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Abstract 

Let  :A D A X Y   be a linear, closed, and densely defined unbounded 

operator, where X and Y are Hilbert spaces. Assume that A is not boundedly 

invertible. Suppose the equation Au f  is solvable, and instead of knowing 

exactly f only know its approximation f  satisfies the condition:  

,0 0.f f       In this paper, we are interested a regularization method 

to solve the approximation solution of this equation. This approximation is a unique 

global minimizer 
,u   of the functional  

2 2
:F u Au f u     , for any 

f Y  , defined as follows:  
1

, .Xu A AA I f  


    We also study the sta-

bility of this method when the regularization parameter is selected a priori and 

a posteriori. At the same time, we give an application of this method to the 

weak derivative operator equation in Hilbert space  2 0,1H L . 
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1. Introduction 

Let  :A D A X Y   be a linear, closed, densely defined unbounded operator, 

where X and Y are Hilbert spaces. Consider the equation 

Au f                            (1) 

Problem-solving solution of Equation (1) is called ill-posed [1] if A is not 

boundedly invertible. This may happen if the null space    : 0N A u Au   is 

not trivial, i.e. A is not injective, or if A is injective but 
1A
 is unbounded, i.e. the 

range of A,  R A  is not closed [2]. 

If A   , problem-solving stable solution of Equation (1) has been exten-

sively studied in the literature in detail ([2] [3] [4] [5] [6] and references therein). 
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If f , the noisy data, are given 

f f                             (2) 

is a stable approximation to the unique minimal norn solution to Equation (1) was 

constructed by several methods (variational regularization, quasi solution, iterative 

regularization, ... [2] [3] [4] [5] [6] and references therein). 

If A is a linear, closed, densely defined unbounded operator, problem (1) has 

been some recent research [2] [7] [8] [9] [10] [11], however, there are still many 

open problems such as parameter choice rules of regularization method with the 

linear closed, densely defined unbounded operator  :A D A X Y  . 

Our aim is to study problem-solving stable approximation solution of Equation 

(1) when operator A is a linear, closed, and densely defined from space Hilbert X 

into space Hilbert Y. We shall present the regularization method for solving the 

problem (1), we shall present a priori and a posteriori parameter choice rules of 

regularization; at the same time give an application to the weak derivative operator 

equation. 

The paper structure consists of 3 sections: Section 1 the introduction briefly 

summarizes the recent research results and come up with the problem that needs to 

be studied; Section 2 presents some main results; Section 3 presents an application 

of this method. 

2. Some Main Results 

Lemma 1. [2] Let  :A D A X Y   be a linear, closed, densely defined 

operator, where X and Y are Hilbert spaces, then 

1) the operators T A A  and Q AA  are densely defined, self-adjoint; 

2) A
 is closed, densely defined and A A  ; 

3) the operators  
1

: :XA I A A X Y


   , :AA X Y  are both defined on 

all of X and are bounded,    0,1A  . Also, A  is self-adjoint; 

4) the operator  
1

ˆ : :YA I AA Y X


    is bounded and self-adjoint and 

ˆ :A A Y X   is bounded. 

Lemma 2. Let  :A D A X Y   be a linear, closed, densely defined opera-

tor, where X and Y are Hilbert spaces. If f Ay ,  y N A  then y is unique. 

Proof. Suppose 1y , and 2y  satisfy 1f Ay ,  1y N A , and 2f Ay , 

 2y N A  then  1 2 0A y y  . Thus  1 2y y N A  . There exits  u N A  

such that 1 2y y u   imply 1 2 1 2, , , 0 ,y y u y u y u u u     . Thus 

0u  , it follows that 1 2y y . 

Theorem 1. For any f Y , the problem 

 
2 2

min, const 0,F u Au f u                  (3) 

has a unique solution  
1

Yu A AA I f 


   , where YI  is the identity opera-

tor on Y. 

Proof. Consider the equation 

  , const 0YAA I w f                       (4) 
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which is uniquely solvable  
1

Yw AA I f 


   (Lemma 1). Let u A w 
  

then 

 

    

1

1 1

,

Y

Y Y Y Y

Au AA AA I f

AA I AA I f I AA I f

f w







   




 

 
  

 

    

 
 

or 

.Au f w   
 

We have 

     
2 2 2 2

2Re , , ,F u v Au f u Av v Au f Av u v             (5) 

for any  v D A . If u u , then 

       

   

, , , ,

, , 0.

Au f Av u v w Av u v

A w v u v

   

 

  

 

    

   
        (6) 

Thus Equation (6) implies 

     
2 2

F u v F u Av v F u                    (7) 

and    F u v F u    if and only if 0v  , so u  is the unique minimier of 

 F u . 

Theorem 1 is proved. 

Theorem 2. If f Ay ,  y N A  then 

 
1

0
lim 0, .u y u A AA I f 





 


                  (8) 

Proof. It follows from Lemma 2, y is unique. Write Equation (4) as 

 A A w y w     . Apply A
, which is possible because  w D A

 , we ob-

tain 

  .A A u y u                           (9) 

Multiply Equation (9) by u y  , we obtain 

    , ,A A u y u y u u y        
 

or 

    
2 2

, .A u y u u y                     (10) 

Since 0   this implies 

 
2

, ,u u y 
 

so 

, 0.u y   
 

Therefore one may assume (taking a subsequence) that u  weakly converges 

to an element z, :
nnu u z † , as 0n  . 
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It follows from Equation (10) that 

 lim 0, . . lim 0.n n
n n

A u y i e Au f
 

   
 

We shall prove that z y . 

Let   run through the set such that  A A
 is dense in N  , where 

 :N N A . Note that    N T N A , where T A A . Because of the formulas 

   X R T N T   the    D T   is dense in X, and the set  T  is dense 

in N  . 

Multiply the equation  T u y u     by   and pass to the limit 0  . 

We obtain 

 , 0.z y T 
 

We have assume y N . If z N , then z y N   and z y N  , so 

0z y  . 

One may always assume that z N  because Tu Tu  , where u  is the 

orthogonal projection of u  onto N  . 

Thus, we have :
nnu u z † , 

nu y . Thus implies lim 0n
n

u y


  . 

For convenience for the reader we prove this claim. Since :
nnu u z † , one 

gets lim n
n

y u


 . The inequality 
nu y  implies lim n

n
u y


 . Therefore 

lim n
n

u y


 . This and the weakly converge :
nnu u z †  imply strong con-

vergence 

 
2 2 2

2Re 0, as .n n nu y u y u y n      
 

Theorem 2 is proved. 

Theorem 3. If f f   , f Ay ,  y N A  and 

 
2 2

min,F u Au f u                      (11) 

then there exists a unique global minimier 
,u   to (11) and 

0
lim 0u y


  , 

where  ,:u u   
  and     is properly chosen, in particular  

0
lim 0


 


 . 

Proof. It follows from Lemma 2, y is unique. The existence and uniqueness of 

the minimizer 
,u   of  F u  follows from Theorem 1 and  

 
1

, Yu A Q I f  
  . We have 

, , .u y u u u f         
 

By Theorem 2,  : 0u f     , as 0  . 

Let us estimate 

     
1 1

, .Y Yu u A Q I f f A Q I     
       

 

By the polar decomposition theorem [12], one has 1 2A UQ  , where U is a 

partial isometry, so 1U  . One has, 
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     1 21 1 1

0

1 2

1 2 1
max ,

2

Y Y Y

c

A Q I UQ Q I Q Q I



  



  

  



    

 
  

where the spectral representation for Q was used. 

Thus 

 , .
2

u y 


 


                       (12) 

For a fixed small 0  , choose      which minimizes the right side of 

Equation (12). Then  
0

lim 0


 


  and 
 

  
0

lim 0.
2


  

 

 
  
 
 

 

Theorem 3 is proved. 

Remark 1. We can also choose   kc   , with any 2k   and  

const 0c   . The constant c can be arbitrary. 

We can also choose     by a descrepancy principle. For example, consider 

the equation for finding    : 

, , const 1.Au f c c      
 

We assume that f c  . 

That is the content of the following theorem. 

Theorem 4. The equation 

, , const 1, ,Au f c c f c                      (13) 

has a unique solution   0    ,  
0

lim 0


 


 , and if  ,:u u   
 , then 

0
lim 0u y


  . 

Proof. Let us prove that Equation (13) has a unique root   0   , 

 
0

lim 0


 


 . Indeed, using the spectial theorem [12], one gets 

   

 

 
 

22
12

, 0

2

20

1 , ,

, ,
: , ,

s

s

s
Au f AA Q I f d E f f

s

d E f f
g

s

     

 




  


 



       

 





 

where sE  is the resolution of the identity of Q. 

One has  
2 2,g f c 

    , and  
2

0,
N

g P f   , where 
N

P   is the 

orthoprojector onto the subspace      N N Q N A R A
    . 

Since  f R A  and f f   , it follows that 
N

P f   , so  

  20,g    . The function  ,g    for a fixed 0   is a continuous strictly in-

creasing function of   on  0, . Therefore there exists a unique   0     

which solves Equation (13) if f c   and 1c  . Clearly  
0

lim 0


 


 ,  

because  
0

lim 0c


 


  and the relation  
 

  
2

200

, ,
lim 0

sd E f f

s

 


 

 







  implies 

 
0

lim 0


 


 . The function      is a monotonically growing function of 
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  with  0 0   . 

Let us prove that 
0

lim 0u y


  , where  ,:u u   
 , and     solves 

Equation (13). By the definition of u , we get 

     
2 2 2 2 22 .Au f u Ay f y y               

 

Since 
2 2 2 2Au f c      , it follows that u y  . Thus u z † , and, 

as in the proof of Theorem 2, we obtain z y  and 
0

lim 0u y


  . 

Theorem 4 is proved. 

Remark 2. Theorems 1 - 4 are well known in the case of a bounded operator A. 

If A is bounded, then a necessary condition for the minimum of the functional 

 
2 2

f u Au f u    is the equation 

.A Au u A f                         (14) 

Hence in this case conditions are required  f D A . 

If A is unbounded, then f does not necessarily belong to  D A
, so Equation 

(14) may have no sence. Therefore, some changes in the usual theory are neces-

sary. The changes are given in this paper. We prove, among other things, that for 

any f Y , in particular for  f D A , the element  
1

Yu A AA I f 


    

is well defined for any const 0   , provided that A is a closed, linear, densely 

defined operator in Hilbert space (Theorem 1). 

3. Applications 

As a simple concrete example of this type of approximation, consider differentia-

tion in  2 0,1H L . 

We define the operator  :A D A H H   as follows 

 
d

, ,
d

f
Af f D A

x
 

 

with       : is absolutely continuous on 0,1 andD A f H f f x H   . 

Then  D A  is dense in H since it contains the complete orthonormal set 

 
1

sin
n

n x



 . 

Clearly, A is a linear operator. 

We show that A is a closed operator in Hilbert space H. Indeed, for suppose 

   nf D A  and nf f  and nf g  , in each case the convergence being in 

the  2 0,1L  norm. Since 

     
0

0 d ,
x

n n nf x f f t t  
 

we see that the sequence of constant functions   0nf  converges in  2 0,1L  

and hence the numerical sequence   0nf  converges to some real number C. 

Now define  h D A  by    
0

d
x

h x C g t t   . Then, for any  0,1x , we 

have by of the Cauchy-Schwarz inequality 

          

     

 

0

0

0 d

0 d

0

x

n n n

x

n n

n n

f x h x f C f t g t t

f C f t g t t

f C f g

    

   

   



  
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and hence nf h  uniformly. Therefore,  f h D A   and Af f h g    , 

verifying that the operator A is closed, linear, densely defined in  2 0,1L . 

Let 

      : 0 1 0 .D g D A g g    
 

Then for  f D A  and g D , we have 

           
1 11

00 0
, d d ,Af g f t g t t f t g t f t g t t f g       

 

Therefore  D D A   and A g g   , for g D . 

On the other hand, if  g D A , let g A g  . Then 

, ,Af g f g
 

for all  f D A . In particular, for 1f  , we find that  
1

0
d 0g t t  . 

Now let 

   
0

d .
t

h t g s s 
 

Then h D  and A h g A g     and hence  h g N A  . Therefore, 

, 0Af h g  , for all  f D A . But  R A  contains all continuous function 

and hence g h D  . 

We conclude that 

  , and .D A D A g g     
 

According to Theorem 1, for any  2 0,1f Y L  , the problem 

 
2 2

min, const 0,F u Au f u      
 

has a unique solution  
1

u A AA I f 


   , where I is the identity operator on 

 2 0,1Y L .  2 0,1f Y L   does not necessarily belong to  D A
. 

It follows from Theorem 2, that if f Ay ,  y N A  then 

 
1

0
lim 0, .u y u A AA I f 





 


   

 

It follows from Theorem 3, that if f f   , f Ay , and 

 
2 2

min,F u Au f u                      (15) 

then there exists a unique global minimier 
,u   to Equation (15) and 

0
lim 0u y


  , where  ,:u u   
  and     is properly chosen, in particular 

 
0

lim 0


 


 . 

It follows from Theorem 4, that the equation 

, , const 1, ,Au f c c f c        
 

has a unique solution   0    ,  
0

lim 0


 


 , and if  ,:u u   
 , then 

0
lim 0u y


  . 
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