On the Regularization Method for Solving Ill-Posed Problems with Unbounded Operators

Nguyen Van Kinh
Faculty of Applied Science, Ho Chi Minh University of Food Industry, Ho Chi Minh City, Vietnam
Email: nguyenvankinh58@gmail.com

How to cite this paper: Van Kinh, N. (2022) On the Regularization Method for Solving Ill-Posed Problems with Unbounded Operators. Open Journal of Optimization, 11, 7-14.
https://doi.org/10.4236/ojop.2022.112002
Received: April 16, 2022
Accepted: June 11, 2022
Published: June 15, 2022
Copyright © 2022 by author(s) and Scientific Research Publishing Inc. This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

Abstract

Let $A: D(A) \subset X \rightarrow Y$ be a linear, closed, and densely defined unbounded operator, where X and Y are Hilbert spaces. Assume that A is not boundedly invertible. Suppose the equation $A u=f$ is solvable, and instead of knowing exactly f only know its approximation f_{δ} satisfies the condition: $\left\|f_{\delta}-f\right\| \leq \delta, 0<\delta \rightarrow 0$. In this paper, we are interested a regularization method to solve the approximation solution of this equation. This approximation is a unique global minimizer $u_{\alpha, \delta}$ of the functional $F_{\delta}(u):=\left\|A u-f_{\delta}\right\|^{2}+\alpha\|u\|^{2}$, for any $f_{\delta} \in Y$, defined as follows: $u_{\alpha, \delta}=A^{*}\left(A A^{*}+\alpha I_{X}\right)^{-1} f_{\delta}$. We also study the stability of this method when the regularization parameter is selected a priori and a posteriori. At the same time, we give an application of this method to the weak derivative operator equation in Hilbert space $H=L^{2}[0,1]$.

Keywords

Ill-Posed Problem, Regularization Method, Unbounded Linear Operator

1. Introduction

Let $A: D(A) \subset X \rightarrow Y$ be a linear, closed, densely defined unbounded operator, where X and Y are Hilbert spaces. Consider the equation

$$
\begin{equation*}
A u=f \tag{1}
\end{equation*}
$$

Problem-solving solution of Equation (1) is called ill-posed [1] if A is not boundedly invertible. This may happen if the null space $N(A)=\{u: A u=0\}$ is not trivial, i.e. A is not injective, or if A is injective but A^{-1} is unbounded, i.e. the range of $A, R(A)$ is not closed [2].

If $\|A\|<\infty$, problem-solving stable solution of Equation (1) has been extensively studied in the literature in detail ([2] [3] [4] [5] [6] and references therein).

If f_{δ}, the noisy data, are given

$$
\begin{equation*}
\left\|f_{\delta}-f\right\| \leq \delta \tag{2}
\end{equation*}
$$

is a stable approximation to the unique minimal norn solution to Equation (1) was constructed by several methods (variational regularization, quasi solution, iterative regularization, ... [2] [3] [4] [5] [6] and references therein).

If A is a linear, closed, densely defined unbounded operator, problem (1) has been some recent research [2] [7] [8] [9] [10] [11], however, there are still many open problems such as parameter choice rules of regularization method with the linear closed, densely defined unbounded operator $A: D(A) \subset X \rightarrow Y$.

Our aim is to study problem-solving stable approximation solution of Equation (1) when operator A is a linear, closed, and densely defined from space Hilbert X into space Hilbert Y. We shall present the regularization method for solving the problem (1), we shall present a priori and a posteriori parameter choice rules of regularization; at the same time give an application to the weak derivative operator equation.

The paper structure consists of 3 sections: Section 1 the introduction briefly summarizes the recent research results and come up with the problem that needs to be studied; Section 2 presents some main results; Section 3 presents an application of this method.

2. Some Main Results

Lemma 1. [2] Let $A: D(A) \subset X \rightarrow Y$ be a linear, closed, densely defined operator, where X and Y are Hilbert spaces, then

1) the operators $T=A^{*} A$ and $Q=A A^{*}$ are densely defined, self-adjoint;
2) A^{*} is closed, densely defined and $A^{* *}=A$;
3) the operators $\tilde{A}:=\left(I_{X}+A^{*} A\right)^{-1}: X \rightarrow Y, A \tilde{A}: X \rightarrow Y$ are both defined on all of X and are bounded, $\sigma(\tilde{A}) \subseteq[0,1]$. Also, \tilde{A} is self-adjoint;
4) the operator $\hat{A}:=\left(I_{Y}+A A^{*}\right)^{-1}: Y \rightarrow X$ is bounded and self-adjoint and $A^{*} \hat{A}: Y \rightarrow X$ is bounded.

Lemma 2. Let $A: D(A) \subset X \rightarrow Y$ be a linear, closed, densely defined operator, where X and Y are Hilbert spaces. If $f=A y, y \perp N(A)$ then y is unique.

Proof. Suppose y_{1}, and y_{2} satisfy $f=A y_{1}, \quad y_{1} \perp N(A)$, and $f=A y_{2}$, $y_{2} \perp N(A)$ then $A\left(y_{1}-y_{2}\right)=0$. Thus $y_{1}-y_{2} \in N(A)$. There exits $u \in N(A)$ such that $y_{1}-y_{2}=u$ imply $\left\langle y_{1}-y_{2}, u\right\rangle=\left\langle y_{1}, u\right\rangle-\left\langle y_{2}, u\right\rangle=0=\langle u, u\rangle$. Thus $u=0$, it follows that $y_{1}=y_{2}$.

Theorem 1. For any $f \in Y$, the problem

$$
\begin{equation*}
F(u)=\|A u-f\|^{2}+\alpha\|u\|^{2} \rightarrow \min , \alpha=\text { const }>0 \tag{3}
\end{equation*}
$$

has a unique solution $u_{\alpha}=A^{*}\left(A A^{*}+\alpha I_{Y}\right)^{-1} f$, where I_{Y} is the identity operator on Y.

Proof. Consider the equation

$$
\begin{equation*}
\left(A A^{*}+\alpha I_{Y}\right) w_{\alpha}=f, \alpha=\text { const }>0 \tag{4}
\end{equation*}
$$

which is uniquely solvable $w_{\alpha}=\left(A A^{*}+\alpha I_{Y}\right)^{-1} f$ (Lemma 1). Let $u_{\alpha}=A^{*} w_{\alpha}$ then

$$
\begin{aligned}
A u_{\alpha} & =A A^{*}\left(A A^{*}+\alpha I_{Y}\right)^{-1} f \\
& =\left(A A^{*}+\alpha I_{Y}\right)\left(A A^{*}+\alpha I_{Y}\right)^{-1} f-\alpha I_{Y}\left(A A^{*}+\alpha I_{Y}\right)^{-1} f \\
& =f-\alpha w_{\alpha}
\end{aligned}
$$

or

$$
A u_{\alpha}-f=-\alpha w_{\alpha} .
$$

We have

$$
\begin{equation*}
F(u+v)=\|A u-f\|^{2}+\alpha\|u\|^{2}+\|A v\|^{2}+\alpha\|v\|^{2}+2 \operatorname{Re}[(A u-f, A v)+\alpha(u, v)], \tag{5}
\end{equation*}
$$

for any $v \in D(A)$. If $u=u_{\alpha}$, then

$$
\begin{align*}
\left(A u_{\alpha}-f, A v\right)+\alpha\left(u_{\alpha}, v\right) & =-\alpha\left(w_{\alpha}, A v\right)+\alpha\left(u_{\alpha}, v\right) \\
& =-\alpha\left(A^{*} w_{\alpha}, v\right)+\alpha\left(u_{\alpha}, v\right)=0 . \tag{6}
\end{align*}
$$

Thus Equation (6) implies

$$
\begin{equation*}
F\left(u_{\alpha}+v\right)=F\left(u_{\alpha}\right)+\|A v\|^{2}+\alpha\|v\|^{2} \geq F\left(u_{\alpha}\right) \tag{7}
\end{equation*}
$$

and $F\left(u_{\alpha}+v\right)=F\left(u_{\alpha}\right)$ if and only if $v=0$, so u_{α} is the unique minimier of $F(u)$.

Theorem 1 is proved.
Theorem 2. If $f=A y, \quad y \perp N(A)$ then

$$
\begin{equation*}
\lim _{\alpha \rightarrow 0}\left\|u_{\alpha}-y\right\|=0, u_{\alpha}=A^{*}\left(A A^{*}+\alpha I\right)^{-1} f \tag{8}
\end{equation*}
$$

Proof. It follows from Lemma 2, y is unique. Write Equation (4) as $A\left(A^{*} w_{\alpha}-y\right)=-\alpha w_{\alpha}$. Apply A^{*}, which is possible because $w_{\alpha} \in D\left(A^{*}\right)$, we obtain

$$
\begin{equation*}
A^{*} A\left(u_{\alpha}-y\right)=-\alpha u_{\alpha} . \tag{9}
\end{equation*}
$$

Multiply Equation (9) by $u_{\alpha}-y$, we obtain

$$
\left(A^{*} A\left(u_{\alpha}-y\right), u_{\alpha}-y\right)=-\alpha\left(u_{\alpha}, u_{\alpha}-y\right)
$$

or

$$
\begin{equation*}
\left\|A\left(u_{\alpha}-y\right)\right\|^{2}=-\alpha\left(\left\|u_{\alpha}\right\|^{2}-\left(u_{\alpha}, y\right)\right) \tag{10}
\end{equation*}
$$

Since $\alpha>0$ this implies

$$
\left\|u_{\alpha}\right\|^{2} \leq\left(u_{\alpha}, y\right)
$$

so

$$
\left\|u_{\alpha}\right\| \leq\|y\|, \forall \alpha>0
$$

Therefore one may assume (taking a subsequence) that u_{α} weakly converges to an element $z, u_{n}:=u_{\alpha_{n}} \dagger z$, as $\alpha_{n} \rightarrow 0$.

It follows from Equation (10) that

$$
\lim _{n \rightarrow \infty}\left\|A\left(u_{n}-y\right)\right\|=0, \text { i.e. } \lim _{n \rightarrow \infty}\left\|A u_{n}-f\right\|=0
$$

We shall prove that $z=y$.
Let γ run through the set such that $\left\{A^{*} A \gamma\right\}$ is dense in N^{\perp}, where $N:=N(A)$. Note that $N(T)=N(A)$, where $T=A^{*} A$. Because of the formulas $X=\overline{R(T)} \oplus N(T)$ the $\{\gamma\}=D(T)$ is dense in X, and the set $\{T \gamma\}$ is dense in N^{\perp}.

Multiply the equation $T\left(u_{\alpha}-y\right)=-\alpha u_{\alpha}$ by γ and pass to the limit $\alpha \rightarrow 0$. We obtain

$$
(z-y, T \gamma)=0
$$

We have assume $y \perp N$. If $z \perp N$, then $z-y \perp N$ and $z-y \perp N^{\perp}$, so $z-y=0$.

One may always assume that $z \perp N$ because $T u_{\alpha}=T u_{\alpha}$, where u_{α} is the orthogonal projection of u_{α} onto N^{\perp}.

Thus, we have $u_{n}:=u_{\alpha_{n}} \dagger z,\left\|u_{n}\right\| \leq\|y\|$. Thus implies $\lim _{n \rightarrow \infty}\left\|u_{n}-y\right\|=0$.
For convenience for the reader we prove this claim. $\operatorname{Since}{ }^{n \rightarrow \infty} u_{n}:=u_{\alpha_{n}} \dagger z$, one gets $\|y\| \leq \varliminf_{n \rightarrow \infty}\left\|u_{n}\right\|$. The inequality $\left\|u_{n}\right\| \leq\|y\|$ implies $\varlimsup_{n \rightarrow \infty}\left\|u_{n}\right\| \leq\|y\|$. Therefore $\lim _{n \rightarrow \infty}\left\|u_{n}\right\|=\|y\|$. This and the weakly converge $u_{n}:=u_{\alpha_{n}} \dagger \quad z$ imply strong convergence

$$
\left\|u_{n}-y\right\|^{2}=\left\|u_{n}\right\|^{2}+\|y\|^{2}-2 \operatorname{Re}\left(u_{n}-y\right) \rightarrow 0, \text { as } n \rightarrow \infty .
$$

Theorem 2 is proved.
Theorem 3. If $\left\|f_{\delta}-f\right\| \leq \delta, f=A y, \quad y \perp N(A)$ and

$$
\begin{equation*}
F_{\delta}(u)=\left\|A u-f_{\delta}\right\|^{2}+\alpha\|u\|^{2}=\min \tag{11}
\end{equation*}
$$

then there exists a unique global minimier $u_{\alpha, \delta}$ to (11) and $\lim _{\delta \rightarrow 0}\left\|u_{\delta}-y\right\|=0$, where $u_{\delta}:=u_{\alpha(\delta), \delta}$ and $\alpha(\delta)$ is properly chosen, in particular $\lim _{\delta \rightarrow 0} \alpha(\delta)=0$.

Proof. It follows from Lemma 2, y is unique. The existence and uniqueness of the minimizer $u_{\alpha, \delta}$ of $F_{\delta}(u)$ follows from Theorem 1 and $u_{\alpha, \delta}=A^{*}\left(Q+\alpha I_{Y}\right)^{-1} f_{\delta}$. We have

$$
\left\|u_{\alpha, \delta}-y\right\| \leq\left\|u_{\alpha, \delta}-u_{\alpha}\right\|+\left\|u_{\alpha}-f\right\| .
$$

By Theorem 2, $\left\|u_{\alpha}-f\right\|:=\eta(\alpha) \rightarrow 0$, as $\alpha \rightarrow 0$.
Let us estimate

$$
\left\|u_{\alpha, \delta}-u_{\alpha}\right\|=\left\|A^{*}\left(Q+\alpha I_{Y}\right)^{-1}\left(f_{\delta}-f\right)\right\| \leq \delta\left\|A^{*}\left(Q+\alpha I_{Y}\right)^{-1}\right\| .
$$

By the polar decomposition theorem [12], one has $A^{*}=U Q^{1 / 2}$, where U is a partial isometry, so $\|U\| \leq 1$. One has,

$$
\begin{aligned}
\left\|A^{*}\left(Q+\alpha I_{Y}\right)^{-1}\right\| & =\left\|U Q^{1 / 2}\left(Q+\alpha I_{Y}\right)^{-1}\right\| \leq\left\|Q^{1 / 2}\left(Q+\alpha I_{Y}\right)^{-1}\right\| \\
& =\max _{\lambda \geq 0 c} \frac{\lambda^{1 / 2}}{\lambda+\alpha}=\frac{1}{2 \sqrt{\alpha}}
\end{aligned}
$$

where the spectral representation for Q was used.
Thus

$$
\begin{equation*}
\left\|u_{\alpha, \delta}-y\right\| \leq \frac{\delta}{2 \sqrt{\alpha}}+\eta(\alpha) \tag{12}
\end{equation*}
$$

For a fixed small $\delta>0$, choose $\alpha=\alpha(\delta)$ which minimizes the right side of Equation (12). Then $\lim _{\delta \rightarrow 0} \alpha(\delta)=0$ and $\lim _{\delta \rightarrow 0}\left(\frac{\delta}{2 \sqrt{\alpha(\delta)}}+\eta(\alpha(\delta))\right)=0$.

Theorem 3 is proved.
Remark 1. We can also choose $\alpha(\delta)=c \delta^{k}$, with any $k<2$ and $c=$ const >0. The constant c can be arbitrary.
We can also choose $\alpha(\delta)$ by a descrepancy principle. For example, consider the equation for finding $\alpha(\delta)$:

$$
\left\|A u_{\alpha, \delta}-f_{\delta}\right\|=c \delta, c=\mathrm{const}>1
$$

We assume that $\left\|f_{\delta}\right\|>c \delta$.
That is the content of the following theorem.
Theorem 4. The equation

$$
\begin{equation*}
\left\|A u_{\alpha, \delta}-f_{\delta}\right\|=c \delta, c=\mathrm{const}>1,\left\|f_{\delta}\right\|>c \delta \tag{13}
\end{equation*}
$$

has a unique solution $\alpha=\alpha(\delta)>0, \lim _{\delta \rightarrow 0} \alpha(\delta)=0$, and if $u_{\delta}:=u_{\alpha(\delta), \delta}$, then $\lim _{\delta \rightarrow 0}\left\|u_{\delta}-y\right\|=0$.

Proof. Let us prove that Equation (13) has a unique root $\alpha(\delta)>0$, $\lim _{\delta \rightarrow 0} \alpha(\delta)=0$. Indeed, using the spectial theorem [12], one gets

$$
\begin{aligned}
\left\|A u_{\alpha, \delta}-f_{\delta}\right\|^{2} & =\left\|\left[A A^{*}(Q+\alpha I)\right]^{-1} f_{\delta}\right\|^{2}=\int_{0}^{\infty}\left|\frac{s}{s+\alpha}-1\right|^{2} d\left(E_{s}, f_{\delta}, f_{\delta}\right) \\
& =\alpha^{2} \int_{0}^{\infty} \frac{d\left(E_{s}, f_{\delta}, f_{\delta}\right)}{(s+\alpha)^{2}}:=g(\alpha, \delta)
\end{aligned}
$$

where E_{s} is the resolution of the identity of Q.
One has $g(\infty, \delta)=\left\|f_{\delta}\right\|^{2}>c^{2} \delta^{\delta}$, and $g(+0, \delta)=\left\|P_{N^{*}} f_{\delta}\right\|^{2}$, where $P_{N^{*}}$ is the orthoprojector onto the subspace $N^{*}=N(Q)=N\left(A^{*}\right)=R(A)^{\perp}$.

Since $f \in R(A)$ and $\left\|f_{\delta}-f\right\| \leq \delta$, it follows that $\left\|P_{N^{*}} f_{\delta}\right\| \leq \delta$, so $g(+0, \delta) \leq \delta^{2}$. The function $g(\alpha, \delta)$ for a fixed $\delta>0$ is a continuous strictly increasing function of α on $[0, \infty)$. Therefore there exists a unique $\alpha=\alpha(\delta)>0$ which solves Equation (13) if $\left\|f_{\delta}\right\|>c \delta$ and $c>1$. Clearly $\lim _{\delta \rightarrow 0} \alpha(\delta)=0$, because $\lim _{\delta \rightarrow 0} c \alpha(\delta)=0$ and the relation $\lim _{\delta \rightarrow 0} \alpha^{2}(\delta) \int_{0}^{\infty} \frac{d\left(E_{s}, f_{\delta}, f_{\delta}\right)^{\delta \rightarrow 0}}{(s+\alpha(\delta))^{2}}=0$ implies $\lim _{\delta \rightarrow 0} \alpha(\delta)=0$. The function $\alpha=\alpha(\delta)$ is a monotonically growing function of
δ with $\alpha(+0)=0$.
Let us prove that $\lim _{\delta \rightarrow 0}\left\|u_{\delta}-y\right\|=0$, where $u_{\delta}:=u_{\alpha(\delta), \delta}$, and $\alpha(\delta)$ solves Equation (13). By the definition of u_{δ}, we get

$$
\left\|A u_{\alpha}-f_{\delta}\right\|^{2}+\alpha(\delta)\left\|u_{\delta}\right\|^{2} \leq\left\|A y-f_{\delta}\right\|^{2}+\alpha(\delta)\|y\|^{2}=\delta^{2}+\alpha(\delta)\|y\|^{2}
$$

Since $\left\|A u_{\alpha}-f_{\delta}\right\|^{2}=c^{2} \delta^{2}>\delta^{2}$, it follows that $\left\|u_{\delta}\right\| \leq\|y\|$. Thus $u_{\delta} \dagger z$, and, as in the proof of Theorem 2, we obtain $z=y$ and $\lim _{\delta \rightarrow 0}\left\|u_{\delta}-y\right\|=0$.

Theorem 4 is proved.
Remark 2. Theorems 1-4 are well known in the case of a bounded operator A.
If A is bounded, then a necessary condition for the minimum of the functional $f(u)=\|A u-f\|^{2}+\alpha\|u\|^{2}$ is the equation

$$
\begin{equation*}
A^{*} A u+\alpha u=A^{*} f \tag{14}
\end{equation*}
$$

Hence in this case conditions are required $f \in D\left(A^{*}\right)$.
If A is unbounded, then f does not necessarily belong to $D\left(A^{*}\right)$, so Equation (14) may have no sence. Therefore, some changes in the usual theory are necessary. The changes are given in this paper. We prove, among other things, that for any $f \in Y$, in particular for $f \notin D\left(A^{*}\right)$, the element $u_{\alpha}=A^{*}\left(A A^{*}+\alpha I_{Y}\right)^{-1} f$ is well defined for any $\alpha=$ const >0, provided that A is a closed, linear, densely defined operator in Hilbert space (Theorem 1).

3. Applications

As a simple concrete example of this type of approximation, consider differentiation in $H=L^{2}[0,1]$.

We define the operator $A: D(A) \subset H \rightarrow H$ as follows

$$
A f=\frac{\mathrm{d} f}{\mathrm{~d} x}, f \in D(A)
$$

with $D(A)=\left\{f \in H: f\right.$ is absolutely continuous on $[0,1]$ and $\left.f^{\prime}(x) \in H\right\}$.
Then $D(A)$ is dense in H since it contains the complete orthonormal set $\{\sin n \pi x\}_{n=1}^{\infty}$.

Clearly, A is a linear operator.
We show that A is a closed operator in Hilbert space H. Indeed, for suppose $\left\{f_{n}\right\} \subset D(A)$ and $f_{n} \rightarrow f$ and $f_{n}^{\prime} \rightarrow g$, in each case the convergence being in the $L^{2}[0,1]$ norm. Since

$$
f_{n}(x)=f_{n}(0)+\int_{0}^{x} f_{n}^{\prime}(t) \mathrm{d} t
$$

we see that the sequence of constant functions $\left\{f_{n}(0)\right\}$ converges in $L^{2}[0,1]$ and hence the numerical sequence $\left\{f_{n}(0)\right\}$ converges to some real number C.

Now define $h \in D(A)$ by $h(x)=C+\int_{0}^{x} g(t) \mathrm{d} t$. Then, for any $x \in[0,1]$, we have by of the Cauchy-Schwarz inequality

$$
\begin{aligned}
\left|f_{n}(x)-h(x)\right| & =\left|f_{n}(0)-C+\int_{0}^{x}\left(f_{n}^{\prime}(t)-g(t)\right) \mathrm{d} t\right| \\
& \leq\left|f_{n}(0)-C\right|+\int_{0}^{x}\left|f_{n}^{\prime}(t)-g(t)\right| \mathrm{d} t \\
& \leq\left|f_{n}(0)-C\right|+\left\|f_{n}^{\prime}-g\right\|
\end{aligned}
$$

and hence $f_{n} \rightarrow h$ uniformly. Therefore, $f=h \in D(A)$ and $A f=f^{\prime}=h^{\prime}=g$, verifying that the operator A is closed, linear, densely defined in $L^{2}[0,1]$.

Let

$$
D^{*}=\{g \in D(A): g(0)=g(1)=0\} .
$$

Then for $f \in D(A)$ and $g \in D^{*}$, we have

$$
\langle A f, g\rangle=\int_{0}^{1} f^{\prime}(t) g(t) \mathrm{d} t=\left.f(t) g(t)\right|_{0} ^{1}-\int_{0}^{1} f(t) g^{\prime}(t) \mathrm{d} t=\left\langle f,-g^{\prime}\right\rangle
$$

Therefore $D^{*} \subset D\left(A^{*}\right)$ and $A^{*} g=-g^{\prime}$, for $g \in D^{*}$.
On the other hand, if $g \in D\left(A^{*}\right)$, let $g^{*}=A^{*} g$. Then

$$
\langle A f, g\rangle=\left\langle f, g^{*}\right\rangle
$$

for all $f \in D(A)$. In particular, for $f \equiv 1$, we find that $\int_{0}^{1} g^{*}(t) \mathrm{d} t=0$.
Now let

$$
h(t)=-\int_{0}^{t} g^{*}(s) \mathrm{d} s
$$

Then $h \in D^{*}$ and $A^{*} h=g^{*}=A^{*} g$ and hence $h-g \in N\left(A^{*}\right)$. Therefore, $\langle A f, h-g\rangle=0$, for all $f \in D(A)$. But $R(A)$ contains all continuous function and hence $g=h \in D^{*}$.

We conclude that

$$
D\left(A^{*}\right)=D^{*}, \text { and } A^{*} g=-g^{\prime}
$$

According to Theorem 1, for any $f \in Y=L^{2}[0,1]$, the problem

$$
F(u)=\|A u-f\|^{2}+\alpha\|u\|^{2} \rightarrow \min , \alpha=\text { const }>0
$$

has a unique solution $u_{\alpha}=A^{*}\left(A A^{*}+\alpha I\right)^{-1} f$, where I is the identity operator on $Y=L^{2}[0,1] . f \in Y=L^{2}[0,1]$ does not necessarily belong to $D\left(A^{*}\right)$.

It follows from Theorem 2, that if $f=A y, \quad y \perp N(A)$ then

$$
\lim _{\alpha \rightarrow 0}\left\|u_{\alpha}-y\right\|=0, u_{\alpha}=A^{*}\left(A A^{*}+\alpha I\right)^{-1} f .
$$

It follows from Theorem 3 , that if $\left\|f_{\delta}-f\right\| \leq \delta, f=A y$, and

$$
\begin{equation*}
F_{\delta}(u)=\left\|A u-f_{\delta}\right\|^{2}+\alpha\|u\|^{2}=\min \tag{15}
\end{equation*}
$$

then there exists a unique global minimier $u_{\alpha, \delta}$ to Equation (15) and $\lim _{\delta \rightarrow 0}\left\|u_{\delta}-y\right\|=0$, where $u_{\delta}:=u_{\alpha(\delta), \delta}$ and $\alpha(\delta)$ is properly chosen, in particular $\lim _{\delta \rightarrow 0} \alpha(\delta)=0$.

It follows from Theorem 4, that the equation

$$
\left\|A u_{\alpha, \delta}-f_{\delta}\right\|=c \delta, c=\mathrm{const}>1,\left\|f_{\delta}\right\|>c \delta,
$$

has a unique solution $\alpha=\alpha(\delta)>0, \lim _{\delta \rightarrow 0} \alpha(\delta)=0$, and if $u_{\delta}:=u_{\alpha(\delta), \delta}$, then $\lim _{\delta \rightarrow 0}\left\|u_{\delta}-y\right\|=0$.

Conflicts of Interest

The author declares no conflicts of interest regarding the publication of this paper.

References

[1] Tikhonov, A.N. and Arsenin, V.Ya. (1978) Solution of Ill-Posed Problems. John Wiley \& Sons, Hoboken.
[2] Groetsch, C.W. (2006) Stable Approximate Evualuation of Unbounded Operators. Springer, Berlin. https://doi.org/10.1007/3-540-39942-9
[3] Bakushinsky, A. and Goncharsky, A. (1994) Ill-Posed Problems: Theory and Applications. Springer, Berlin. https://doi.org/10.1007/978-94-011-1026-6
[4] Engl, H.W., Hanke, M. and Neubauer, A. (2000) Regularization of Inverse Problems. Kluwer, Alphen aan den.
[5] Morozov, V.A. (1984) Methods for Solving Incorrectly Posed Problems. Spring-er-Verlag, New York. https://doi.org/10.1007/978-1-4612-5280-1
[6] Ramm, A.G. (2005) Inverse Problems. Springer-Verlag, New York.
[7] Ramm, A.G. (2007) Ill-Posed Problems with Unbounded Operators. Journal of Mathematical Analysis and Applications, 325, 490-495. https://doi.org/10.1016/j.jmaa.2006.02.004
[8] Van Kinh, N., Chuong, N.M. and Gorenflo, R. (1996) Regularization Method for Nonlinear Variational Inequalities. Proceedings of the First National Workshop "Optimization and Control", Quinhon, May 27 - June 1, 1996, 53-64. (Preprint: Nr. A-89-28, Freie Universitat, Berlin).
[9] Van Kinh, N. (2007) Lavrentiev Regularization Method for Nonlinear Ill-Posed Problems. Quy Nhon Uni. Journal of Science, No. 1, 13-28.
[10] Van Kinh, N. (2014) On the Stable Method of Computing Values of Unbounded Operators. Journal Science of Ho Chi MInh City University of Food Industry, No. 2, 21-30.
[11] Van Kinh, N. (2020) On the Stable Method Computing Values of Unbounded Operators. Open Journal of Optimization, 9, 129-137. https://doi.org/10.4236/ojop.2020.94009
[12] Zwart, K. (2018) The Spectral Theorem for Unbounded Self-Adjoint Operators and Nelson's Theorem. Bachelor Thesis, Universiteit Utrecht, Utrecht.

