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Abstract 
In this paper, we characterize lower semi-continuous pseudo-convex functions 

{ }:f X → +∞  on convex subset of real Banach spaces K X⊂  with re-
spect to the pseudo-monotonicity of its Clarke-Rockafellar Sub-differential. We 
extend the results on the characterizations of non-smooth convex functions 

{ }:f X → +∞  on convex subset of real Banach spaces K X⊂  with 
respect to the monotonicity of its sub-differentials to the lower semi-continuous 
pseudo-convex functions on real Banach spaces. 
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1. Introduction 

Convex optimization, which studies the problem of minimizing convex func-
tions over convex sets, plays important roles in many branches of applied ma-
thematics. The foremost reason is that; it is very suitable to extremum problems. 
For instance, some necessary conditions for the existence of a minimum also 
become sufficient in the in terms of convexity. And convex optimization can be 
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a smooth or a non-smooth convex optimization. Since the concept of convexity 
does not satisfy some mathematical models, various generalizations of convexity 
such as quasi-convexity and pseudo-convexity, which retain some important 
properties of convexity and equally provide a better representation of reality, 
were introduced in the literature to fill these gaps. 

While the quasi-convexity property of a function guarantees the convexity of 
their sublevel sets, the pseudo-convexity property implies that the critical points 
are minimizers [1]. One of the features of convexity of functions is the relation-
ship it has with the monotonicity of some maps. For example, a differentiable 
function is said to be convex if and only if its gradient is a monotone map. In 
non-smooth analysis, the generalized convexity of functions can be equally cha-
racterized in terms of the generalized monotonicity of their related operators 
[2]. 

The concepts of pseudo-convexity, traced to [3], within his research on ana-
lytical functions and independently introduced into the field of optimization by 
[4], have many applications in mathematical programming and economic prob-
lems [5] [6] [7]. And pseudo-monotonicity, introduced by [8] as a generalization 
of monotone operators, has been used to describe a property of consumer’s de-
mand correspondence [9]. Although the simplest class of pseudo-monotone op-
erators consists of gradients of pseudo-convex functions, there are some mono-
tone operators that are not sub-differentials [9]. And generalized monotonicity 
of maps is frequently used in complementarity problems, equilibrium problems 
and variational inequalities [10]. 

2. Preliminaries 

Let X be a real Banach space with norm . , *X  be its topological dual and 
* ,x x  be the duality pairing between x X∈  and * *x X∈ . We denote the 

closed segment [ ] ( ) [ ]{ }, 1 : 0,1x y x yλ λ λ= + − ∈  for ,x y X∈ , and define 
( ],x y , [ ),x y  and ( ),x y  similarly. 

Definition 2.1 [11] Let { }:f X → +∞  be an extended real valued func-
tion, the effective domain is defined by 

( ) ( ){ }dom :f x X f x= ∈ < +∞ . 

Definition 2.2 [12] A function { }:f X → +∞  is said to be lower 
semi-continuous at x X∈  if and only if: λ∀ ∈ , such that ( )f xλ < , 

( )V U x∃ ⊂ : ( )f yλ <  y V∀ ∈ . 
Definition 2.3 [7] [13] A lower semi-continuous function { }:f X → +∞  

is said to be quasi-convex, if for any ,x y X∈  and [ ],z x y∈  we have 

( ) ( ) ( ){ }max ,f z f x f y≤ .                   (1) 

Definition 2.4 [7] [13] [14] A lower semi-continuous function  
{ }:f X → +∞  is said to be strictly quasi-convex, if the inequality (1) is 

strict when x y≠ . 
Definition 2.5 [2] Let *:T X X→  be a multivalued operator with domain 
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( ) ( ){ }:D T x X T x= ∈ ≠ ∅ . T is said to be quasi-monotone if for any ,x y X∈ , 
*x T∈  and ( )*y T y∈ , we have 

* *, 0 , 0.x y x y y x− > ⇒ − ≥
 

Definition 2.6 [2] Let *:T X X→  be a multivalued operator with domain 
( ) ( ){ }:D T x X T x= ∈ ≠ ∅ . T is said to be pseudo-monotone if for any ,x y X∈ , 

*x T∈  and ( )*y T y∈ , we have 
* *, 0 , 0.x y x y y x− ≥ ⇒ − ≥                   (2) 

Definition 2.7 [7] Let *:T X X→  be a multivalued operator with domain 
( ) ( ){ }:D T x X T x= ∈ ≠ ∅ . T is said to be strictly pseudo-monotone if for any 

different two points ,x y X∈ , *x T∈  and ( )*y T y∈ , we have 
* *, 0 , 0.x y x y y x− ≥ ⇒ − >                   (3) 

Definition 2.8 [15] An operator ∂  that associates to any lower semi-continuous 
function { }:f X → +∞  and a point x X∈  a subset ( )f x∂  of *X  is a 
sub-differential if it satisfies the following properties: 

1) ( ) ( ) ( ){ }* * *: , ,f x x X x y x f x f y y X∂ = ∈ − + ≤ ∀ ∈ , whenever f is con-
vex; 

2) ( )0 f x∈∂ , whenever domx f∈  is a local minimum of f; 
3) ( )( ) ( ) ( )f g x f x g x∂ + ⊂ ∂ + ∂ , whenever g is a real a real-valued convex 

continuous function which is ∂ -differentiable at x. 
Where g-differentiable at x means that both ( )g x∂  and ( )( )g x∂ −  are non- 

empty. We say that f is ∂ -differentiable at x when ( )f x∂  is non-empty while 
( )f x∂  are called the sub-gradients of f at x. 
Definition 2.9 [15] The Clarke-Rockafellar generalized directional derivative 

of f at ( )0 domx f∈  in the direction d X∈  is given by 

( ) ( )
( ) ( )

00 0
0

, sup limsup infx d B dx f

f x d f x
f x d

εε
λ

λ
λ

↑
> ′∈→

′+ −
=



,      (4) 

where ( ) { }:B d d X d dε ε′ ′= ∈ − < , 0λ  indicates the fact that 0λ >  
and 0λ → , and 0xx f→  means that both 0x x→  and ( ) ( )0f x f x→ ; 

While, 
Definition 2.10 [15] The Clarke-Rockafellar sub-differential of f at 0x  is de-

fined by 

( ) ( ) ( ){ }* * *
0 0: , , ,f x x X x d f x d d X↑∂ = ∈ ≤ ∀ ∈ ;          (5) 

if ( )0 \ domx X f∈ , then 

( )0f x∂ = ∅ , [7]. 

Definition 2.11 [2] [7] A lower semi-continuous function { }:f X → +∞  
is said to be quasi-convex (with respect to Clarke-Rockerfeller Sub-differentials) 
if for any ,x y X∈ , 

( ) [ ]* *: , 0 ,x f x x y x z x y∃ ∈∂ − > ⇒∀ ∈ , ( ) ( )f z f y≤ .       (6) 

https://doi.org/10.4236/ojop.2023.123007


A. Offia et al. 
 

 

DOI: 10.4236/ojop.2023.123007 102 Open Journal of Optimization 
 

Definition 2.12 [7] [16] A lower semi-continuous function { }:f X → +∞  
is said to be pseudo-convex (with respect to Clarke-Rockerfeller Subdifferen-
tials) if for any ,x y X∈ : 

( ) ( ) ( )* *: , 0x f x x y x f x f y∃ ∈∂ − ≥ ⇒ ≤ .            (7) 

Definition 2.13 [2] [7] [14] A lower semi-continuous function  
{ }:f X → +∞  is said to be strictly pseudo-convex (with respect to  

Clarke-Rockerfeller Subdifferentials) if for any two different points ,x y X∈ : 

( ) ( ) ( )* *: , 0x f x x y x f x f y∃ ∈∂ − ≥ ⇒ < , when x y≠ .      (8) 

Definition 2.14 [7] A lower semi-continuous function { }:f X → +∞  is 
said to be radially continuous if for all ,x y X∈ , f is continuous on [ ],x y . 

Definition 2.15 [7] A function { }:f X → +∞  is said to be radially 
non-constant if for all ,x y X∈ , with x y≠ , constantf ≡/  on [ ],x y . 

Definition 2.16 A sub-differential operator *:f X X∂ →  is said to said to be 
quasi-monotone if for any ,x y X∈ , ( )*x f x∈∂  and ( )*y f y∈∂ , we have 

* *, 0 , 0.x y x y y x− > ⇒ − ≥                   (9) 

Definition 2.17 A sub-differential operator *:f X X∂ →  is said to said to be 
quasi-monotone if for any ,x y X∈ , ( )*x f x∈∂  and ( )*y f y∈∂ , we have 

* *, 0 , 0.x y x y y x− ≥ ⇒ − ≥                  (10) 

Theorem 2.1. (Approximate mean value inequality). Let { }:f X → +∞  
be a Clarke-Rockafellar sub-differentiable lower semi-continuous (l.s.c.) func-
tion on a Banach space X. Let ,a b X∈  with doma f∈  and a b≠ . Let 
ρ ∈  be such that ( )f bρ ≤ . Then, there exist [ ),c a b∈  and C

nx f→  and 
( )*

n nx f x∈∂  such that 
1) *liminf , 0n nn

x c x
→+∞

− ≥ ; 

2) ( )*liminf ,nn
x b a f aρ

→+∞
− ≥ − . 

Proof. [15]. 
Lemma 2.2. Let { }:f X → +∞  be a Clarke-Rockafeller sub-differentiable 

lower semi-continuous (l.s.c.) function on a Banach space X. Let ,a b X∈  with 
( ) ( )f a f b< . Then, there exist [ ),c a b∈ , and two sequences nc c→ , and 

( )*
n nc f c∈∂  with 

* , 0n nc x c− >  for every ( )x c b aλ= + −  with 0λ > . 

Proof. By Theorem 2.1, there exists an [ )0 ,x a b∈  and a sequence C
nx f→  

and ( )*
n nx f x∈∂  verifying 

*liminf , 0n nn
x c x

→+∞
− ≥  and *liminf , 0nn

x b a
→+∞

− > .         (11) 

Putting ( )x c b aλ= + −  with 0λ >  it holds 
* * *, , , 0n n n n nx x x x c x x b aλ− = − + − >             (12) 

for n very large.   
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We consider the relationship between pseudo-convexity and quasi-convexity. 
Theorem 2.3. Let { }:f X → +∞  be a lower semi-continuous (l.s.c.) 

Clarke-Rockafeller subdifferentiable function on a Banach space X. Then, f is 
quasi-convex if and only if f∂  is quasi-monotone. 

Proof. We show that if f is not quasi-convex, then f∂  is not quasi-mono- 
tone. 

Suppose that there exist some , ,x y z  in X with [ ],z x y∈  and  
( ) ( ) ( ){ }max ,f z f x f y> . According to Lemma 2.2 applied with a x=  and 

b z= , there exists a sequence domny f∈ ∂  and ( )*
n ny f y∈∂  such that 

[ ],ny y x z→ ∈ , y z≠  and * , 0n ny y y− > .           (13) 

Let 0 1λ< ≤  be such that ( )z y y yλ= + −  and set ( )n n nz y y yλ= + − , so 
that nz z→ . Since f is lower semi-continuous, we may pick n∈  very large 
with ( ) ( )nf z f y> . Apply Lemma 2.2 again with a y=  and nb z=  to find 
sequences domkx f∈ ∂ , ( )*

k kx f x∈∂  such that 

[ ],k nx x y z→ ∈ , nx z≠  and * , 0k n kx y x− > .          (14) 

In particular, nx y≠  and 

* *, , 0n
n n n n

n

x y
y x y y y y

y y
−

− = − >
−

;              (15) 

hence, * , 0n k ny x y− >  for k sufficiently large. But * , 0n n ky y x− > , showing 
that f∂  is not quasi-monotone. 

Conversely, we suppose that f is quasi-convex and show that f∂  is quasi- 
monotone. Let ( )*x f x∈∂  and ( )*y f y∈∂  with * , 0x y x− > . We need to 
verify that ( ), 0f y x y↑ − ≤ . We fix 0ε >  and ( )0,ω ε∈  such that 

* , 0x v x− >  for all ( )v B yω∈ . 
We fix ( )v B yω∈ . Since ( ), 0f y x y↑ − >  we can find ( )0,ε ε ω′∈ − , 

( )u B xε ′∈  and ( )0,1t∈  such that ( )( ) ( )f u t v u f u+ − > . From the qua-
si-convexity of f we deduce that ( ) ( )f u f v< , whence, 

( )( ) ( )f v u v f vλ+ − ≤  for all ( )0,1λ ∈ , 

so that 

( )
( ) ( ) ( )( ) ( )

inf 0B x y

f v u v f vf v f v
εµ

λλµ
λ λ∈ −

+ − −+ −
≤ ≤  for all ( )0,1λ ∈ . 

Combining the inequalities and for any 0ε >  there exists 0ω >  such that 

( )
( )

( )
( ) ( )

0,1

sup inf 0B x y
v B y

f v f v
ε

ω
λ

µ

λµ
λ

∈

∈ −
∈

+ − 
≤ 

 
, 

which shows that ( ), 0f y x y↑ − ≤ .   

3. Sub-Differential Characterization of Pseudo-Convex  
Functions 

Theorem 3.1. Let { }:f X → +∞  be a lower semi-continuous (l.s.c.) func-
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tion on a Banach space X such that f Clarke-Rockafeller suddifferentiable. Con-
sider the following assertions: 

(i) f  is pseudoconvex. 
(ii) f  is quasiconvex and ( ( )0 f x x∈∂ ⇒  is a global minimum of f). 
Then, (i) implies (ii). And (ii) implies (i) if f  is radially continuous. 
Proof. (i) ⇒  (ii). We want to prove that f  is quasiconvex. Suppose to the con-

trary that for some ,x y X∈ , ( ),z x y∈  we have ( ) ( ) ( ){ }max ,f z f x f y> . 
Since f is lower semicontinuous, we can find some 0ε >  such that  
( ) ( ) ( ){ }max ,f z f x f y′ > , for all ( )z B zε′∈ . Since z cannot be a local nor 

global minimizers, there exist some ( )v B zε∈  such that ( ) ( )f v f z< . From 
Lemma 2.2, there exist [ ),nu u v z→ ∈  and ( )* *

n nu f u∈∂  such that 
* , 0n nu z u− >

. 

But since ( ),z x y∈ , either of the following must hold 
* , 0n nu x u− >

 or 
* , 0n nu y u− >

. 

Therefore, 

( ) ( ) ( ){ }max ,nf u f x f y≤
. 

which is a contradiction. 
(ii) ⇒  (i). Let domx f∈ ∂ , y X∈ , and ( )*x f x∈∂  such that  
* , 0x y x− ≥ . If ( )0 f x∈∂ , then x is a global minimum of f and ( ) ( )f x f y≤  

in particular. Otherwise, ( )0 f x∉∂   , there exist d X∈  such that  
* , 0x d > . We define a sequence { }ny  by 

1 .
2ny y d

n d
 

= +   
   

For every n∈ , the point ny  satisfies 

( )1n ny B y∈ , 

* * * *1, , , , 0.
2n nx y x x y y x y x x d

n d
 

− = − + − ≥ >  
 

 

Using (7), we obtain that, for every n, ( ) ( )nf y f x≥  and by radial continui-
ty of f, ( ) ( )f y f x≥ .   

Theorem 3.2. Let { }:f X → +∞  be a lower semi-continuous (l.s.c.) 
Clarke-Rockafeller sub-differentiable function. Consider the following asser-
tions: 

(i) f  is pseudo-convex. 
(ii) f∂  is pseudo-monotone 
Then, (i) implies (ii). And (ii) implies (i) if f  is radially continuous. 
Proof. (i) ⇒  (ii). Suppose ( )*x f x∈∂  such that * , 0x y x− ≥ . By Theo-

rem 3.1, f  is quasi-convex. By Theorem 2.3, we conclude that f∂  is qua-
si-monotone. Hence, * , 0y y x− ≥ , for all ( )*y f y∈∂ . Suppose to the con-
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trary that for some ( )*y f y∈∂ , we have * , 0y y x− = . From (7), we obtain 
( ) ( )f x f y≥ . 
However, since ( ), 0f x y x↑ − > , there exist 0ε > , such that for some 

nx x→ , 0nλ   and for all ( )y B yε′∈ , we have ( )( ) ( )n n n nf x t y x f x′+ − > . 
By the quasiconvexity of f, it implies that ( ) ( )nf y f x′ >  for every ( )y B yε′∈ . 
In particular, ( ) ( )f y f x>  because f is lower semicontinuous. Thus,  
( ) ( )f y f y′ ≥ . This shows that y is a local minimum and also a global mini-

mum, which is a contradiction since we can have that ( ) ( )nf y f x> . 
(ii) ⇒  (i). Using Theorem, we prove that f  is pseudoconvex. Since f∂  

is pseudomonotone, f∂  is quasimonotone. By Theorem 3.1, f  is quasi- 
convex. On the other hand, if x is not a minimizer of f, there exists y X∈  such 
that ( ) ( )f y f x< . Using Lemma 2.2, we find domu f∈ ∂  and ( )*u f u∈∂  
such that * , 0u x u− >  and by the pseudo-monotonicity of f∂ , 

* , 0x x u− >  for every ( )*x f x∈∂ . Hence, 0 does not ( )f x∂ . Consequently, 
f satisfies condition ( )0 f x∈∂ , which implies that x is a global minimum of f, 
which completes the proof.   

Theorem 3.3. Let { }:f X → +∞  be a lower semi-continuous (l.s.c.) 
Clarke-Rockafeller subdifferentiable function on a Banach space X. Consider the 
following assertions: 

(i) f  is strictly pseudoconvex. 
(ii) f  is strictly quasiconvex and ( ( )0 f x x∈∂ ⇒  is a global minimum of f), 
Then, (i) implies (ii). And (ii) implies (i) if f  is radially continuous. 
Proof. (i) ⇒  (ii). We want to prove that f  is strictly quasiconvex. Let f be 

a strictly pseudo-convex function, then by Theorem 3.1, the function f  is qu-
asiconvex and satisfies the optimality condition 

( )0 f x∈∂ ⇒  (x is a global minimum of f). 

Since f  is quasiconvex, then according to [13], it suffices to prove that f  
is radially non-constant. Assume by contradiction that there exists a closed seg-
ment [ ],x y  with x y≠  where with f  is constant. Let ( ),z x y∈  and apply 
the strict pseudo-convexityproperty to x and z, then 

( ) ( ) ( )( )* *: , 0f z f x z f z z x z= ⇒ ∀ ∈∂ − < . 

Using the same argument for z and y we obtain 

( ) ( ) ( )( )* *: , 0f z f y z f z z y z= ⇒ ∀ ∈∂ − < . 

Since ( )f z∂  is nonempty, it follows that for all ( )*z f z∈∂ , * , 0z x y− <  
and * , 0z x y− > ), which is a contradiction. 

(ii) ⇒  (i). Assume that f satisfies condition ii) and f  is radially continuous. 
Then by Theorem 3.1, f  is pseudoconvex. We prove that f  is pseudo-convex. 
Suppose by contradiction that there exist x y≠  in X and ( )*x f x∈∂  such that 

* , 0x y x− ≥  and ( ) ( )f x f y≥ . 

Then, it follows by pseudo-convexity property that 
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[ ],z x y∀ ∈ , ( ) ( )f z f x= . 

Since f  is quasi-convex, then we have 

[ ],z x y∀ ∈ , ( ) ( ) ( )f z f x f y≥ ≥ . 

So f  is not radially non-constant on X (since f  is constant on [ ],x y ) 
which contradicts the fact f  is strictly quasi-convex. 

Theorem 3.4. Let { }:f X → +∞  be a lower semi-continuous (l.s.c.) 
function such that f  is radially Clarke-Rockafeller differentiable. Consider the 
following assertions: 

(i) f  is strictly pseudo-convex. 
(ii) f∂  is strictly pseudomonotone 
Then, (i) implies (ii). And (ii) implies (i) if f  is radially continuous. 
Proof. (i) ⇒  (ii). Suppose that f  is strictly pseudoconvex. We want to 

prove that f∂  is strictly pseudomonotone. Suppose to the contrary that there 
exist two distinct points ,x y X∈ , ( )*x f x∈∂  and ( )*y f y∈∂  such that 

* , 0x y x− ≥  and * , 0y y x− ≤ . 

Since f  is strictly pseudoconvex, we have that 

( ) ( )f x f y<  and ( ) ( )f y f x< . 

Which is a contradiction. Therefore, f∂  is strictly pseudomonotone. 
(ii) ⇒  (i). Suppose that f satisfies condition (ii) and f  is radially conti-

nuous. We want to prove that f  is strictly pseudoconvex. Suppose to the con-
trary that there exist two distinct points ,x y X∈ , and ( )*x f x∈∂  such that 

* , 0x y x− ≥  and ( ) ( )f x f y≥ . 

Then, 
* , 0x z x− ≥  for all [ ],z x y∈ .                (16) 

By theorem 3.2, f  is quasiconvex. Consequently, f must be constant on 
[ ],x y . Contrarily, from (15) and the strict monotonicity of ( )f x∂ , we have 

( )* , 0, ,x z x z x y− > ∀ ∈  and ( )*z f z∀ ∈∂ .           (17) 

Pick ( )0 ,z x y∈  such that ( )0f z∂ ≠ ∅  (such a 0z  exists since f  is a radially 
Clarke-Rockafeller subdifferentiable function). Choose any ( )*

0 0z f z∈∂ . Then, 
*
0 0, 0z z x− > . Therefore, *

0 0, 0z y z− > . Consequently, there exist 0ε >  
such that 

*
0 0, 0z y z′ − >  for all ( )y B yε′∈ . 

By the pseudo-convexity of f, it follows that y is a global minimum of f. Hence, 

0z  is also a global minimum of f. Thus, ( )00 f z∈∂  and this is a contradiction 
with (17). 

4. Conclusion 

We extended the relationships between convex functions and corresponding mo-
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notone maps to pseudo-convexity and the corresponding pseudo-monotonicity of 
their sub-differentiable maps. We characterized the lower semi-continuous Clarke- 
Rockafeller sub-differentiable pseudo-convex functions by the corresponding mo-
notonicity of their Clarke-Rockafeller sub-differentials f∂ , and have shown that if 
a lower semi-continuous Clarke-Rockafeller sub-differentiable function :f X →

{ }+∞  is radially continuous, then f is pseudo-convex if and only if the 
sub-differential map f∂  is pseudo-monotone. 
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