1) by two independent processes which first finds *x  
and subsequently finds *λ . This, in essence, is the philosophy or conceptual 
framework of the new method called MLM.  

By the CLM, the first order necessary optimality conditions (in scalar forms) 
of (2.1) which are also sufficient for the minimum solutions * *,x λ  are (2.2a) 

 ( ) ( )
1 0, 1,2, , ; 1,2, ,i

ii
j j

mf x g x
i m j n

x x
λ

=

∂ ∂
− = = =

∂ ∂∑    (2.2a) 

 ( )( ) 0, 1,2, ,i
i

f x g x i m
λ

∂
− = =

∂
  (2.2b)  

It is noted that (2.2a) involves n equations in n unknown variables of x and m 
unknown variables of λ. Therefore, if we are able to eliminate ( )1,2, ,i i mλ =   
from (2.2a), then we can solve (2.2a) independently of (2.2b). secondly, we ob-
serve on the other hand, that (2.2b) cannot be solved independently of (2.2a), 
since it has m equations in the n unknown variables of x, and for nontrivial cases 
of the problem (1.3), n m> . Thirdly, it is important to note that the solution 

*x  which satisfies (2.2a) would not violate (2.2b), since the first and second 
terms of (2.2b) vanish for all { }1,2, ,i m∈   at *x .  

2.1. A Novel Process for Finding x∗  

With the observations made, therefore, we proceed to eliminate iλ   
( { }1,2, ,i m∈  ) by some means in (2.2b), so that we can obtain equations in-
volving only the n unknown variables of x. Consider the system (2.2a) in the ex-
panded form given by the Equation (2.3).  

 
( ) ( ) ( ) ( ) ( )1 2 1

1 2 1

0, 1,2, , .

m m
m m

j j j j j

f x g x g x g x g x
x x x x x

j n

λ λ λ λ−
−

∂ ∂ ∂ ∂ ∂
− − − − −

∂ ∂ ∂ ∂ ∂

= =





 (2.3) 

As was noted earlier, ( )ig x  and ( )i

j

g x
x

∂
∂

 both vanish at *x  for any i and j,  
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in spite of iλ . therefore iλ  can be viewed as arbitrary for all i, as far as finding 
*x  from (2.2a) and therefore from (2.3) is concerned. This means we can 

choose iλ  arbitrarily in our quest to solve (2.2a) independently of (2.2b). By 
choosing 0iλ ≠  for some { }1,2, ,i m∈   and 0sλ =  for all s i≠ ,  

{ }1,2, ,s m∈  , we can obtain the result in (2.4).  

 ( ) ( ) { }, 1,2, , , 1,2, ,i
i

j j

f x g x
j n i m

x x
λ

∂ ∂
= = ∀ ∈

∂ ∂
   (2.4)  

From (2.4), we can eliminate iλ  by taking ratios of the jth and the ( )th1j +  
equation ( )1,2, , 1j n= − , leading to:  

( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

1 1 2 2

2 2 3 3

1 1

, , ,i i

i i

n i n

n i n

f x x g x x f x x g x x
f x x g x x f x x g x x

f x x g x x
f x x g x x

− −

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
= =

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

∂ ∂ ∂ ∂
=

∂ ∂ ∂ ∂



 

which is generalized as (2.5):  

 ( )
( )

( )
( ) { }

1 1

, 1,2, , 1, 1,2, ,j i j

j i j

f x x g x x
j n i m

f x x g x x+ +

∂ ∂ ∂ ∂
= = − ∀ ∈

∂ ∂ ∂ ∂
 

 (2.5) 

The result in (2.5) leads to (2.6): 

 ( ) ( ) ( ) ( ) { }
1 1

0, 1,2, , 1; 1,2, ,i i

j j j j

f x g x f x g x
j n i m

x x x x+ +

∂ ∂ ∂ ∂
− = = − ∀ ∈

∂ ∂ ∂ ∂
   (2.6) 

The results in (2.6) produces for each i, n − 1 equations, which we refer to as 
Subsidiary Constraint Equations (SCE). The SCE become additional available 
equations to the m original equations given by ( ) 0ig x =  of the problem (1.3) 
for finding *x . Together, they provide 1m n+ −  equations in x only and 
therefore simpler to solve. They are generally of sufficient number for finding 

*x . Occasionally, through numerical experimental work, the authors have ob-
served that some of the n − 1 number of SCE produced from (2.6) may be re-
dundant equations, and depending on the number which are redundant, there 
may not be sufficient number of equations for finding *x . To deal with this 
phenomenon, the authors have further observed that apart from taking ratios 
consecutively as in (2.5) for any { }1,2, ,i m∈  , the ratios can instead be taken 
in any arbitrary order, which means that there can be a large number (innumer-
able) possible forms of the SCE that can be constructed. For the purpose of this 
work, we produce another form of ordering of the ratios that leads to other 
forms of the SCE that appears to avoid the redundancy phenomenon, at least for 
the current work. The ratios are given by (2.7):  

 

( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

1 1 2 2

, , ,j i j j i j

j i j j i j

j i j

n i n

f x x g x x f x x g x x
f x x g x x f x x g x x

f x x g x x
f x x g x x

+ + + +

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
= =

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

∂ ∂ ∂ ∂
=

∂ ∂ ∂ ∂



 (2.7) 

where { }1,2, , 1j n∈ − , { }1,2, ,i m∈  . The result in (2.7) is generalized as 
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(2.8). 

 ( )
( )

( )
( ) { }, 1,2, , 1 , 1,2, , 1j i j

j s i j s

f x x g x x
j n s n i

f x x g x x+ +

∂ ∂ ∂ ∂
= ∈ − = − ∀

∂ ∂ ∂ ∂
 

 (2.8) 

It follows from (2.8) that:  

 ( ) ( ) ( ) ( ) { }0, 1,2, , 1 , 1,2, , 1i i

j j s j s j

f x g x f x g x
j n s n i

x x x x+ +

∂ ∂ ∂ ∂
− = ∈ − = − ∀

∂ ∂ ∂ ∂
   (2.9) 

The authors have observed further (through numerical experimental work) 
that taking aggregates of the set of SCE obtained from (2.9) is even more effec-
tive at avoiding the redundancy phenomenon. Therefore, summing from the kth 
SCE of (2.9) ( 1k j= ≥ ), involving the equations , 1, , 1,k k n n+ − , we obtain: 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
1 2

1 2

0

i i i

k k k n

i

k k n k

f x g x g x g x
x x x x

f x f x f x g x
x x x x

+ +

+ +

∂ ∂ ∂ ∂ 
+ + + ∂ ∂ ∂ ∂ 

∂ ∂ ∂ ∂ 
− + + + = ∂ ∂ ∂ ∂ 





 

Which is the same as: 

 
( ) ( ) ( ) ( )

1 1 0,1 2i i
s k s k

k s k

n

s

nf x g x g x f x
k n

x x x x= + = +

∂ ∂ ∂ ∂
− = ≤ ≤ −

∂ ∂ ∂ ∂∑ ∑  (2.10)  

It is noted that various sums, involving two (2) or more equations, may be 
obtained from (2.9) or (2.10), indicating further the variety of the forms of ag-
gregates of the SCE that may be created from (2.9). 

The following observations are made about the SCE in general: 1) They are 
devoid of the unknown parameter iλ  and produce equations in the unknown 
variables of x only; 2) They are derived from the first order necessary optimality 
condition given by (2.2a) only, which involves derivatives that are easy to com-
pute, due to the convex nature of the functions: and 3) They are derived under 
the implicit assumption of the existence of the minimum solution. Therefore, 
they embody the minimum point *x . The resulting equations, therefore, in 
conjunction with the original constraint equations of the problem can indepen-
dently be used to find the minimum solution *x . The corresponding minimum 
objective function value ( )*f x  follow immediately, therefore. 

2.2. Finding the Parameter λ 

The optimal value of λ can also be obtained independently, from (2.2a) which is 
given by: 

( ) ( )
1 0, 1,2, , ; 1,2, ,i

ii
j j

mf x g x
i m j n

x x
λ

=

∂ ∂
− = = =

∂ ∂∑    

By obtaining the required derivatives of f and ig , and evaluating them at *x , 
we obtain m equations involving iλ  only, 1,2, ,i m=  , which, therefore, can 
be solved independently for *λ .  
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2.3. The Solution Steps of the MLM  

The solution process of the MLM is characterized by the following five (5) steps: 
 Step 1: Given problem (1.3), construct the Lagrangian function as in (2.1) 

and go to Step 2; 
 Step 2: Construct the first order necessary optimality condition as in (2.2a), 

and construct (2.4), then go to Step 3; 
 Step 3: Generate SCE as in (2.6), (2.9) or (2.10) and go to Step 4; 
 Determine whether or not the set of SCE together with the original problem 

constraints are sufficient to find *x . If yes, then solve for *x  using any 
suitable numerical algorithm, otherwise, form alternative SCE using other 
forms of ratios or aggregates of equations such as 2.10 to solve for *x ; then 
go to Step 5. 

 Step 5: Substitute *x  in (2.2a) and solve for *λ , then stop. 
We conclude the presentation of the MLM with the observation that: unlike 

the CLM, it does not require the first order necessary optimality condition given 
by (2.2b) in the solution of a problem (as given by (1.3)). Nevertheless, the solu-
tion *x  obtained would not violate (2.2b). This, in addition to the novel pro-
cedures for finding *x  and *λ  are major simplifications in the process of 
solving a given convex quadratic optimization problem. The next section pro-
vides numerical results obtained by only hand computations involving small 
sized problems as a first stage evaluation of the MLM. In a subsequent work to 
be given in another paper, the new method would be evaluated on fairly 
large-scale problems and its relative performance against the CLM would be as-
sessed to further demonstrate its capabilities as a viable method for solving equali-
ty constrained convex quadratic optimization problems.  

3. Numerical Results 

The new method (MLM), is applied to selected convex quadratic optimization 
problems to show that it produces the required solutions as the CLM. In this 
first stage of testing the method, we use small sized problems for which manual 
(or hand) computation is sufficient to find the solution. In the subsequent paper, 
where the method would be assessed against the CLM in terms of their relative 
performances in solving larger sized problems, the use of software would be ne-
cessary. 

Seven problems, selected from literature for which solutions by the CLM have 
been obtained already, are solved with the MLM. The solution of each problem 
by the MLM is obtained for several cases of the SCE generated using (2.6) and 
(2.10) together with the original problem constraints, to demonstrate the variety 
of ways of solving the problems using the MLM.  

3.1. Problem 1 

This problem is extracted from Schittkowski [18], given by: 

 ( ) ( ) ( ) ( )2 22
1 2 3 4 5min 1f x x x x x x= − + − + −  (3.1a) 
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Subject to:  

 ( )1 1 2 3 4 5 5 0g x x x x x x= + + + + − =  (3.1b) 

 ( ) ( )2 3 4 52 3 0g x x x x= − + + =  (3.1c) 

The solution by the CLM (see [18]) is: 

1 2 3 4 5 1x x x x x= = = = = , ( )* 0f x = , 1 0λ = , 2 0λ =  

Solution by the MLM 
Case 1: Solving by (2.6) and from (3.1a) and (3.1b), we obtain the SCE given 

by (3.1c) to (3.1f).  

 
( ) ( ) ( ) ( )1 1

1 2 3
1 2 2 1

0 1
f x g x f x g x

x x x
x x x x

∂ ∂ ∂ ∂
− = ⇒ − + =

∂ ∂ ∂ ∂
 (3.1c) 

 
( ) ( ) ( ) ( )1 1

2 3
2 3 3 2

0
f x g x f x g x

x x
x x x x

∂ ∂ ∂ ∂
− = ⇒ =

∂ ∂ ∂ ∂
 (3.1d) 

 
( ) ( ) ( ) ( )1 1

2 3 4 5
3 4 4 3

0 0
f x g x f x g x

x x x x
x x x x

∂ ∂ ∂ ∂
− = ⇒ − + − + =

∂ ∂ ∂ ∂
 (3.1e) 

 
( ) ( ) ( ) ( )1 1

4 5
4 5 5 4

0
f x g x f x g x

x x
x x x x

∂ ∂ ∂ ∂
− = ⇒ =

∂ ∂ ∂ ∂
 (3.1f) 

Notice that the equations given by (3.1d) and (3.1f) make (3.1e) redundant. 
However, substituting (3.1d) in (3.1c) gives 1 1x = . By substituting 1 1x = , 
(3.1d), and (3.1f) in the constraint Equations (3.1b) and (3.1c) and multiplying 
the resulting expression from (3.1b) by and adding that to the resulting equation 
from (3.1c) yields 3 1x =  and therefore 2 1x = . Substituting 1 1x = , 2 3 1x x= =  
into (3.1b) we obtain 4 51x x= =  which gives the solution  

1 2 3 4 5 1x x x x x= = = = = , satisfying both constraint equations ( )1 0g x =  and 
( )2 0g x = . The objective function value is obtained as  

( ) ( ) ( ) ( )2 2 2* 1 1 1 1 1 1 0f x = − + − + − = . The minimum values of the multipliers 

1λ  and 2λ  are obtained by solving the system of Equations (3.1g) given by:  

 

1 1

2 3 1

2 3 1 2

4 5 1 2

5 4 1 2

2 2 0 0
2 2 0 0
2 2 0
2 2 2 0

2 2 2 0

x
x x
x x
x x

x x

λ
λ
λ λ
λ λ
λ λ

−       
       −       
       − + + + =
       − + −       
       − −      

 (3.1g) 

Substituting the values of ( )1,2,3,4,5ix i =  into (3.1g) produces the results 

1 2 0λ λ= = . Hence the minimum solution for Problem 1 using the MLM is 

1 2 3 4 5 1x x x x x= = = = = , 1 2 0λ λ= =  and ( ) 0f x = . 

Case 2: Alternatively, we use aggregates of SCE formed as in (2.9) or (2.10) to 
generate equations and use in conjunction with the constraint equations to solve 
Problem 1, as follows: 

( ) ( ) ( ) ( ) ( ) ( )1 1 1
1

1 2 3 1 2 3

0 1
f x g x g x g x f x f x

x
x x x x x x

∂ ∂ ∂ ∂ ∂ ∂   
+ − + = ⇒ =   ∂ ∂ ∂ ∂ ∂ ∂   
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( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 1 1 1

1 2 3 4 1 2 3 4

1 4 5

0

3 3

f x g x g x g x g x f x f x f x
x x x x x x x x

x x x

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂   
+ + − + + =   ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂   

⇒ − + =

 

( ) ( ) ( ) ( ) ( ) ( )1 1 1

2 3 4 2 3 4

1 3 4 5

0

3 3 0

f x g x g x g x f x f x
x x x x x x

x x x x

∂ ∂ ∂ ∂ ∂ ∂   
+ − + =   ∂ ∂ ∂ ∂ ∂ ∂   

⇒ − − + =

 

( ) ( ) ( ) ( ) ( ) ( )1 1 1
2 3

3 4 5 3 4 5

0
f x g x g x g x f x f x

x x
x x x x x x

∂ ∂ ∂ ∂ ∂ ∂   
+ − + = ⇒ =   ∂ ∂ ∂ ∂ ∂ ∂   

  

( ) ( ) ( ) ( ) ( ) ( )1 1 1

3 4 5 3 4 5

2 3 4 5

0

3 3 0

f x f x g x g x g x f x
x x x x x x

x x x x

∂ ∂ ∂ ∂ ∂ ∂   
+ − + =   ∂ ∂ ∂ ∂ ∂ ∂   

⇒ − − + =

  

Subtracting 1 3 4 53 3 0x x x x− − + =  from 1 4 53 3x x x− + = , the result is 3 1x = . 
Substituting 3 1x =  in 2 3x x= , the result is 2 1x = . Substituting 1 2 3 1x x x= = =  
in (3.1b), the resulting equation is 4 5 2x x+ = . Substituting 2 3 1x x= =  in 

2 3 4 53 3 0x x x x− − + = , the resulting equation is 4 5 0x x− + = . Solving 4 5 2x x+ =  
and 4 5 0x x− + =  results in 4 5 1x x= = . 

Since the value of 1 2 3 4 5 1x x x x x= = = = =  satisfy both constraints (3.1b) and 
(3.1c), the objective function value is 0 as obtained previously. The values of 

1 2 0λ λ= =  follow accordingly from (3.1g).  
Case 3: The required number of SCE in this case are generated with respect to 

f and 2g  using (2.6) leading to the following: 

( ) ( ) ( ) ( )2 2

1 2 2 1

0 0 0
f x g x f x g x

x x x x
∂ ∂ ∂ ∂

− = ⇒ =
∂ ∂ ∂ ∂

  

( ) ( ) ( ) ( )2 2
2 3

2 3 3 2

0
f x g x f x g x

x x
x x x x

∂ ∂ ∂ ∂
− = ⇒ =

∂ ∂ ∂ ∂
, 

( ) ( ) ( ) ( )2 2
2 3 4 5

3 4 4 3

0 2 2 0
f x g x f x g x

x x x x
x x x x

∂ ∂ ∂ ∂
− = ⇒ − − + =

∂ ∂ ∂
, 

( ) ( ) ( ) ( )2 2
4 5

4 5 5 4

0
f x g x f x g x

x x
x x x x

∂ ∂ ∂ ∂
− = ⇒ =

∂ ∂ ∂ ∂
. 

The resulting SCE generated above, together with the constraint Equations 
(3.1b) and (3.1c) fail to be of sufficient number to enable solving Problem 1, due 
to some redundant equations obtained. Therefore, we proceed to Case 4, where 
aggregates of the SCE are constructed to enable solving of Problem 1. 

Case 4: The aggregates of SCE produced according to (2.10), yield the follow-
ing equations: 

The solution process of the MLM. 

( ) ( ) ( ) ( ) ( ) ( )1 1 1
1

1 2 3 1 2 3

0 1
f x g x g x g x f x f x

x
x x x x x x

∂ ∂ ∂ ∂ ∂ ∂   
+ − + = ⇒ =   ∂ ∂ ∂ ∂ ∂ ∂   

 

( ) ( ) ( ) ( ) ( ) ( )1 1 1
2 3

3 4 5 3 4 5

0 0
f x g x g x g x f x f x

x x
x x x x x x

∂ ∂ ∂ ∂ ∂ ∂   
+ − + = ⇒ − =   ∂ ∂ ∂ ∂ ∂ ∂   
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( ) ( ) ( ) ( ) ( ) ( )1 1 1

3 4 5 3 4 5

2 3 4 5

0

3 3 0

f x f x g x g x g x f x
x x x x x x

x x x x

∂ ∂ ∂ ∂ ∂ ∂   
+ − + =   ∂ ∂ ∂ ∂ ∂ ∂   

⇒ − − + =

 

Substituting 1 1x =  in (3.1b) and multiplying the resulting equation by 2 and 
adding that to (3.1c) gives 2 32 3 5x x+ = . Substituting 2 3x x=  in 2 32 3 5x x+ =  
results in 3 1x =  and so 2 1x = . Substituting 3 1x =  in (3.1c) gives 4 5 2x x+ = . 
Substituting 2 3 1x x= =  in 2 3 4 53 3 0x x x x− − + =  gives 4 5 0x x− + = . Solving 

4 5 2x x+ =  and 4 5 0x x− + =  simultaneously results in 4 5 1x x= = . Therefore, 
we have 1 2 3 4 4 5 1x x x x x x= = = = = =  as was obtained in earlier cases. The rest 
of the results follow therefore. 

3.2. Problem 2 

This is an extract from [19] and given by: 

 ( ) 2 2 2
1 2 3min f x x x x= + +  (3.2a) 

subject to  

 ( )1 1 2 32 2 9 0g x x x x= + + − =  (3.2b) 

 ( )2 1 2 35 5 7 29 0g x x x x= + + − =  (3.2c) 

The solution obtained by CLM as in [19], is:  

1 2 3 12, 1, 2, 2x x x λ= = = = −  and ( )2 0, 9f xλ = =  

Solution of Problem 2 by the MLM 
Case 1: The nonredundant SCE produced according to (2.6) and using ( )1g x  

yield: 

( ) ( ) ( ) ( )1 1
1 2

1 2 2 1

0 2
f x g x f x g x

x x
x x x x

∂ ∂ ∂ ∂
− = ⇒ =

∂ ∂ ∂ ∂
, 

( ) ( ) ( ) ( )1 1
3 2

2 3 3 2

0 2
f x g x f x g x

x x
x x x x

∂ ∂ ∂ ∂
− = ⇒ =

∂ ∂ ∂ ∂
, 

Substituting 1 22x x=  and 3 22x x=  in (3.2b) results in 2 1x = . From 

1 22x x=  and 3 22x x=  we obtain 1 2x =  and 3 2x = . The solution is therefore 

1 2x = , 2 1x = , 3 2x = . The solution 1 2x = , 2 1x =  and 3 2x =  satisfy both 
constraints. The objective function value is ( )* 2 2 22 1 2 9f x = + + = . We solve 
for 1λ  and 2λ  as follows: 

( ) ( ) ( )1 1 2 2 0f x g x g xλ λ∇ + ∇ + ∇ =  

1 1 2

2 1 2

3 1 2

2 2 5 0
2 5 0
2 2 7 0

x
x
x

λ λ
λ λ
λ λ

       
       ⇒ + + =       
             

  

This system of equations yields the solutions 1 2λ = − , 2 0λ = . 
Case 2: Aggregates of SCE this time is produced according to (2.10) involving 

the constraint ( )1g x  as follows:  

https://doi.org/10.4236/ojop.2024.131001


T. B. Stephen et al. 
  

 

DOI: 10.4236/ojop.2024.131001 12 Open Journal of Optimization 
 

( ) ( ) ( ) ( ) ( ) ( )1 1 1
1 2 3

1 2 3 1 2 3

0 3 2 2 0
f x g x g x g x f x f x

x x x
x x x x x x

∂ ∂ ∂ ∂ ∂ ∂   
+ − + = ⇒ − − =   ∂ ∂ ∂ ∂ ∂ ∂   

  

( ) ( ) ( ) ( ) ( ) ( )1 1 1
1 2 3

3 2 1 3 2 1

0 2 2 3 0
g x f x f x f x g x g x

x x x
x x x x x x

∂ ∂ ∂ ∂ ∂ ∂   
+ − + = ⇒ + − =   ∂ ∂ ∂ ∂ ∂ ∂   

 

Solving 1 2 33 2 2 0x x x− − =  simultaneously with (3.2b) and (3.2c) results in 

1 2x = , 2 1x = , 3 2x =  which is the required solution. The corresponding values 
of the parameters 1λ  and 2λ  and the objective function follow accordingly. 
Alternatively, we can obtain the same solution by solving simultaneously 

1 2 32 2 3 0x x x+ − = , (3.2b) and (3.2c).  
Case 3: In this case, SCE are produced using (2.6), but this time using ( )2g x , 

leading to the following equations: 

( ) ( ) ( ) ( )2 2
1 2

1 2 2 1

0
f x g x f x g x

x x
x x x x

∂ ∂ ∂ ∂
− = ⇒ =

∂ ∂ ∂ ∂
, 

( ) ( ) ( ) ( )2 2
2 3

2 3 3 2

70
5

f x g x f x g x
x x

x x x x
∂ ∂ ∂ ∂

− = ⇒ =
∂ ∂ ∂ ∂

, 

Substituting 1 3
7
5

x x=  and 2 3
7
5

x x=  in (3.2c), the result is 3
21
29

x = . From 

1 3
5
7

x x=  and 2 3
7
5

x x= , we obtain 1
147
145

x =  and 2
147
145

x = . Since the values  

do not satisfy both constraints, they are discarded. Alternatively, substituting 

1 2x x=  in both constraints and solving the resulting equations simultaneously 
results in 3 3x = − , 2 5x = . Substituting these values in (3.2c) gives 1 5x = . 

The values 1 2 35, 5, 3x x x= = = −  satisfy both constraint and yield corres-
ponding objective function value calculated as ( )* 59f x = . This value is higher 
than the value ( )* 9f x =  obtained earlier; and so, the current solution, though 
feasible, fails to be the minimum solution.  

Case 4: In this case, aggregates of the SCE formed according to (2.10) and us-
ing ( )2g x  produce the following equations:  

( ) ( ) ( ) ( ) ( ) ( )2 2 2
1 2 3

1 2 3 1 2 3

0 7 5 5 0
f x g x g x g x f x f x

x x x
x x x x x x

∂ ∂ ∂ ∂ ∂ ∂   
+ − + = ⇒ − − =   ∂ ∂ ∂ ∂ ∂ ∂   

 

( ) ( ) ( ) ( ) ( ) ( )2 2 2
1 2 3

3 2 1 3 2 1

0 3 2 2 0
g x f x f x f x g x g x

x x x
x x x x x x

∂ ∂ ∂ ∂ ∂ ∂   
+ − + = ⇒ − − =   ∂ ∂ ∂ ∂ ∂ ∂   

 

Solving (3.2b) and (3.2c) simultaneously with the first SCE results in the solu-
tion 1 2.1154x = , 2 1.1538x = , 3 1.8077x = , which satisfy both constraints. 
The corresponding objective function value is ( )* 9f x = . Alternatively, solving 
(3.2b), (3.2c) and the second equation simultaneously, gives 1 2.0826x = , 

2 1.1101x = , 3 1.8624x = , which satisfy both constraints. The corresponding 
objective function value is ( )* 9.0381f x = , which is marginally different from 
the value of 9 obtained previously.  

The results obtained under this case reveal interesting outcomes that require 
further investigation to understand the phenomena responsible for this. We ob-
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serve, nevertheless, that the solution (2.1154, 1.1538, 1.8077) compares well with 
(2, 1, 2) which is the required; the objective function value of 9.0381 also com-
pares well with 9, the required minimum value.  

3.3. Problem 3 

The problem is taken from [20] and given by: 

 ( ) 2
1

2 2 2
2 3 4min f x x x x x= + + +  (3.3a)  

subject to  

 ( )1 1 2 3 4 10 0g x x x x x= + + + − =  (3.3b)  

 ( )2 1 2 3 43 6 0g x x x x x= − + + − =  (3.3c)  

The solution by the CLM is: 

1 2 3 4 1 2
5 7 5 3 1, , , , 27, 3, .
2 2 2 2 2

x x x x f λ λ= = = = = = = −
 

 

Solution of Problem 3 by the MLM 
Case 1: SCE according to (2.6) are generated involving ( )1g x  as follows: 

( ) ( ) ( ) ( )1 1
1 2

1 2 2 1

0 0
f x g x f x g x

x x
x x x x

∂ ∂ ∂ ∂
− = ⇒ − =

∂ ∂ ∂ ∂
, 

( ) ( ) ( ) ( )1 1
2 3

2 3 3 2

0 0
f x g x f x g x

x x
x x x x

∂ ∂ ∂ ∂
− = ⇒ − =

∂ ∂ ∂ ∂
, 

( ) ( ) ( ) ( )1 1
3 4

3 4 4 3

0 0
f x g x f x g x

x x
x x x x

∂ ∂ ∂ ∂
− = ⇒ − =

∂ ∂ ∂ ∂
. 

The equations 1 2 0x x− = ⇒ 1 2x x=  and 2 3 0x x− = ⇒ 2 3x x= ⇒   
2 1 3x x x= = . Substituting 1 3x x=  in (3.3b) and (3.3c) gives the equations 

2 3 42 10x x x+ + =  and 2 3 42 3 6x x x− + + = . Adding them gives 3 4 4x x+ = . Al-
so, adding 1 2 0x x− =  to 3 4 0x x− =  and subtracting the result from (3.3c)  

yields 4
3
2

x = . Putting 4
3
2

x =  in 3 4 4x x+ =  gives 3
5
2

x = , and putting the 

results of 3x  and 4x  in 2 3 42 3 6x x x− + + =  gives 2
7
2

x = . Finally, substitut-

ing 2
7
2

x = , 3
5
2

x =  and 4
3
2

x =  in (3.3b) or (3.3c) results in 1
5
2

x = . The val-

ues 1
5
2

x = , 2
7
2

x = , 3
5
2

x = , 4
3
2

x =  satisfy both constraints (3.3b) and (3.3c),  

and the corresponding objective function value is ( )* 27f x = . The values of 

1λ , 2λ  are obtained from the equation ( ) ( ) ( )1 1 2 2 0f x g x g xλ λ∇ + ∇ + ∇ =  
which is the system:  

 

1 1 2

2 1 2

3 1 2

4 1 2

2 0
2 0
2 0
2 3 0

x
x
x
x

λ λ
λ λ
λ λ
λ λ

       
       −       + + =
       
       

      

 (3.3d)  

Solving Equation (3.3d) produces the result 1 6λ = , 2 1λ = − . 
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Case 2: The SCE, this time, are constructed according to (2.10) involving the 
constraint ( )1g x , leading to the following:  

( ) ( ) ( ) ( ) ( ) ( )1 1 1
1 2 3

1 2 3 1 2 3

0 2 0
f x g x g x g x f x f x

x x x
x x x x x x

∂ ∂ ∂ ∂ ∂ ∂   
+ − + = ⇒ − − =   ∂ ∂ ∂ ∂ ∂ ∂   

(3.3e) 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 1 1 1

1 2 3 4 1 2 3 4

1 2 3 4

0

3 0

f x g x g x g x g x f x f x f x
x x x x x x x x

x x x x

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂   
+ + − + + =   ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂   

⇒ − − − =

 

 (3.3f) 

( ) ( ) ( ) ( ) ( ) ( )1 1 1
2 3 4

2 3 4 2 3 4

0 2 0
f x g x g x g x f x f x

x x x
x x x x x x

∂ ∂ ∂ ∂ ∂ ∂   
+ − + = ⇒ − − =   ∂ ∂ ∂ ∂ ∂ ∂   

(3.3g) 

( ) ( ) ( ) ( ) ( ) ( )1 1 1
2 3 4

2 3 4 2 3 4

0 2 0
f x f x g x g x g x f x

x x x
x x x x x x

∂ ∂ ∂ ∂ ∂ ∂   
+ − + = ⇒ − − =   ∂ ∂ ∂ ∂ ∂ ∂   

(3.3h) 

Solving Equations (3.3b) (3.3c), (3.3e) and (3.3f) simultaneously, we have  

1
5
2

x = , 2
9
2

x = , 3
1
2

x = , 4
5
2

x = , which satisfy the constraints (3.3b) and (3.3c).  

The corresponding objective function value is ( )* 30.5f x = . Comparing the 
objective function values of 27 (obtained in Case 1), we see that 27 is the least.  

Therefore, the minimum solution for Problem 3 is 1
5
2

x = , 2
7
2

x = , 3
5
2

x = , 

4
3
2

x = , 1 6λ = , 2 1λ = − , ( )* 27f x = .  

Case 3: In this case, SCE are produced using (2.6) in conjunction with the 
constraint ( )2g x  as follows:  

( ) ( ) ( ) ( )2 2
1 2

1 2 2 1

0 0
f x g x f x g x

x x
x x x x

∂ ∂ ∂ ∂
− = ⇒ + =

∂ ∂ ∂ ∂
, 

( ) ( ) ( ) ( )2 2
2 3

2 3 3 2

0 0
f x g x f x g x

x x
x x x x

∂ ∂ ∂ ∂
− = ⇒ + =

∂ ∂ ∂ ∂
, 

( ) ( ) ( ) ( )2 2
3 4

3 4 4 3

0 3 0
f x g x f x g x

x x
x x x x

∂ ∂ ∂ ∂
− = ⇒ − =

∂ ∂ ∂
, 

From 1 2 0x x+ = ⇒ 2 1x x= −  and 2 3 0x x+ = ⇒ 2 3x x= − ⇒

2 1 3x x x= − = − . Substituting 1 3x x=  in (3.3b) and (3.3c), gives the equations 

2 3 42 10x x x+ + =  and 2 3 42 3 6x x x− + + =  respectively. Adding  

2 3 42 10x x x+ + =  to 2 3 42 3 6x x x− + + = , results in 3 4 4x x+ = . Adding  

3 43 0x x− =  to 3 4 4x x+ =  results in 3 1x = , 4 3x = . Therefore, 1 1x = , since 

1 3x x= . Putting 1 1x = , 3 1x = , 4 3x =  in (3.3c) give 2 5x = . The values 1 1x = , 

2 5x = , 3 1x = , 4 3x =  satisfy both constraints (3.3b) and (3.3c) with corres-
ponding objective function value of 36. This value, however, is higher than 27 
obtained under Cases 1 and 2; therefore, the solution while feasible, is not op-
timal. 

https://doi.org/10.4236/ojop.2024.131001


T. B. Stephen et al. 
 

 

DOI: 10.4236/ojop.2024.131001 15 Open Journal of Optimization 
 

3.4. Problem 4 

This problem is taken from [18] and given by:  

( ) ( ) ( ) ( ) ( ) ( )2 2 22 2
1 2 2 3 4 5 4 5min 2 1 1f x x x x x x x x x= − + + − + − + − + −  

subject to:  

 ( )1 1 23 4 0g x x x= + − =  (3.4a) 

 ( )2 3 4 52 0g x x x x= + − =  (3.4b) 

 ( )3 2 5 0g x x x= − =  (3.4c) 

The solution of the problem by CLM is: 

1 2 3 4 5 1 21, 0, 0x x x x x λ λ= = = = = = =  and ( )*
3 0, 0f xλ = =  (Schittkowski, 

2009). 

Solution of Problem 4 by the MLM 
Case 1: The SCE according to (2.6) and involving the constraint ( )1g x  are: 

 
( ) ( ) ( ) ( )1 1

1 2 3
1 2 2 1

0 4 5 2
f x g x f x g x

x x x
x x x x

∂ ∂ ∂ ∂
− = ⇒ − − = −

∂ ∂ ∂ ∂
 (3.4d) 

 
( ) ( ) ( ) ( )1 1

2 3
2 3 3 2

0 2
f x g x f x g x

x x
x x x x

∂ ∂ ∂ ∂
− = ⇒ + =

∂ ∂ ∂ ∂
, (3.4e) 

Solving (3.4a), (3.4b), (3.4c), (3.4d) and (3.4e) simultaneously results in  

1 2 3 4 5 1x x x x x= = = = = , which satisfy all the three constraints with corres-
ponding objective function value ( )* 0f x = . The first order necessary optimal-
ity conditions lead to the system: 

 

1 2 1

1 2 3 31

2 3 2

4 5 2

4 5 32

2 2 00 0
2 4 2 4 03 0

2 2 4 00 0
4 2 2 00 0
2 2 2 20 0

x x
x x x

x x
x x
x x

λ
λλ

λ
λ

λλ

−       
       − + + −       
       + − + + + =
       − −       
       − + − −−       

 (3.4f)  

Solving the system of Equations (3.4f) results in 1 0λ = , 2 0λ = , 3 0λ = .  
Case 2: The SCE this time are produced according to (2.10) as: 

 
( ) ( ) ( ) ( ) ( ) ( )1 1 1

1 2 3 1 2 3

1 2 3

0

2 3 2

f x g x g x g x f x f x
x x x x x x

x x x

∂ ∂ ∂ ∂ ∂ ∂   
+ − + =   ∂ ∂ ∂ ∂ ∂ ∂   

⇒ − − = −

 (3.4g) 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 1 1 1

1 2 3 4 1 2 3 4

1 2 3 4 5

0

4 6 2 2 5

f x g x g x g x g x f x f x f x
x x x x x x x x

x x x x x

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂   
+ + − + + =   ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂   

⇒ − − − + = −

(3.4h) 

 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

1 1 1 1

1 2 3 4 5

1

1 2 3 4 5

1 2 3 4 5

0

4 6 2 6

f x g x g x g x g x
x x x x x

g x f x f x f x f x
x x x x x
x x x x x

∂ ∂ ∂ ∂ ∂ 
+ + + ∂ ∂ ∂ ∂ ∂ 

∂ ∂ ∂ ∂ ∂ 
− + + + = ∂ ∂ ∂ ∂ ∂ 
⇒ − − − − = −

 (3.4i) 
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( ) ( ) ( ) ( ) ( ) ( )1 1 1

2 3 4 2 3 4

2 3 4 5

0

2 3

f x g x g x g x f x f x
x x x x x x

x x x x

∂ ∂ ∂ ∂ ∂ ∂   
+ − + =   ∂ ∂ ∂ ∂ ∂ ∂   

⇒ − − − + = −

 (3.4j) 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 1 1 1

2 3 4 5 2 3 4 5

2 3 4 5

0

4

f x g x g x g x g x f x f x f x
x x x x x x x x
x x x x

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂   
+ + − + + =   ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂   

⇒ + + + =

(3.4k) 

Multiplying (3.4g) by 2 and subtracting the resulting equation from (3.4h) 
gives 4 52 1x x− = . Subtracting (2.4h) from (3.4i) results in 4 52 1x x− + = . Solv-
ing simultaneously the equations 4 52 1x x− =  and 4 52 1x x− =  yields  

4 5 1x x= = . Substituting 5 1x =  in (3.4c) gives 2 1x = . Substituting 4 5 1x x= =  
in (3.4b) yields 3 1x = . Substituting 2 1x =  in (3.4a) gives 1 1x = . Therefore, 
the minimum solution is 1 2 3 4 5 1x x x x x= = = = =  with minimum objective 
function value of zero.  

Case 3: The SCE in this case are produced according to (2.6), but this time 
involving the constraint ( )2g x  as follows:  

 
( ) ( ) ( ) ( )2 2

1 2 3
2 3 3 2

0 2 2
f x g x f x g x

x x x
x x x x

∂ ∂ ∂ ∂
− = ⇒ − + + =

∂ ∂ ∂ ∂
, (3.4l)  

 
( ) ( ) ( ) ( )2 2

2 3 4 5
3 4 4 3

0 2 1
f x g x f x g x

x x x x
x x x x

∂ ∂ ∂ ∂
− = ⇒ + − + =

∂ ∂ ∂
, (3.4m)  

( ) ( ) ( ) ( )2 2
4

4 5 5 4

0 1
f x g x f x g x

x
x x x x

∂ ∂ ∂ ∂
− = ⇒ =

∂ ∂ ∂ ∂
. 

Solving (3.4a), (3.4b), (3.4c), (3.4l), and (3.4m) simultaneously results in 

1 2 3 4 5 1x x x x x= = = = =  which is the required minimum solution, with objec-
tive function value 0.  

Case 4: The SCE are produced using (2.6) involving ( )3g x  this time around, 
as: 

 
( ) ( ) ( ) ( )3 3

1 2
1 2 2 1

0 0
f x g x f x g x

x x
x x x x

∂ ∂ ∂ ∂
− = ⇒ − =

∂ ∂ ∂ ∂
, (3.4n)  

 
( ) ( ) ( ) ( )3 3

2 3
2 3 3 2

0 2
f x g x f x g x

x x
x x x x

∂ ∂ ∂ ∂
− = ⇒ + =

∂ ∂ ∂
, (3.4o)  

 
( ) ( ) ( ) ( )3 3

4 5
4 5 5 4

0 2 1
f x g x f x g x

x x
x x x x

∂ ∂ ∂ ∂
− = ⇒ − + = −

∂ ∂ ∂ ∂
. (3.4p) 

Solving constraint (3.4a) and Equation (3.4n) simultaneously results in 

1 2 1x x= = . Substituting 2 1x =  in constraint (3.4b) results in 5 1x = . Substi-
tuting 2 1x =  in 2 3 2x x+ =  and 5 1x =  in 4 52 1x x− + = −  gives 3 1x =  and 

4 1x =  respectively. Therefore, 1 2 3 4 5 1x x x x x= = = = =  is the required mini-
mum solution, with objective function value zero as previously. The parameter 
values obtained previously therefore follow accordingly.  

Case 5: The SCE in this case are generated according to (2.10), involving the 
constraint ( )3g x , as follows: 

https://doi.org/10.4236/ojop.2024.131001


T. B. Stephen et al. 
 

 

DOI: 10.4236/ojop.2024.131001 17 Open Journal of Optimization 
 

 
( ) ( ) ( ) ( ) ( ) ( )3 3 3

1 2 3 1 2 3

1 2

0

0

f x g x g x g x f x f x
x x x x x x
x x

∂ ∂ ∂ ∂ ∂ ∂   
+ − + =   ∂ ∂ ∂ ∂ ∂ ∂   

⇒ − =

 (3.4q)  

 
( ) ( ) ( ) ( ) ( ) ( )3 3 3

2 3 4 2 3 4

2 3 4 5

0

2 3

f x g x g x g x f x f x
x x x x x x
x x x x

∂ ∂ ∂ ∂ ∂ ∂   
+ − + =   ∂ ∂ ∂ ∂ ∂ ∂   

⇒ + + − =

 (3.4r)  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )3 3 3 3

2 3 4 5 2 3 4 5

1 2 3 4

0

3 2 6

f x g x g x g x g x f x f x f x
x x x x x x x x
x x x x

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂   
+ + − + + =   ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂   

⇒ − − − = −

(3.4s) 

 
( ) ( ) ( ) ( ) ( ) ( )3 3 3

3 4 5 3 4 5

2 3

0

2

f x g x g x g x f x f x
x x x x x x
x x

∂ ∂ ∂ ∂ ∂ ∂   
+ − + =   ∂ ∂ ∂ ∂ ∂ ∂   

⇒ + =

 (3.4t) 

Solving the constraint Equation (3.4a) and Equation (3.4q) simultaneously 
yields 1 2 1x x= = . Substituting 2 1x =  in (3.4c) results in 5 1x = . Substituting 
(3.4t) gives 3 1x = . Substituting 1 2 3 5 1x x x x= = = =  in (3.4t) results in 4 1x = , 
which is what was obtained in the earlier cases of Problem 4. The objective func-
tion and parameter values, therefore, follow accordingly.  

3.5. Problem 5 

This is an extract from [20]. In this case we have a linear objective function be-
ing minimized subject to a nonlinear convex quadratic constraint equation. 

( ) 1 2min 2f x x x= +   

subject to: 

( ) 2 2
1 2 4 0g x x x= + − =   

The solution obtained by the CLM is: 

( )*
1 2

4 2 5, , , 2 5
45 5

x x f xλ− −
= = = = −  

Solution of Problem 5 by the MLM 
Case 1: The only SCE produced for Problem 5 using (2.6) and involving the 

only constraint ( )g x  is: 

( ) ( ) ( ) ( )
1 2

1 2 2 1

0 2
f x g x f x g x

x x
x x x x

∂ ∂ ∂ ∂
− = ⇒ =

∂ ∂ ∂ ∂
. 

Substituting 1 22x x=  in 2 2
1 2 4 0x x+ − =  the result is 2

2
5

x = ± . Substitut-

ing 2
2
5

x =  and 2
2
5

x = −  in 1 22x x=  results in 1
4
5

x =  and 1
4
5

x = −  

respectively. The objective function values at ( 4
5

, 2
5

) and ( 4
5

− , 2
5

− ) are 

respectively 2 5  and 2 5− . Hence, the minimum value is 2 5−  and at-
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tained at ( 4
5

− , 2
5

− ). From the first order optimality condition, we have the 

system: 

1

2

22 0
21 0

x
x

λ
    

+ =    
    

 

which produces the result 5
4

λ = .  

3.6. Problem 6 

This problem is an extract from [21]. Like Problem 5, also involves minimizing a 
linear objective function, subject to a nonlinear convex quadratic constraint, 
given by:  

( ) 2 1min 2f x x x= +   

subject to:  

( ) 2
2 1 2 1 0g x x x x= + − =   

The solution (see [21]) obtained by the CLM is: 

( )1 20, 1, 1, 2x x f xλ= = − = = −   

Solution of Problem 6 by the MLM 
Case 1: The only SCE obtained from (2.6) for this problem is: 

( ) ( ) ( ) ( )
1

1 2 2 1

0 0
f x g x f x g x

x
x x x x

∂ ∂ ∂ ∂
− = ⇒ =

∂ ∂ ∂ ∂
  

Substituting 1 0x =  in 2
2 1 2 1 0x x x+ − =  results in 2 1x =  or 2 1x = − . Subs-

tituting 1 0x =  and 2 1x = , the objective function value is 2. Also, substituting 

1 0x = , 2 1x = − , the objective function value is −2. Therefore, minimum objec-
tive function value is −2 and attained at 1 0x = , 2 1x = − . The first order opti-
mality condition leads to the system: 

2

1 2

1 0
22 0

x
x x

λ
    

+ =    +    
  

Substituting 1 0x = , 2 1x = −  results in 1λ = .  

3.7. Problem 7 

In this problem, we consider minimizing a convex function, subject to a linear 
constraint. The problem is taken from [21].  

( ) 1 2min f x x x=   

subject to: 

( ) 1 22 2 20 0g x x x= + − =   

Solution by the CLM is:  

( )*
1 25, 5, 2.5, 25x x f xλ= = = =  
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Solution of Problem 7 by the MLM 
Case 1: The only SCE obtained from (2.6) is: 

( ) ( ) ( ) ( )
1 2

1 2 2 1

0
f x g x f x g x

x x
x x x x

∂ ∂ ∂ ∂
− = ⇒ =

∂ ∂ ∂ ∂
 

Substituting 1 2x x=  in 1 22 2 20 0x x+ − = , results in 2 5x = . Substituting 

2 5x =  in 1 22 2 20 0x x+ − = , we obtain 1 5x = . The minimum objective func-
tion value is therefore 25, attained at 1 25x x= = . The first order optimality con-
dition leads to the system: 

2

1

2 0
2 0

x
x

λ
     

+ =     
    

 

which gives 2.5λ = − .  

4. Conclusions 

This paper has reported a new way of solving an equality constrained convex 
quadratic optimization problems, based on what the authors have called Mod-
ified Lagrange Method (MLM), which, unlike the classical Lagrange Method 
(CLM), decomposes the task of solving for the unknown decision variable values 
of the problem and the values of the Lagrange multipliers by two independent 
procedures. The construction of what has been called Subsidiary Constraint Eq-
uations (SCE) by the authors, which result from a new procedure for indepen-
dent solution for the decision variables is the novelty of the MLM. The arbitrari-
ly large variety of ways of constructing the SCE is noted to be interesting and 
remains an area of further research. 

The seven problems solved in this paper were intended to obtain preliminary 
results to demonstrate the ability of the MLM to find the required optimal solu-
tions just as can be obtained from the CLM. In future works, the authors would 
demonstrate the superior performance of the MLM over the CLM in solving 
convex quadratic equality constrained problems and extend the approach to in-
equality constrained nonlinear convex quadratic problems as well as to convex 
problems not necessarily quadratic. 
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