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Abstract 
In this paper, we study the regularization methods to approximate the solu-
tions of the variational inequalities with monotone hemi-continuous operator 
having perturbed operators arbitrary. Detail, we shall study regularization 
methods to approximate solutions of following variational inequalities:   

0 , 0, ,Ax y x z x D− − ≥ ∀ ∈  and ( ) ( )0 , , ,Az y x z f z f x x D− − ≥ − ∀ ∈   
with operator A being monotone hemi-continuous form real Banach reflexive 
X into its dual space X ∗ , but instead of knowing the exact data ( )0 ,y A , we 

only know its approximate data ( ), hy Aδ  satisfying certain specified condi-
tions and D is a nonempty convex closed subset of X; the real function f de-
fined on X is assumed to be lower semi-continuous, convex and is not iden-
tical to infinity. At the same time, we will evaluate the convergence rate of the 
approximate solution. The regularization methods here are different from the 
previous ones. 
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1. Introduction 

In this paper, we study the regularization methods to approximate the solutions 
of the following variational inequalities 

0 , 0, ,Ax y x z x D− − ≥ ∀ ∈                     (1) 

and 

( ) ( )0 , , ,Az y x z f z f x x D− − ≥ − ∀ ∈                (2) 

where A is a hemi-continuous monotone operator form real Banach reflexive X 
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into its dual space X ∗  and D is a nonempty convex closed subset of X and 
,g z  is the value of the linear functional g X ∗∈  at z X∈ , i.e. ( ) ,g z g z= . 

We suppose that (1) or (2) has the exact solutions in D. For the variational 
inequality (2), the real function f defined on X is assumed to be lower semi- 
continuous, convex and is not identical to infinity. 

These variational inequalities are used in the study of nonlinear problems in 
physics and engineering, especially in finding solutions to problems in non- 
linear partial differential equations [1]. 

The problem to approximate solutions of variational inequalities (1) or (2) has 
been posed for a long time, and has been studied by many famous mathemati-
cians in the world, including mathematicians Al’ber Ya. I., Abramov A., Ramm 
A. G., Riyazantseva P., Browder F. E., Liskovets O. A., who have contributed 
many foundational works [2]-[19]. 

In the 1960s, Browder F. E. was the first to study the problem of finding ap-
proximate solutions of (1), (2) and to study the stability of the solutions of these 
problems by a method that he called the monotone operator method [9]. 

After Tikhonov A. N. introduced the variational method, which was later 
called the Tikhonov regularization method to solve the ill-posed problems in 
works [20] [21] [22] [23], Albert Ia. I. was the first to study the stability of the 
solution of variational inequality (1) according to the Tikhonov regularization 
method by adding the conjugate operator [4] [5] [6]. Actually, this idea of 
Browder F. E. has been used in works [9] but has not been prominent in the 
method. 

Liskovevtz O. A. [15] [16] [17] [18], Nguyen Van Kinh [24] [25] [26] [27] [28], 
have achieved many results in this field, especially for variational inequality (1), 
where the noise operator of the exact operator is non-monotone. However, there 
are still many unresolved open issues. This paper will address some of these 
open problems. Detail, we shall study regularization methods to approximate 
solutions of variational inequalities (1) and (2) with operator A being monotone 
hemi-continuous form real Banach reflexive X into its dual space X ∗ , but in-
stead of knowing the exact data ( )0 ,y A , we only know its approximate data 
( ), hy Aδ  satisfying certain specified conditions and D is a nonempty convex 
closed subset of X. 

The paper structure consists of 3 sections: Section 1 the introduction briefly 
summarizes the recent research results and comes up with problems that need to 
be studied; Section 2 presents regularization method for variational inequality (1) 
and Section 3 presents regularization for general variational inequality (2). 

2. Regularization Method to Approximate Variational  
Inequality 

First, we give the definition and some properties of topology on non-empty sub-
sets of a topological space, some properties of the variational inequality with the 
hemi-continuous, monotone operator and dual mapping. 
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Suppose that X is a topology space. We denote ( )S X  as the set of all non- 
empty subsets of X. We will define a topology on ( )S X  as follows: 

Definition 2.1 [29] Topology on the set ( )S X  that has a basis topology, 
which is of the form ( ){ }:M S X M U∈ ⊂ , where U is an arbitrary open set of 
X. This topology is called B-topology on ( )S X . If topology space X is topology 
defined by metric then B-topology is called β-topology. 

The above topological definition can be found in [29]. The following are some 
characteristics of this topology. 

Proposition 2.1 [29] If the sequence of the sets { },M ∈Σσ σ  converges to the 
set M X⊂ , denoted by BM M→σ  and if the sequence of the sets  
{ },m ∈Σσ σ , with m M∅ ≠ ⊂σ σ  and M N X⊂ ⊂  then Bm N→σ . 

Proposition 2.2 [29] If the sequence of the sets { },M ∈Σσ σ  B-converges to 
M X⊂ , M ≠ ∅ , then arbitrary subsequence of this sequence also B-converges 
to the set M. 

It is easy to see that the sequence of sets { },M ∈Σσ σ  B-converges to the set 
M, which means that for any open set U containing M, then for σ  “large 
enough” then M U⊂σ . If X is a metric space, then what has just been said is 
expressed by the following proposition: 

Proposition 2.3 [29] Suppose that X is a metric space. Then we have 

( ), 0,M M M M→ ⇔ →β
σ σβ  

where ( ) ( ) ( ), sup , sup inf ,
y Mx M x M

M M d x M d x y
∈∈ ∈

= =
σ σ

σβ , which is called the deviation 

of the set Mσ  with respect to the set M. 

Proposition 2.4 [29] Suppose that the sequence of sets { },M ∈Σσ σ  in Haus-
dorff topology space X, has the following property: 

Taking arbitrarily x M∈σ σ , we get a sequence of points { },x ∈Σσ σ  in X. 
Any subsequence of this sequence has one of the following properties: 

1) { }x M′ ∩ ≠ ∅ϕ , where { }x ′
ϕ  is the set of limit points of the sequence 

{ }xϕ . 
2) { }x M′∅ ≠ ⊂ϕ , where M is a some subset of X. 
Then, BM M→σ . 
Conversely, if M is a compact set and BM M→σ , then both properties (1) 

and (2) are true if we replace the set M by the set M . 
The operator ( ):A D A X X ∗⊂ →  is called monotone if it satisfies the fol-

lowing condition 

( ), 0, , .Ax Ay x y x y D A− − ≥ ∀ ∈                  (3) 

The operator A is called strictly monotone if (3) with an equals sign occurs if 
and only if x y= . 

The operator A is called hemi-continuous at ( )0x D A∈  if for any x such 
that: 

( ) ( ] ( ) { } ( ]
( ) ( )

0

0 0

, 0, , 0 and , 0, , 0

, as .
n n n

n

x tx D A t x t t t

A x t x A x n

+ ∈ ∀ ∈ = > ∀ ∈ →

⇒ + →∞

α α α α
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A is called hemi-continuous on ( )D A  if it is continuous at every point 
( )x D A∈ . 

An extension of Minty’s Lemma is that the following variational inequalities 
are equivalent: 

Lemma 2.1 [29] If ( ):A D A X X ∗⊂ →  is a monotone and hemi-continuous, 
then the following variational inequalities are equivalent, i.e., they have the same 
of the solution sets: 

, , ,Ax y x z x z x D− − ≥ − ∀ ∈ε                    (4) 

, , ,Az y x z x z x D− − ≥ − ∀ ∈ε                    (5) 

where 0>ε  and D is convex closed subset of ( )D A . 
Lemma 2.2 Let ( )g t  be a non-negative real, continuous, and  

( ):B D B X X ∗⊂ →  be a hemi-continuous at ( )z D B∈ , ( )D B  be a convex 
subset of X and 0>ε . If 

( ) ( ), ,Bx y x z g x x z x D B− − ≥ − ∀ ∈ε               (6) 

then 

( ) ( ), ,Bz y x z g z x z x D B− − ≥ − ∀ ∈ε               (7) 

Proof. Suppose that ( )z D B∈  satisfies (6). Let ( )D B∈ω , then  
( ) ( )1m tz t D B= + − ∈ω , with 0 1t< < , because ( )D B  is convex and  
( ),z D B∈ω . 

By replacing x in the variational inequality (6) by m, we obtain 

( ) ( ), ,Bm y m z g m m z D B− − ≥ − ∀ ∈ε ω  

or 

( ) ( ) ( ) ( )1 , 1 , , .t Bm y z t g m m z z D B− − − ≥ − − ∀ ∈ω ε ω  

Therefore 

( )( ) ( ), 1 , ,Bm y z g tz t z z D B− − ≥ + − − ∀ ∈ω ε ω ω ω        (8) 

Since ( )g t  is a continuous function, then ( )( ) ( )1g tz t g z+ − →ω  as  
1t →  and since B is hemi-continuous at z, then the left hand side of (8) con-

verges to ,Bz y z− −ω  as 1t → . Therefore, we have 

( ) ( ), , .Bz y x z g z x z x D B− − ≥ − ∀ ∈ε  

Lemma is proved. 
The mapping :U X X ∗→  is called dual mapping of the norm space X if it 

satisfies the following conditions 
2, , , .Ux x Ux x Ux x x x X= = = ∀ ∈  

This concept was first studied by Browder F. E. [8] and Vaiberg M. M. [30]. 
The norm space X is called strictly convex if it has the following property 

{ }, , , is linearly dependent.x y x y x y X x y+ = + ∈ ⇒  
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Next, we state some properties of duality mapping, which are used in the fol-
lowing sections. 

Proposition 2.5 [30] The dual mapping :U X X ∗→  is single if dual space 
X ∗  is strictly convex. 

The mapping :U X X ∗→  is called coercive if 

( ), , ,Ux x c x x x X≥ ∀ ∈  

where ( )c t  is a non-negative real function and ( )c t →+∞  as t →+∞ . 
Proposition 2.6 [30] The dual mapping :U X X ∗→  is coercive, monotone. 

Moreover, if X is a strictly convex space then U is strictly monotone. 
Proposition 2.7 [30] If X is a reflexive real space and its dual space is strictly 

convex then the dual mapping :U X X ∗→  is hemi-continuous. 
From the definition of the dual mapping, it follows that 

( )2
, , , .Ux Uy x y x y x y X− − ≥ − ∀ ∈  

Now we begin to present the regularization method to approximate solution 
of the variational inequality (1). 

In the section, we assume that is a real reflective Banach space X with the 
conjugate space X ∗  being strictly convex. Then, the dual mapping :U X X ∗→  
is single, coercive, monotone and hemi-continuous (Proposition 2.5, Proposition 
2.6, Proposition 2.7). 

As we already know the problem of finding the solution of the variational in-
equalities (1) is generally an ill-posed problem. Therefore, it is necessary to study 
some variational methods solving such problems to ensure that the solutions are 
stable, i.e. the solutions depend continuously on small changes to the exact data. 
We will present the regularization method with small parameter to approximate 
the variational inequality (1). 

Suppose with exact data ( )0 ,y A , the solution set of the variational inequality 
(1) is 0Z ≠ ∅ . Since A is a hemi-continuous monotone operator from real Ba-
nach reflexive X into its dual space X ∗  and D is a nonempty convex closed 
subset of X, then 0Z  is a convex, closed set [30]. Instead of knowing the exact 
data ( )0 ,y A , we only know its approximate data ( ), hy Aδ  satisfying the fol-
lowing conditions 

0 ,y y− ≤δ δ                          (9) 

and 

( ) ( ), ,h hA x Ax hg x x D A− ≤ ∀ ∈                (10) 

where the operator ( ):h hA D A X X ∗⊂ → , ( ) ( )hD A D A D X= = ⊂ , hA  is an 
arbitrary operator, not necessarily monotone or hemi-continuous, and the real 
function ( )g t  is non-negative, continuous and increasing no faster than some 
linear function, i.e., there exist 0, 0M N≥ ≥  such that 

( ) , 0.g t Mt N t≤ + ∀ ≥                    (11) 

In this work, we construct an approximate solution of (1), according to the 
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regularization method, is the solutions of the variational inequality 

( ), , ,hA x Ux y x z g x x z x D+ − − ≥ − − ∀ ∈δα ε          (12) 

where 0≥ε  is a small parameter. 
Remark 2.1 
1) If the operator hA  is non-monotone, non-hemicontinuous then in [17], 

Liskovets O. A. studied the Tikhonov regularization solution of (1) which is the 
solution of (12) with ( ) 1g t ≡ , i.e., the solution of the variational inequality: 

, , .hA x Ux y x z x z x D+ − − ≥ − − ∀ ∈δα ε              (13) 

2) If the operator hA  is non-monotone, non-hemicontinuous, then in [18], 
Liskovets O. A. studied the approximate solution of (1) which is the solution of 
the variational inequality: 

( ), , .hA z Uz y x z g z x z x D+ − − ≥ − − ∀ ∈δα ε          (14) 

Since the operator hA  is arbitrary, the two sets of solutions for (12) and (14) 
are different, so the author’s and [18]’s methods are different. The following 
example demonstrates it: 

Let X =   be real normal space, therefore, its conjugate space also be   
and its dual mapping U be identity mapping. Let [ ]1,1D = − , 0 0y = . 

Suppose that the exact operator :A D → , is defined by 

1, 1 0
1, 0 1
x x

Ax
x

+ − ≤ <
=  ≤ ≤

 

Clearly the operator A is monotone and hemi-continuous on D. 
The approximate operator hA  of the operator A is defined by 

1, 1 0
1 , 0
1, 0 1

h

x x
A x h x

x

+ − ≤ <
= + =
 < ≤

 

Therefore, the operator hA  is non-monotone, non-hemicontinuous on D 
and 

, .hA x Ax h x D− ≤ ∀ ∈  

Let ( ) 1,0 1, 1g t h≡ < − < <ε ε . Therefore, the variational inequality (12) has 
the form 

( ) [ ], 0 0 , 1,1 .h hA x x x A x x x x x D+ − = + ≥ − − ∀ ∈ = −α α ε  

Consequently, 0z =  is the solution of the variational inequality (12). 
On the other hand, the following inequality is not true 

( ) [ ]1 , 1,1 .h x x x+ ≥ − ∀ ∈ −ε  

So 0z =  is not the solution of the variational inequality (14). 
Therefore, the solution sets of (12) and (14) are different. 
In the following, we study the existence of an approximate solution and the 

stability of the solution of the regualaiation method (12). 
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We denote the solution set of (12) as Z∆
α , where ( ), ,h∆ = ε δ . The following 

theorem asserts the existence of a solution of (12), that is, the existence of the 
Tikhonov regularization operator. 

Theorem 2.1 If h≥ε , then Z∆ ≠ ∅α . 
Proof. We consider the following variational inequality 

, 0, .Ax Ux y x z x D+ − − ≥ ∀ ∈δα                  (15) 

By assumption, the operators A and U are single, monotone, hemicontinuous, 
so A U+α  is also single, monotone, hemicontinuous. 

+ If D is non-bounded, then the operator A U+α  is coercive on D. Indeed, 
we have 

0 0 0 0 0 0

0 0 0

2
0 0 0

0 0
0

, , , ,

,,

.

Ax Ux x x Ax Ax x x Ax x x Ux x x
x x x x

Ax x x Ux xUx x
x x x

Ax x x x xx
x x x

Ax x x
x x

x

α
α

α α

α α

α α

+ − − − − −
= + +

−
≥ − + −

−
≥ − + −

−
= − + −  

Therefore, if ,x D x∈ →+∞  then 0,Ax Ux x x
x

+ −
→ +∞

α
 

So, the operator is coercive on D. 
Since A U+α  is monotone, hemi-continuous, coercive, according to [8] [31] 

the variational inequality (15) has a solution in D. 
+ If D is bounded, according to [32], the variational inequality (15) has a solu-

tion in D. 
We will show that the solutions of (15) are all solutions of (12). Indeed, taking 

z D∈  as an arbitrary solution of (15), we have 

, ,

, , .
h

h

Ax Ux y x z A x Ax Ax Ux y x z

A x Ax x z Ax Ux y x z

+ − − = − + + − −

= − − + + − −
δ δ

δ

α α

α  

Since z D∈  is the solution (15) then 

, 0, .Ax Ux y x z x D+ − − ≥ ∀ ∈δα  

Consequently, 

( )
( ) ( )

, ,

, .

h

h

Ax Ux y x z A x Ax x z

A x Ax x z

hg x x z

g x x z h

+ − − ≥ − −

≥ − − −

≥ − −

≥ − − >

δα

ε ε  

So, z Z∆∈ α . 
Theorem is proved. 
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Theorem 2.2 If h≥ε  and 1 1hM k+
< <

ε
α

, 2k< < +∞
δ
α

, where 1 2,k k  are  

constants, Z∆
α  is the set of the solution of (12) then the sequence of the sets 

Z∆
α  is uniformly bounded in X. 
Proof. By assumption h≥ε  and by Theorem 2.1. then Z∆ ≠ ∅α . Let z Z∆∈ α , 

we have 

( ), ,hA x Uz y x z g x x z x D+ − − ≥ − − ∀ ∈δα ε  

or 

( ), , ,hA x Ax x z Ax Ux y x z g x x z x D− − + + − − ≥ − − ∀ ∈δα ε  

( ), , ,hAx Ux y x z A x Ax x z g x x z x D⇒ + − − ≥ − − − − − ∀ ∈δα ε  

Consequently 

( ) ( ), , .Ax Ux y x z h g x x z x D+ − − ≥ − + − ∀ ∈δα ε         (16) 

Since the operator is monotone, hemi-continuous and Lemma 2.2, from (16) 
it follows that 

( ) ( ), ,Az Uz y x z h g z x z x D+ − − ≥ − + − ∀ ∈δα ε  

or 

( ) ( )0 0, , , .Az y x z y y x z h g z x z Uz z x− − + − − + + − ≥ −δ ε α  

So 

( )0 , ( )

, , .

Az y x z h g z x z

Uz z x z z x x D

 − − + + + − 
≥ − = − ∀ ∈

δ ε

α α             (17) 

In (17) we take 0 0x x Z D= ∈ ⊂ , with 0x  is the solution of (1), we have 

0 0, 0, .Az y x z z Z∆− − ≤ ∀ ∈ α  

Consequently 

( ) ( ) 2
0 0 , .h g z x z z x z z Z∆ + + − ≥ − ∀ ∈ 

αδ ε α α       (18) 

Since ( ) , 0g t Mt N t≤ + ∀ ≥ , then from (18) it follows that 

2
0 0

0

1

0, .

h h hM z M x N x z

hN x z Z∆

+ + +   − + + +      
+

+ ≥ ∀ ∈ α

ε δ ε ε
α α α α
ε

α
      (19) 

By assumption 1 0hM +
− <

ε
α

, 2k< < +∞
δ
α

, and (19) is a quadratic inequa-

lity in terms of z , then the set of z  in (19) is bounded. Since 1 2,k k  are  

constants which do not depend on , , ,h ε δ α , then the sequence of the sets Z∆
α  

is uniformly bounded, i.e., there exists a constant k which do not depend on 
, , ,h ε δ α  such that 

( ), , , , , .z k z Z h∆≤ ∀ ∈ ∀∆ = ∀α ε δ α  

Theorem is proved. 
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Remark 2.2 

1) If h + +ε δ
α

 is uniformly bounded then the sequence of sets Z∆
α , with 

Z∆
α  being the set of the solutions of (13), is uniformly bounded [18]. 

2) The conditions for the sequence of sets Z∆
α , with Z∆

α  being the set of the 
solutions of (14), is uniformly bounded , which is the same as theorem above 
[17]. 

3) Instead of regularization for the solution of the variational inequality (1), 
we regulate for the solution of the equation 0Ax y= , where A is given exactly 
and yδ  is an approximation of 0y  satisfying (9), in [3] [4] the condition is 
uniformly bounded the sequence of solution sets of (13) with hA  replaced by A,  

is k<
δ
α

, with k constant. 

The following theorems talk about the stability of the solution of the varia-
tional inequality (1) according to the Tikhonov regularization method. 

Theorem 2.3 With the same assumptions as in Theorem 2.2, the sequence of 
the sets Z∆

α , B-weakly converges to exactly solution set 0Z  of the variational 
inequality (1) as 0→α . 

Proof. Let arbitrary z Z∆ ∆∈α α , from Theorem 2.2 it follows that the sequence 

{ }z∆
α  is uniformly bounded. Since X is a reflexive space and { }z X∆ ⊂α , there 

exists a subsequence { }z∆
β  of the sequence such that it weakly converges to 

z D∗ ∈  (since z D∆ ∈
β  and D is weakly closed). We shall denote z z D∆ ∗ ∈

β
 . 

Since z∆
β  is the solution of (12), we have 

( ), , .hA x Ux y x z g x x z x D∆ ∆+ − − ≥ − − ∀ ∈β β
δα ε          (20) 

The argument is the same as in the proof of Theorem 2.2, using Lemma 2.2, 
from (20) it follows that 

( ) ( ), , .Az Uz y x z h g z x z x D∆ ∆ ∆ ∆ ∆+ − − ≥ − + − ∀ ∈β β β β β
δβ ε      (21) 

Since the operator A U+ β  is monotone, from (21) it follows that 

( ) ( ), , .Ax Ux y x z h g z x z x D∆ ∆ ∆+ − − ≥ − + − ∀ ∈β β β
δβ ε       (22) 

Since the function ( )g t  is continuous and the sequence { }z∆
β  is bounded, 

the sequence { }g z∆
β  is bounded. Therefore, in (22) taking 0→β , therefore, 

0→δ , we have 

0 , 0, .Ax y x z x D∗− − ≥ ∈  

Consequently, 0z Z∗ ∈ . 
From this, according to Proposition 2.4, it follows that the sequence of the sets 

{ }Z∆
α  B-weakly converges to exactly solution set 0Z  of the variational inequa-

lity (1) as 0→α . 
Theorem is proved. 
We denote 

{ } { }
0 0

: arg min : min .
z Z z Z

Z z z z u∗ ∈ ∈
= = =  
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Since X is a reflexive real Banach space and 0Z  is a closed convex subset in X, 
then Z∗ ≠ ∅ . 

Theorem 2.4 The sequence of the sets { }Z∆
α  B-weakly converges to Z∗  as 

0→α , 0h + +
→

ε δ
α

. Moreover, let arbitrary z Z∆ ∆∈α α  and z Z∗ ∗∈  then 

, as 0, 0.hz z∆ ∗
+ +

→ → →α ε δα
α

 

Proof. + We first prove z z∆ ∗
α
  as 0→α , 0h + +

→
ε δ
α

. 

Since 0→α , 0h + +
→

ε δ
α

, then we take , h + +ε δα
α

 is small enough such 

that 

1 2, 1,hh M k k+
≥ < < < < +∞

ε δε
α α

               (23) 

Therefore, let arbitrary z Z∆ ∆∈α α , then the sequence { }z∆
α  is uniformly 

bounded (Theorem 2.2). Since X is a reflexive space and { }z X∆ ⊂α , there exists 
a subsequence { }z∆

β  of the sequence such that z z D∆ ∗ ∈
β
  (since z D∆ ∈

β   

and D is weakly closed) as 0→β , 0h + +
→

ε δ
β

. The argument is the same as 

in the proof of Theorem 2.3, we have z Z∗ ∗∈ . 

Since z∆
β  is a solution of (12), we have 

( ), , .hA x Ux y x z g x x z x D∆ ∆+ − − ≥ − − ∀ ∈β β
δβ ε  

From the above inequalities, it follows that 

( ) ( ), , .Ax Ux y x z h g x x z x D∆ ∆+ − − ≥ − + − ∀ ∈β β
δβ ε  

From the above inequality, according to Lemma 2.2, it follows that 

( ) ( ), , .Az Uz y x z h g z x z x D∆ ∆ ∆ ∆ ∆+ − − ≥ − + − ∀ ∈β β β β β
δβ ε      (24) 

Since the operator A U+ β  is monotone, from (24) it follows that 

( ) ( ), , .Ax Ux y x z h g z x z x D∆ ∆ ∆+ − − ≥ − + − ∀ ∈β β β
δβ ε  

or 

( ) ( )0 0, ,

, , .

Ax y x z y y x z h g z x z

Ux z x D

∆ ∆ ∆ ∆

∆

− − + − − + + −

≥ ∀ ∈

β β β β
δ

β

ε

β     (25) 

In (25), taking 0x Z D∈ ⊂ , we have 

0 , 0Ax y x z∆− − ≤β  

Hence, from (25) it follows that 

( ) ( ) 0, , .x z h g z x z Ux z x Z∆ ∆ ∆ ∆− + + − ≥ ∀ ∈β β β βδ ε β       (26) 

Since sequence { }z∆
β  is bounded and ( )g t  is continuous, in (26) taking 

0→β , 0h + +
→

ε δ
β

, we obtain 
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0, 0, .Ux z x x Z∗ − ≤ ∈                      (27) 

From (27), according to Lemma of Minty, it follows that 

0, 0, .Uz z x x Z∗ ∗ − ≤ ∈                     (28) 

Due to the property of the dual mapping U, from (28) it follows that 
2

0, , .z Uz x z x x Z∗ ∗ ∗≤ ≤ ∀ ∈  

Hence 

0, .z x x Z∗ ≤ ∀ ∈  

Consequently, 
.z Z∗ ∗∈  

Therefore, the sequence of sets { }Z∆
α  B- weakly converges to Z∗  as 0→α , 

0h + +
→

ε δ
α

. 

+ Next, we prove z z∆ ∗→α , as 0→α , 0h + +
→

ε δ
α

. 

Since the operator A is monotone, from (24) it follows that 

( ) ( ), , .Az Uz y x z h g z x z x D∆ ∆ ∆ ∆ ∆+ − − ≥ − + − ∀ ∈β β β β β
δβ ε  

The argument is the same as in the above proof and from the above inequality, 
we have 

( ) ( ) 0, , ,x z h g z x z Uz z x x Z∆ ∆ ∆ ∆ ∆− + + − ≥ − ∀ ∈β β β β βδ ε β  

or 

( ) 0, , .hx z g z x z Uz z x x Z∆ ∆ ∆ ∆ ∆
+

− + − ≥ − ∀ ∈β β β β βδ ε
β β

      (29) 

In (29), replacing x by z∗ , we have 

( ), .hUz z z z z g z z z∆ ∆ ∗ ∗ ∆ ∆ ∗ ∆
+

− ≤ − + −β β β β βδ ε
β β

          (30) 

According to the property of the dual mapping U, from (30) it follows that 

( )2
, , , .z z Uz Uz z z Uz z z Uz z z∗ ∆ ∗ ∆ ∗ ∆ ∗ ∗ ∆ ∆ ∗ ∆− ≤ − − = − + −β β β β β β  

( ) ( )2
, hz z Uz z z z z g z z z∗ ∆ ∗ ∗ ∆ ∗ ∆ ∆ ∗ ∆

+
− ≤ − + − + −β β β β βδ ε

β β
   (31) 

In (31), taking 0→β , 0h + +
→

ε δ
β

, we obtain .z z∆ ∗→β  

The above happens for every subsequence { }z∆
β  of the sequence z∆

α , so 

the sequence itself also converges to z∗  as 0→α , 0h + +
→

ε δ
α

. 

Theorem is proved. 

Corollary 2.1 If X is a E-space [33], then { }Z∆
α  B-converges to Z∗  as  

0→α , 0h + +
→

ε δ
α

. 
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Proof. It follows from Theorem 2.4. 
Corollary 2.2 Suppose that X is a E-space and the set Z∗  has only one ele-

ment (this happens, for example, A is a stricly monotone operator and X is a 
strictly convex space). Therefore, if z∆

α  arbitrarily in Z∆
α , then z z∆ ∗→α , as  

0→α , 0h + +
→

ε δ
α

. 

Proof. It follows from Theorem 2.4. 
If we don’t know if (1) has a solution before, then the following theorem tells 

us that. 
Theorem 2.5 The necessary and sufficient condition for the variational in-

equality (1) to have a solution is that the sequence of sets { }Z∆
α  B-weakly  

converges to some unique bounded subset of X as 0→α , 0h + +
→

ε δ
α

. 

Proof. Suppose that the sequence of sets { }Z∆
α  B-weakly converges to 

bounded subset Z X⊂  as 0→α , 0h + +
→

ε δ
α

. Since X is a reflexive  

Banach space and by Proposition 2.1, without loss of generality, we can assume 
that Z is a weakly compact set. 

Let arbitrary z Z∆ ∆∈α α , then there exists the subsequence { }z∆
β  of the se-

quence such that z z D Z∆ ∗ ∈ ∩β
  as 0→α , 0h + +

→
ε δ
α

 (by Proposition  

2.4). The argument is the same as in the proof of Theorem 2.3, it follows that sa-
tisfies 

0 , 0, .Ax y x z x D∗− − ≥ ∀ ∈  

Hence, z∗  is a solution of (1). 
Conversely, if 0Z ≠ ∅ , then from Theorem 2.4, it follows that the sequence of 

sets { }Z∆
α  B- weakly converges to bounded subset as 0, 0h + +

→ →
ε δα
α

. 

Theorem is proved. 
We now present an example where the above regularization method can be 

applied. This example is slightly modified in [18] [30]. 
As usual, the notation [ ]0,1pL , 1 2p< ≤ , is the normed space of real func-

tions p-integrable in the Lebesgue sense on the interval [0,1]. As we all know, 
[ ]0,1pL  is a reflecxive Banach space, and its conjugate space is [ ]0,1qL , with  

1 1 1
p q
+ = , [ ]0,1qL  is strictly convex. 

Let ( ),k s t  be a non-negative real function, continuous on the variable ,s t  
on the unit square [ ] [ ]0,1 0,1×  and ( ),s tρ  is also a definite and continuous 
real function on the unit square, without decreasing according to the variable t 
and satisfies the condition 

( ) ( ) [ ]1, , 0,1 ,ps t a s b t t−≤ + ∀ ∈ρ  

where ( )a s  is a continuous, non-negative real function on [ ]0,1 , and b is a 
positive constant. 
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The operator A is defined as: 

( ) ( )( )1

0
, , d .Ax k s t s x s s= ∫ ρ                   (32) 

According to [30], this operator acts from [ ]0,1pL  to [ ]0,1qL , with the do-
main 

( ) ( ) [ ] ( ) [ ]{ }0,1 : 0 1, a.e. on 0,1pD A x s L x s= ∈ ≤ ≤  

Operator A is monotone. Indeed, let ( ) ( ) ( ),x t y t D A∈ , we have 

( ) ( )( ) ( ) ( )( ) ( ) ( )

( ) ( )( ) ( )( ) ( ) ( )

1 1

0 0

1 1

0 0

,

( , , , , d d

, , , d d .

Ax Ay x y

k s t s x s k s t s y s s x t y t t

k s t s x s s y s x t y t s t

− −

   = − −   

   = − −  

∫ ∫

∫ ∫

ρ ρ

ρ ρ  

Since the function ( )( ,k s t  is not negative and ( ),s tρ  is not decrease re-
spect to the variable t, the right hand side of the above inequality is non-negative. 
So, 

( ), 0, , .Ax Ay x y x y D A− − ≥ ∀ ∈  

According to [30] the operator hemi-continuous. 
The perturbed operator hA  of A is defined as follows 

( ) ( )( )1

0
, , d ,h h hA x k s t s x s s= ∫ ρ                   (33) 

where ( ),hk s t  is a measurable real function on the unit square as follows 

( ) ( ) ( ) [ ] [ ], , , , 0,1 0,1 ,hk s t k s t h s t− ≤ ∀ ∈ ×             (34) 

and ( ),h s tρ  is also a measurable real function on the unit square as follows 

( ) ( ) ( ) ( ) [ ] [ ]1, , , , 0,1 0,1 ,p
h s t s t h c s d t s t− − ≤ + ∀ ∈ × ρ ρ       (35) 

with ( )c s  is a non negative real function in [ ]0,1qL . 
According to [30], from (34), (35) it follows that hA  acts from [ ]0,1pL  to 
[ ]0,1qL , with the domain ( )D A . 
Clearly, in general, hA  is not monotone and not continuous. Moreover, after 

calculating and estimating, we have 

[ ] [ ] ( )1
0 0 0 00,1 ,

p

p
h LA x Ax h b hd k d x A h k C−− ≤ + + + + +        (36) 

where 

( )( ) ( )( ) ( )
1 11 1

0 0 00 0 0 , 1
d , d , max , ,0 1.

q qq q

s t
A a s s C c s s k k s t h

≤ ≤
= = = < <∫ ∫  

Since 1 2p< ≤ , then 0 1 1p< − ≤ . 
By using the inequality 

[ ]1 , 0,1 ,0 1,t t t≤ + ∀ ∈ < <α α α  

we have an estimate of the function g as follows: 

( ) ,g t Mt N≤ +  
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where ( ) ( ) ( )0 0 0 01g t b d dk t A k C= + + + + +α , 0M b d dk= + +  and  
( )0 0 0 01N b d dk A k C= + + + + + . 

We have g is continuous and 

( ) , 0.g t Mt N t≤ + ∀ ≥  

Therefore, we can apply the above regularization method to find the approx-
imate solution of the variational inequality (1) with the operator A is given by 
(32) and its perturbed operator hA  is given by (33). 

3. Regularizer of General Variational Inequality 
3.1. Regularization Method Solving the General Variational  

Inequality-Strong Stability 

In this subsection, we consider X to be a real reflexive space and satisfies the fol-
lowing conditions: 

1) There exists a mapping U from X to the conjugate space X ∗ , which maps 
the bounded subsets of X to the bounded subset of X ∗ ; 

2) For every fixed 1x  that belongs to X, then 1,Ux x x
x
−

→ +∞ , as  

x →+∞  (this condition is often called U as satisfying the coercive condition); 
3) For every bounded sequence { }nx X⊂  and x X∈  such that: 

, 0, as , as .n n nUx Ux x x n x x n− − → →∞⇒ → →∞  

Remark 3.1 If X is a uniformly convex space and the conjugate space X ∗  is a 
strictly convex space, then the dual mapping :U X X ∗→  satisfies the above 
conditions [30]. 

We consider the following variational inequality 

( ) ( )0 , , ,Az y x z f z f x x D− − ≥ − ∀ ⊂              (37) 

where A is a monotone, hemi-continuous, acting from X into X ∗ , with domain 
( )D A X⊂ , ( ]: ,f X → −∞ +∞ , f ≠ +∞ , is lower semi-continuous and D is a 

convex closed subset of ( )D A . 
As we know the solution of (37) is z D∈  which satisfies (37). The class of 

problems of the form (37) is often called the general variational inequalities. This 
class of problems contains special cases: the first kind operator equations 
Ax y= , where A is a monotonous operator; variational inequality problems on 

convex sets with monotone operators on convex sets. 
If 0f ≡  then we have studied in the Section 2. 
The existence of solutions of (37) has been studied by Browder F. E. and many 

other mathematicians in the world, some typical works can be mentioned as [10] 
[11] [34]. 

For the first time, the author studies the approximate solution of the varia-
tional inequality (37) by the Tikhonov regularization method [24] [25] [26] [27] 
[28], as follows: 

Assume that for exact data ( )0 ,y A  the exact solution set of (37) is 0Z ≠ ∅ . 
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In fact, instead of knowing this exact data, we only know its approximate data 
( ), hy Aδ  that satisfies the conditions 

0y y− ≤δ δ                           (38) 

and 

( ) ( ),h hA x Ax h x D A D A− ≤ ∀ ∈ =                  (39) 

where ( ):h hA D A X X ∗⊂ → , hA  is not necessarily a monotone operator or 
hemi-continuous. 

The author has studied the approximate solution of (37) with noisy data 
( ), hy Aδ  according to Tikhonov regularization method with small parameter, 
which is the solutions of the following variational inequality: 

( ) ( ), , .hA z Uz y x z f z f x x z x D+ − − ≥ − − − ∀ ∈δα ε         (40) 

The solutions of (40) are the elements z D∈  that satisfy (40). Let’s also de-
note the solution set of (40) is Z∆

α , with ( ), ,h∆ = ε δ . 
The following lemma is necessary for proving the existence of a solution of 

(5.2). 
Lemma 3.1 [12] Suppose T is a operator with defined on the convex sub-

set ( )D T  of X into X ∗ , hemi-continuous on ( )D T  and f is a below semi- 
continuous function from X into ( ],−∞ +∞  with f is not identical to infinity. If 
z is a solution of the variational inequality 

( ) ( ) ( ), , ,Tx x z f z f x x D T− − ≥ − ∀ ∈ω  

then it is also a solution of the variational inequality 

( ) ( ) ( ), , .Tz x z f z f x x D T− − ≥ − ∀ ∈ω  

Theorem 3.1 If h≥ε , then Z∆ ≠ ∅α . 
Proof. We consider the following variational inequality 

( ) ( ), , .hA z Uz y x z f z f x x D+ − − ≥ − ∀ ∈δα            (41) 

We will show that the variational inequality (41) has solutions and that these 
solutions are also solutions of the variational inequality (37). 

From f ≠ +∞  and the property (2) of the operator U it follows that there 
exists some non-negative real ( )tγ  with ( )t →+∞γ , as t →+∞  such that 

( )1, , .Ux x x x x x X− ≥ ∀ ∈γ                  (42) 

Since f is a below semi-continuous, convex function, there exist a constant 
0k >  such that 

( ) ( )0 , , 1.f x k x f x X x≥ − + ∀ ∈ >               (43) 

Indeed, suppose that (43) is not true, therefore there exists some sequence 
{ }nx X⊂ , with 1,nx n> ∀  and nx →+∞ , as n →∞ , such that 

( ) ( )0 , .n nf x n x f n≤ − + ∀  

Consequently 
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( ) ( )1 1 0 ,n
n n

f x f n n
x x

− ≤ − ∀  

or 

( ) ( ) ( )1 11 0 0 , .n
n n

f x f n f n
x x

 
+ − ≤ − + ∀  
 

           (44) 

From f is a convex function and (44), it follows that 

( )0 .n

n

xf n f
x

 
≤ − +  

 
                    (45) 

The inequality (45) is contract with the lower semi-continuous property of f 
which is mapping any bounded subset of X to bounded set. 

Using the monotony of the operator A, we have 

1 1 1 1 1 1 1

1 1

, , , ,

,

Ax x x Ax Ax x x Ax x x Ax x x

Ax x x x X

− = − − + − ≥ −

≥ − − ∀ ∈
    (46) 

From (41), (43) and (46), it follows that 

( ) ( ) ( )1 1 1 1, 0 .Ax Ux x x f x x Ax k x Ax x f + − + ≥ − − − + α γ   (47) 

From (47), it follows that 

1,
, as .

Ax Ux x x
x

x
+ −

→ +∞ →∞
α

              (48) 

+ If D is not bounded, from the monotone, hemi-continuous of the operator 
A U+α , (48), according to [31] it follows that the variational inequality (41) has 

the solutions belong to D. 
+ If D is bounded, according to [32], it follows that the variational inequality 

(41) has the solutions belong to D. 
Let z be arbitrary solution of (41), we have 

( ) ( )
( ) ( )

, , ,

, .

h h

h

A z Uz y x z A z Az x z Az Uz y x z

A z Az x z f z f x

x z f z f x x D

+ − − = − − + + − −

≥ − − − + −

≥ − − + − ∀ ∈

δ δα α

ε

   (49) 

So, z is a solution of the variational inequality (40), i.e., Z∆ ≠ ∅α . 
In case D is an unbounded set, then the following theorem states that the se-

quence of sets Z∆
α  is uniformly bounded. 

Theorem 3.2 If h≥ε  and h k+ +
<

ε δ
α

, k is a constant, then the sequence 

of the sets Z∆
α  is uniformly bounded. 

Proof. Since h≥ε , then Z∆ ≠ ∅α  (Theorem 3.1). Let z Z∆ ∆∈α α , then we have 

( ) ( ), , .hA z Uz y x z f z f x x z x D∆ ∆ ∆ ∆ ∆+ − − ≥ − − − ∀ ∈α α α α α
δα ε  

Consequently, 

( ) ( )
0 , ,

, .

h x z x z Az y x z Uz x z

f z f x x z x D

∆ ∆ ∆ ∆ ∆ ∆

∆ ∆

− + − + − − + −

≥ − − − ∀ ∈

α α α α α α

α α

δ α

ε
      (50) 
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In inequality (50) we take 0x Z∈  then 

( ) ( )0 0, , .Az y x z f z f x x Z∆ ∆ ∆− − ≤ − ∀ ∈α α α  

Therefore, in inequality (50) we replace x by 1x , we get 

1 1, , .h x z Uz z x z Z∆ ∆ ∆ ∆ ∆
+ +

− ≥ − ∀ ∈α α α α αε δ
α

 

Since h k+ +
<

ε δ
α

, from the above inequality implies 

1 1, .k z x Uz z x∆ ∆ ∆− ≥ −α α α                   (51) 

Since k is not dependent on , ,h ε δ  and since the mapping U turns bounded 
set into bounded set, the sequence { }z∆

α  is uniformly bounded. From this, de-
duce the sequence of sets Z∆

α  is also uniformly bounded. 
Theorems 3.3 and 3.4 below talk about the stability of the solution of inequa-

lity (41) by the Tikhonov regularization method. 
Theorem 3.3 With the assumptions given in Theorem 3.2, then the sequence 

of sets Z∆
α  B-weakly converges to the set 0Z , as 0→α . 

Proof. Let z Z∆ ∆∈α α , then { }z∆
α  is uniformly bounded (Theorem 3.2). Since 

X is a reflexive Banach space, there exists a subsequence { }z∆
β  of this sequence 

such that z z D∆ ∈β
 , as 0→β . We prove that oz Z∈ . 

The argument is the same as in the proof of Theorem 3.2, we get the inequali-
ty (50) and in this inequality we replace z∆

α  by z∆
β , we get 

( )

( ) ( )
0 ,

, , .

h x z Ax y x z

f z f x Ux z x x D

∆ ∆

∆ ∆

+ + − + − −

≥ − + − ∀ ∈

β β

β β

ε δ

β
              (52) 

Due to the lower semi-continuity of f and h k+ +
<

ε δ
α

, in (52) given 

0→β , we get 

( ) ( )0 , , .Ax y x z f z f x x D− − ≥ − ∀ ∈  

Since A is hemi-continuous, according to Lemma 3.1, from the above varia-
tional inequality, it implies that 

( ) ( )0 , , .Az y x z f z f x x D− − ≥ − ∀ ∈  

So, 0z Z∈ , that means { }Z∆
α  B-weakly converges to 0Z , as 0→α . 

We enter the following notation 

{ }0 0: , 0, .Z z Z Uz x z x Z∗ ∗ ∗ ∗= ∈ − ≥ ∀ ∈  

Due to the coercive property of the mapping U on the closed convex set 0Z , 
the set 0Z ≠ ∅ . The following theorem gives a stronger result than Theorem 
3.3. 

Theorem 3.4 If h≥ε , then { }Z∆
α  B-converges to Z∗ , as 0→α ,  

0h+ +
→

ε δ
α

. 
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Proof. Since 0→α , 0h+ +
→

ε δ
α

, then h+ +ε δ
α

 is small enough, then  

the sequence of sets Z∆
α  is unformly bounded (Theorem 3.2). Let z Z∆ ∆∈α α ,  

then { }z∆
α  is bounded. Since X is a reflexive Banach space, there exists a sub-

sequence { }z∆
β  of the sequence such that z z D∆ ∗ ∈

β
 , as 0→β ,  

0h+ +
→

ε δ
β

.  

The same argument as in the proof of Theorem 3.3, we obtain 0z Z∗ ∈ . 
From (52) it follows that 

0, , , .h x z Uz z x Ux z x x Z∆ ∆ ∆ ∆
+ +

− ≥ − ≥ − ∀ ∈β β β βε δ
α

       (53) 

In (53) given 0→β , 0h+ +
→

ε δ
β

, we get 

0 0, 0, , or , 0, .Ux z x x Z Ux x z x Z∗ ∗− ≤ ∀ ∈ − ≥ ∀ ∈  

According to Minty’s Lemma [30], from the above variational inequality, we 
get 

0, 0, .Uz x z x Z∗ ∗− ≥ ∀ ∈  

So, z Z∗ ∗∈ . 
In inequality (53) we replace x by z∗ , we get 

, , .h z z Uz z z Uz Uz z z∗ ∆ ∗ ∗ ∆ ∆ ∗ ∆ ∗
+ +

− + − ≥ − −β β β βε δ
β

      (54) 

We have 

, 0, as 0, 0hUz Uz z z∆ ∗ ∆ ∗
+ +

− − → → →β β ε δβ
β

         (55) 

Due to property (3) of the mapping U, from (55) it follows that 

, as 0, 0.hz z∆ ∗
+ +

→ → →β ε δβ
β

 

This means the sequence { }Z∆
α  B- converges strongly to Z∗ , as 0→α , 

0h+ +
→

ε δ
α

. 

Theorem is proved. 
Corollary 3.1 With the same assumptions as in Theorem 3.4, the sequence of 

sets Z∆
α  B-converges strongly to 0Z , as 0→α , 0h+ +

→
ε δ

α
. 

Proof. It is easy to deduce from Theorem 3.4 and Proposition 2.1 

3.2. Regularization Method Solving the General Variational  
Inequality with Small Parameter-Weakly Stability 

In this subsection, we consider X as a real reflexive Banach space with its conju-
gate space X ∗  being strictly convex. Therefore, dual mapping :U X X ∗→  is 
single, monotone and hemi-continuous [34]. 

For the first time, the author studies the approximate solution of the varia-
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tional inequality (37) by Tikhonov regularization method with small parameter 
[24] [25] [26] [27] [28] as follows: 

Assume that for exact data ( )0 ,y A  the exact solution set of (37) is 0Z ≠ ∅ . 
In fact, instead of knowing this exact data, we only know its approximate data 
( ), hy Aδ  that satisfies the conditions (38) and (39) and ( ):h hA D A X X ∗⊂ → , 

hA  is not necessarily a monotone operator or hemi-continuous. 
The author has studied the approximate solution of (37) with noisy data 

( ), hy Aδ  according to Tikhonov regularization method Tikhonov with small 
parameter, which is the solutions of the following variational inequality: 

( ) ( ) ( ), , .hA x Ux y x z f z f x g x x z x D+ − − ≥ − − − ∀ ∈δα ε      (56) 

The solutions of (56) are the elements z D∈  that satisfy (56). Let’s also de-
note the solution set of (56) is Z∆

α , with ( ), ,h∆ = ε δ . 
Theorem 3.5. If h≥ε  then the variational inequality (56) has a solution. 
Proof. We consider the following variational inequality 

( ) ( ), , .Az Uz y x z f z f x x D+ − − ≥ − ∀ ∈δα              (57) 

The same argument as in the proof of Theorem 3.1, the variational inequality 
(57) has a solution in D. Let z be a solution of (57). Due to the monotony of 
A U+α , from (57) it follows that 

( ) ( ), , .Ax Ux y x z f z f x x D+ − − ≥ − ∀ ∈δα              (58) 

We will prove that every solution of (58) is a solution of (57). Indeed, let z be a 
solution of (58), we have 

( ) ( ) ( )
( ) ( ) ( )

, = , ,

, .

h hA x Ux y x z A x Ax x z Ax Ux y x z

hg x x z f z f x

g x x z f z f x x D

+ − − − − + + − −

≥ − − + −

≥ − − + − ∀ ∈

δ δα α

ε

 

So, z Z∆∈ α . 
Theorem is proved. 
In the case that the set D is not bounded, then the following theorem states 

that the uniformly boundedness of the sequence of sets Z∆
α . 

Theorem 3.6 If h≥ε , 
( )

1 1
M h

k
+

< <
ε

α
, 2k<
δ
α

 ( 1 2,k k : constant), then 

the sequence of the sets Z∆
α  of (55) is uniformly bounded in X.  

Proof. Since h≥ε , then Z∆ ≠ ∅α  (Theorem 3.5). Let z Z∆∈ α , we have 

( ) ( ) ( ), , .hA x Ux y x z f z f x g x x z x D+ − − ≥ − − − ∀ ∈δα ε  

From the variational inequality above, it follows that 

( ) ( )
( ) ( )

0 , ,

, .

h g x x z Ax y x z Ux z x

f z f x x D

 + + − + − − + − 
≥ − ∀ ∈

ε δ α
     (59) 

Due to Lemma 2.2, Theorem 3.1, from (59) it follows that 

( ) ( )
( ) ( )

0 , ,

, .

h g z x z Az y x z Uz z x

f z f x x D

 + + − + − − + − 
≥ − ∀ ∈

ε δ α
     (60) 
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Due to the monotony of A, from (60) it follows that 

( ) ( )
( ) ( )

0 , ,

, .

h g z x z Ax y x z Uz z x

f z f x x D

 + + − + − − + − 
≥ − ∀ ∈

ε δ α
    (61) 

From (58), (59) it follows that 

( ) 0, , .h g z x z Uz z x z Z+ + − ≥ − ∀ ∈  

ε δ
α α

         (62) 

Due to ( ) , 0g t Mt N t≤ + ∀ ≥ , from (60) it follows that 

( ) )

( )

2

0

1

0,

M h hz M x N x z

M h
x x Z

 + + − + + + +     
 +

+ + ≥ ∀ ∈ 
 

ε ε δ
α α α

ε δ
α α

      (63) 

Since 
( )

1 1
M h

k
+

< <
ε
α

, 2k< < +∞
δ
α

, from (63) it follows that the sequence 

{ }Z∆
α  is uniformly bounded. 

Theorem is proved. 
The following theorem states B-weakly stability of the solution of the varia-

tional inequality (37) according to the Tikhonov regularization method with 
small parameters. 

Theorem 3.7 With the same assumptions as in Theorem 3.6, then the se-
quence { }Z∆

α  B-weakly converges to 0Z , as 0→α . 

Proof. Since h≥ε , 
( )

1 1
M h

k
+

< <
ε

α
, 2k< < ∞
δ
α

, then the sequence { }Z∆
α   

is uniformly bounded. Let z Z∆ ∆∈α α , then the sequence { }z∆
α  is bounded in the 

reflexive Banach space X. Therefore, there exists a subsequence { }z∆
β  of this 

sequence such that z z D∆ ∈β
  (since D is the weakly closed set). Since z∆

β  is 
a solution of (56), we have 

( ) ( ) ( ), , .hA x Ux y x z f z f x g x x z x D∆ ∆ ∆+ − − ≥ − − − ∀ ∈β β β
δα ε  

Consequently, 

( ) ( )
( ) ( )

0 , ,

, .

h g x x z Ax y x z Ux x z

f z f x x D

∆ ∆ ∆

∆

 + + − + − − + − 

≥ − ∀ ∈

β β β

β

ε δ β
 

Due to Lemma 2.2 and Lemma 3.1, the monotony of A and U, from the above 
inequality, it follows that 

( ) ( )
( ) ( )

0 , ,

, .

h g z x z Ax y x z Ux x z

f z f x x D

∆ ∆ ∆ ∆

∆

 + + − + − − + − 

≥ − ∀ ∈

β β β β

β

ε δ β
   (64) 

In (64), taking 0→β , we obtain 

( ) ( )0 , , .Ax y x z f z f x x D− − ≥ − ∀ ∈  

Due to Lemma 3.1, from the above inequality, it follows that 
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( ) ( )0 , , .Az y x z f z f x x D− − ≥ − ∀ ∈  

So, 0z Z∈ . It means that the sequence { }Z∆
α  B-weakly converges to 0Z , as 

0→α . 
Theorem is proved. 
We denote { }

0
arg max

z Z
Z z∗ ∈

= , then Z∗ ≠ ∅  (since 0Z  is the convex closed 
subset in reflexive Banach space X. 

The following theorem gives us a stronger result than the above theorem. 

Theorem 3.8 If h≥ε , then the sequence { }Z∆
α  B-strongly converges to Z∗ , 

as 0→α , 0h+ +
→

ε δ
α

. Moreover, if let z Z∆ ∆∈α α , z Z∗ ∗∈ , then z z∆ ∗→α , 

as 0→α , 0h+ +
→

ε δ
α

. 

Proof. Since 0→α , 0h+ +
→

ε δ
α

, then we consider , , ,hα ε δ  such that 

( )
1 21, .

M h
k k

+
< < < < ∞

ε δ
α α

                  (65) 

With ,∆ α  satisfying (65), then the sequence { }Z∆
α  is uniformly bounded 

(Theorem 3.6). Let z Z∆ ∆∈α α , then sequence { }z∆
α  is bounded in the reflexive 

Banach space X. Therefore, there exists a subsequence { }z∆
β  of this sequence  

such that 0z z Z∆ ∗ ∈
β
  as 0→β , 0h+ +

→
ε δ

β
. The same argument as in 

the proof of Theorem 3.7, we get the variational inequality same (64), that is 

( ) ( )
( ) ( )

0 , ,

, .

h g z x z Ax y x z Ux x z

f z f x x D

∆ ∆ ∆ ∆

∆

 + + − + − − + − 

≥ − ∀ ∈

β β β β

β

ε δ β
 

In this variational inequality, we take 0x Z D∈ ⊂ , then 

( ) ( )0 , .Ax y x z f z f x∆ ∆− − ≤ −β β  

Consequently, 

( ) ( ) 0, 0, .h g z x z Ux x z x Z∆ ∆ ∆
 + + − + − ≥ ∀ ∈ 

β β βε δ β       (66) 

or 

( ) 0, 0, .h g z x z Ux x z x Z∆ ∆ ∆
 +

+ − + − ≥ ∀ ∈ 
 

β β βε δ
β β

 

Since the sequence { }z∆
β  is bouned and the function ( )g t  is continuous, 

then the sequence ( ){ }g z∆
β  is bounded. Therefore, in (66) taking 0→β , 

0h+ +
→

ε δ
β

, we obtain 

0, 0, .Ux x z x Z∗− ≥ ∀ ∈  

Due to Lemma of Minty, from the above variational inequality, it follows that 

0, 0, .Uz x z x Z∗ ∗− ≥ ∀ ∈  
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Due to the property of dual mapping U, from the above variational inequality, 
it follows that 

0, .x z x Z∗≥ ∀ ∈  

So, z Z∗ ∗∈ , that is, the sequence { }Z∆
α  B-weakly converges to Z∗ , as 

0→α , 0h+ +
→

ε δ
α

. 

On the other hand, we have 

( )
( )

2
, , ,

,

z z Uz Uz z z Uz z z Uz z z

hUz z z g z z z

∗ ∆ ∗ ∆ ∗ ∆ ∗ ∗ ∆ ∆ ∆ ∗

∗ ∗ ∆ ∆ ∆ ∗

− ≤ − − = − + −

 +
≤ − + + − 

 

β β β β β β

β β βε δ
β β

  (67) 

From (67) it follows that 

( ), hUz z z g z z z∆ ∆ ∗ ∆ ∆ ∗
 +

− ≤ + − 
 

β β β βε δ
β β

 

In (67) taking 0→β , 0h+ +
→

ε δ
β

, we obtain 

, as 0, 0.hz z∆ ∗
+ +

→ → →β ε δβ
β

 

This proves that the sequence { }z∆
α  has only one limit point, so the se-

quence itself converges to z∗ , as 0→α , 0h+ +
→

ε δ
α

. 

Corollary 3.2 Necessary and sufficient condition for the sequence { }Z∆
α  

B-weakly converges to some bounded subset of X as 0→α , 0h+ +
→

ε δ
α

 the 

variational inequality (40) has a solution. 
Proof. Similar to the proof of theorem 2.5. 
Remark 3.2: If hA  is monotone operator and 0f ≡ , the above results are 

the same with results in [18]. 
We now study the approximate solution of the variational inequality (37) ac-

cording to Tikhonov regularization method with small parameters, which is the 
solutions of the following variational inequality: 

( ) ( ) ( ), , ,hA z Uz y x z f z f x g z x z x D+ − − ≥ − − − ∀ ∈δα ε       (68) 

where , , , ,hA U f g yδ  the same assumption of the first of this subset. 
The solution of the variational inequality (68) is the elements z D∈  that sa-

tisfy (68). We still denote the solution set of (68) as the set Z∆
α . 

Theorem 3.9 If h≥ε  then the variational inequality (68) has a solution. 
Proof. The same argument as in the proof of Theorem 3.5, we have the fol-

lowing inequality which has a solution: 

( ) ( ), , .Az Uz y x z f z f x x D+ − − ≥ − ∀ ∈δα              (69) 

It is easy to show that every solution of (69) is a solution of (68). So, Z∆ ≠ ∅α . 
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Theorem 3.10 If h≥ε , 
( )

1 1
M h

k
+

< <
ε

α
, 2k<
δ
α

 ( 1 2,k k : constant), then 

the sequence of the sets Z∆
α  of (56) is uniformly bounded in X.  

Proof. Since h≥ε , then Z∆ ≠ ∅α  (Theorem 3.9). Let z Z∆ ∆∈α α , we have 

( ) ( ) ( ), , .hA z Uz y x z f z f x g z x z x D∆ ∆ ∆ ∆ ∆ ∆+ − − ≥ − − − ∀ ∈α α α α α α
δα ε  

Consequently, 

( ) ( )
( ) ( )

0 ,

, , .

h g z x z Az y x z

f z f x Uz x z x D

∆ ∆ ∆ ∆

∆ ∆ ∆

 + + − + − − 

≥ − − − ∀ ∈

α α α α

α α α

ε δ

α
 

Since A is the monotone operator, from the above inequality it follows that 

( ) ( )
( ) ( )

0 ,

, ,

h g z x z Ax y x z

f z f x Uz x z x D

∆ ∆ ∆

∆ ∆ ∆

 + + − + − − 

≥ − − − ∀ ∈

α α α

α α α

ε δ

α
          (70) 

We have 

( ) ( )0 0, , .Ax y x z f z f x x Z∆ ∆− − ≤ − ∀ ∈α α  

Consequently, 

( ) ( ) 0, 0, .h g z x z Uz x z x Z∆ ∆ ∆ ∆
 + + − + − ≥ ∀ ∈ 

α α α αε δ α       (71) 

Since ( ) , 0g t Mt N t≤ + ∀ ≥ , from (71) it follows that 

( ) )

( )

1

0, .

M h hz M x N x z

M h
x x Z

∆ ∆

 + + − + + + +     
 +

+ + ≥ ∀ ∈ 
 

α αε ε δ
α α α

ε δ
α α

      (72) 

Since 
( )

1 21,
M h

k k
+

< < < < ∞
ε δ

α α
, from (72) the sequence { }Z∆

α  is uniform-

ly bounded. 
Theorem is proved. 
The following theorem talks about B-weakly stability of the solution of the 

variational inequality (37) by the Tikhonov regularization method with small 
parameter (68). 

Theorem 3.11 With the assumption as in Theorem 3.10. Then, the sequence 

{ }Z∆
α  B-weakly converges to 0Z , as 0→α . 

Proof. From the assumption of Theorem 3.10, then Z∆ ≠ ∅α . Let z Z∆ ∆∈α α , 
then the sequence { }z∆

α  is bounded in the reflexive Banach X, therefore, there 
exists a subsequence { }z∆

β  of this sequence such that z z D∆ ∈β
 , as 0→β . 

Since z∆
β  is a solution of (65), we have 

( ) ( ) ( ), , .hA z Uz y x z f z f x g z x z x D∆ ∆ ∆ ∆ ∆ ∆+ − − ≥ − − − ∀ ∈β β β β β β
δβ ε  

Consequently, 

( ) ( )
( ) ( )

0 ,

, .

h g z x z Az y x z Uz

f z f x x D

∆ ∆ ∆ ∆ ∆

∆

 + + − + − − + 

≥ − ∀ ∈

β β β β β

β

ε δ β
      (73) 
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Since the operators ,A U  are monotone, from (73) it follows that 

( ) ( )
( ) ( )

0 , ,

, .

h g z x z Ax y x z Ux x z

f z f x x D

∆ ∆ ∆ ∆

∆

 + + − + − − + − 

≥ − ∀ ∈

β β β β

β

ε δ β
   (74) 

Since the function ( )g t  is continuous and lower semi continuous and the 
sequence { }z∆

β  is bounded, then in (74) taking 0→β , we obtain 

( ) ( )0 , , .Ax y x z f z f x x D− − ≥ − ∀ ∈  

So, 0z Z∈ , that is, the sequence { }Z∆
α  B-weakly converges to 0Z , as  

0→α . 
Theorem is proved. 

Theorem 3.12 If h≥ε , 0→α , 0h+ +
→

ε δ
α

, then the sequence { }Z∆
α  

B-weakly converges to Z∗ . Moreover, let z Z∆ ∆∈α α  and z Z∗ ∗∈ , then  

z z∆ ∗→α , as 0→α , 0h+ +
→

ε δ
α

. 

Proof. Since 0→α , 0h+ +
→

ε δ
α

, we consider , , ,hε δ α  being small such 
that 

( )
1 21, .

M h
k k

+
< < < < +∞

ε δ
α α

                   (75) 

With , , ,hε δ α  satisfying (75), then Z∆ ≠ ∅α  and is uniformly bounded. Let 
z Z∆ ∆∈α α , then the sequence { }z∆

α  is bounded in X is a reflexive Banach space, 
there exists a subsequence { }z∆

β  of this sequence such that 0z z Z∆ ∗ ∈
β
 , as  

0→β , 0h+ +
→

ε δ
β

. 

The same argument as in the proof of Theorem 3.10, we obtain 

( ) 0, 0, .h g z x z Ux x z x Z∆ ∆ ∆
 +

+ − + − ≥ ∀ ∈ 
 

β β βε δ
β β

       (76) 

In (76), taking 0→β , 0h+ +
→

ε δ
β

, due to the continulty of the function 

( )g t  and the boundedness of the sequence { }z∆
β , we obtain 

0, 0, .Ux x z x Z∗− ≥ ∀ ∈                    (77) 

Due to Lemma of Minty, from (74) it follows that 

0, 0, .Uz x z x Z∗ ∗− ≥ ∀ ∈  

Consequently, 

0, .z x x Z∗ ≤ ∀ ∈  

So, z Z∗ ∗∈ . 
On the other hand, 

( )
( )

2

0

, , ,

, , .

z z Uz Uz z z Uz z z Uz z z

hUz z z g z z z x Z

∗ ∆ ∗ ∆ ∗ ∆ ∗ ∗ ∆ ∆ ∆ ∗

∗ ∗ ∆ ∆ ∆ ∗

− ≤ − − = − + −

 +
≤ − + + − ∀ ∈ 

 

β β β β β β

β β βε δ
β β

  (78) 
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In (78) taking 0→β , 0h+ +
→

ε δ
β

, we obtain 

, as 0, 0.hz z∆ ∗
+ +

→ → →β ε δβ
β

 

The above argument shows that the sequence { }z∆
α  has only one limit point 

z∗ , so it is this sequence that converges to z∗ , as 0→α , 0h+ +
→

ε δ
α

. 

Theorem is proved. 

Corollary 3.2 Necessary and sufficient condition for the sequence { }Z∆
α  

B-weakly converges to some bounded subset of X as 0→α , 0h+ +
→

ε δ
α

 the 

variational inequality (37) has a solution. 
Proof. Similar to the proof of Theorem 2.5. 
Remark 3.3: We can use Tikhonov regularization methods in Subsections 2.2, 

2.3 to find the approximate solution in the given example above. 
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