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Abstract

Let A:D(A)c X —Y be a linear, closed, and densely defined unbounded

operator, where X and Y are Hilbert spaces. Assume that A is not boundedly
invertible. Suppose the equation Au= f is solvable, and instead of knowing

exactly f only know its approximation f; satisfies the condition:

| f;—f|<5,0<5—0. In this paper, we are interested a regularization method
to solve the approximation solution of this equation. This approximation is a unique
global minimizer u, , of the functional F,(u):=|Au—f,|" +a|u|’, for any

fy €Y , defined as follows: u, ; = A"(AA" +al, )71 f,. We also study the sta-

bility of this method when the regularization parameter is selected a priori and
a posteriori. At the same time, we give an application of this method to the

weak derivative operator equation in Hilbert space H = L° [O,l] .
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1. Introduction

Let A:D(A)c X —Y be alinear, closed, densely defined unbounded operator,
where X and Y are Hilbert spaces. Consider the equation

Au=f @)

Problem-solving solution of Equation (1) is called ill-posed [1] if A is not
boundedly invertible. This may happen if the null space N(A)={u:Au=0} is
not trivial, i.e. A is not injective, or if A is injective but A™ is unbounded, i.e. the
range of A, R(A) isnot closed [2].

If ||A] <oo, problem-solving stable solution of Equation (1) has been exten-
sively studied in the literature in detail ([2] [3] [4] [5] [6] and references therein).
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If f,the noisy data, are given
[fs—f|<o (2)

is a stable approximation to the unique minimal norn solution to Equation (1) was
constructed by several methods (variational regularization, quasi solution, iterative
regularization, ... [2] [3] [4] [5] [6] and references therein).

If A is a linear, closed, densely defined unbounded operator, problem (1) has
been some recent research [2] [7] [8] [9] [10] [11], however, there are still many
open problems such as parameter choice rules of regularization method with the
linear closed, densely defined unbounded operator A:D(A)c X —VY .

Our aim is to study problem-solving stable approximation solution of Equation
(1) when operator A is a linear, closed, and densely defined from space Hilbert X
into space Hilbert Y. We shall present the regularization method for solving the
problem (1), we shall present a priori and a posteriori parameter choice rules of
regularization; at the same time give an application to the weak derivative operator
equation.

The paper structure consists of 3 sections: Section 1 the introduction briefly
summarizes the recent research results and come up with the problem that needs to
be studied; Section 2 presents some main results; Section 3 presents an application
of this method.

2. Some Main Results

Lemma 1. [2] Let A:D(A)c X —Y be a linear, closed, densely defined
operator, where X and Y are Hilbert spaces, then

1) the operators T =A"A and Q= AA" are densely defined, self-adjoint;

2) A" isclosed, densely defined and A™ = A;

3) the operators A:=(I + A"A)fl :X Y, AA:X —Y are both defined on
all of X and are bounded, cr(A) c[0,1]. Also, A is self-adjoint;

4) the operator A:=(l, +AA’ )71 'Y = X is bounded and self-adjoint and
A"A:Y — X is bounded.

Lemma 2. Let A:D(A)c X —Y be a linear, closed, densely defined opera-
tor, where X and Y are Hilbert spaces. If f = Ay, y 1 N(A) theny is unique.

Proof. Suppose y,, and vy, satisfy f=Ay,, y, LN(A), and f=Ay,,
Y, LN(A) then A(y,—y,)=0. Thus y,—y, e N(A). There exits ueN(A)
such that y,—y,=u imply (y,—y,,u)=(y;,u)—(y,,u)=0=(u,u) . Thus
u=0,itfollowsthat y, =v,.

Theorem 1. Forany f €Y, the problem

F(u):||Au—f||2+a||u||2 — min, a = const > 0, 3)
has a unique solution u, = A" (AA +al, )_1 f , where 1, is the identity opera-

toronY.
Proof. Consider the equation

(AA*+aIY)Wa:f,a:const>O 4)
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which is uniquely solvable w, =(AA* +aly, )71 f (Lemma 1). Let u, = A'w,
then

-1
Au, = AN (AA" +al, ) f
= (A +al, ) (AN +al,) f-al, (AN +al,) f
=f-aw,,
or
Au, — f =—aw,.
We have
F(u+v)=|Au— | +afulf +|Av|* +a|v +2Re[(Au-f,Av)+a(u,v)],(5)
forany ve D(A).If u=u,,then
(Au, - f,AV)+a(u,,v)=—a(w,, Av)+a(u,,V)
6
:—a(A*Wa,v)+a(ua,v):O. (©)
Thus Equation (6) implies
F(u, +v)=F(u,)+[Av] +av 2 F(u,) ™
and F(u,+v)=F(u,) ifandonly if v=0,so u, is the unique minimier of

F(u).
Theorem 1 is proved.
Theorem 2. If f =Ay, y 1 N(A) then

l —0,u, = A" (AN +al) f 8
limfu, —y|=0,u, = (AR +al) f. (8)
Proof. It follows from Lemma 2, y is unique. Write Equation (4) as
A(A'w, —y)=—aw,. Apply A", which is possible because w, € D(A"), we ob-
tain
A'A(u, —y)=—au,. 9)
Multiply Equation (9) by u, —y, we obtain
(A*A(ua_y)lua_y):_a(ua'ua_y)
or
2
A, =) =-a(luf - (u.y) (10
Since a >0 thisimplies
Ju. I < (u,.y),

SO
lu, || <]ly]l, Ve > 0.

Therefore one may assume (taking a subsequence) that u, weakly converges
toanelementz, u,=u, ¥ z,as &, —>0.
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It follows from Equation (10) that

tm|A(s, )| 0, ie.fim|Au, - £] 0.

We shall prove that z=y.
Let y run through the set such that {A*Ay} is dense in N*, where

N:=N(A).Notethat N(T)=N(A),where T =A"A.Because of the formulas

X =R(T)®N(T) the {y}=D(T) is dense in X, and the set {Ty} is dense

in N*.
Multiply the equation T (u, —y)=—au, by y and pass to the limit a—0.
We obtain
(z-y,Ty)=0.
We have assume Yy LN. If zLN, then z—yLN and z—y L N*, so
z-y=0.

One may always assume that z L N because Tu, =Tu,, where u, is the
orthogonal projection of u, onto N*.

Thus, we have u, =u, 1 z, [u,|<|y|. Thusimplies r!Er;”un -y|=0.

For convenience for the reader we prove this claim. Since u, :=u,  z, one

nN—o0

gets |y| < lim|ju,| . The inequality |u,|<]y| implies ﬁ||un||s||y|| Therefore

lim|u,||=[ly|. This and the weakly converge u, :=u, 1 z imply strong con-

nN—o0

vergence
u, - y||2 = ||un||2 +||y||2 —2Re(u, —y)—0,asn — oo

Theorem 2 is proved.
Theorem 3. If ||f,—f|<s, f=Ay, yLN(A) and

Fs(u)=|Au- 1‘5||2 +a||u||2 =min, (11)

then there exists a unique global minimier u,, to (11) and !;iirg||u(,—y||:0,

where u; = Uy(o).5 and «(5) is properly chosen, in particular Li_rga(&) =0.
Proof. It follows from Lemma 2, y is unique. The existence and uniqueness of

the minimizer u, ; of F;(u) follows from Theorem 1 and

U,; =A (Q+al,)" f,. We have

||Ua,5 - y|| < ||ua’5 ~u, ||+||ua il

By Theorem 2, |u, —f|=7(a)—>0,as a—0.
Let us estimate

i —ue]= A (Q+aly)”

A (Qraly ) (f,-1)|<s

By the polar decomposition theorem [12], one has A" =UQ"?, where U is a
partial isometry, so |U[<1. One has,
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A" (Q+aly)

”UQ“ Q+al, ﬂs“QW(Q+1uYyl
NS
M va 2da’

where the spectral representation for Q was used.
Thus

Ju... —VIIS%w(a)- 12)

For a fixed small & >0, choose « =« (&) which minimizes the right side of

Equation (12). Then Linga( )=0 and lim

a»o[z , J
Theorem 3 is proved.

Remark 1. We can also choose a(5)=cs*, withany k<2 and
c =const > 0. The constant ¢ can be arbitrary.

We can also choose (&) by a descrepancy principle. For example, consider
the equation for finding «(5):
|Au, 5 - f5]|=c5, ¢ =const > 1.

We assume that ||f]>co .
That is the content of the following theorem.
Theorem 4. The equation

|Au, 5 = 5] =c5, c = const >1,||f,] > cs, (13)

has a unique solution o =a(5)>0, Linga(&) 0, and if u;:=u,
limu, —y|=0

Proof. Let us prove that Equation (13) has a unique root «(&5)>0,
Iima(&) =0. Indeed, using the spectial theorem [12], one gets

50
o0
- Io

=9(a,d),

(6)0 , then

|Au, ; f||_H Q+an
=a2J‘°°d( s’ 5’f5)

0 (S+05)2

2
s
—— -1 d(E_, f,, f
S+a ‘ (B fs15)

where E, is the resolution of the identity of Q.

One has g(o0,8)=||f,[* >c?6?, and g(+0,8)= |PN* f5||2, where P . is the

orthoprojector onto the subspace N*=N(Q)=N (A) = R(A)L.

Since f eR(A) and ||f, - f||<s5, it follows that ||PN* f(;"s&,so
g(+0,6) < 6%, The function g (ar,8) forafixed 6>0 isa continuous strictly in-
creasing function of o on [0,00). Therefore there exists a unique o =a(5)>0
which solves Equation (13) if |f;|>cs and c>1. Clearly Iima(&):o,
«d(E, f5, f; )

(s+a(d))

Ilma(é):o. The function a =a/(5) is a monotonically growing function of

60

because limca(5)=0 and the relation Ilma 5[ =0 implies
50 5
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5 with a(+0)=0.
Let us prove that Ling||u§—y||=0, where Us:=U,. . and a(8) solves
Equation (13). By the definition of u,, we get

[, = &I +a(8)usl <Ay = £, +a(@)ly = 5" +a (s

since |Au, - f,| =c?6> > &7, it follows that [u,]<]|y|. Thus u, + z, and,
as in the proof of Theorem 2, we obtain z=y and LILT(}"U‘, -y|=0.
Theorem 4 is proved.
Remark 2. Theorems 1 - 4 are well known in the case of a bounded operator A.
If A is bounded, then a necessary condition for the minimum of the functional
f(u)=|Au- f||2 +0:||u||2 is the equation
A'Au+au=A"f. (14)

Hence in this case conditions are required f € D(A").

If A is unbounded, then f does not necessarily belong to D(A"), so Equation
(14) may have no sence. Therefore, some changes in the usual theory are neces-
sary. The changes are given in this paper. We prove, among other things, that for
any feY, in particular for f ¢ D(A*), the element u, = A"(AA" +al, )_1 f
is well defined for any « =const >0, provided that A is a closed, linear, densely

defined operator in Hilbert space (Theorem 1).

3. Applications

As a simple concrete example of this type of approximation, consider differentia-
tionin H=1%[0,1].

We define the operator A:D(A)cH —H as follows

Af =ﬁ, f eD(A),
dx

with D(A):{f e H : f isabsolutely continuous on [0,1]and f'(x) e H}.

Then D(A) is dense in H since it contains the complete orthonormal set
{sinnnx}” .

Clearly, A is a linear operator.

We show that A is a closed operator in Hilbert space H. Indeed, for suppose
{f,}J=D(A) and f — f and f ' — g,ineach case the convergence being in
the L*[0,1] norm. Since

f,(x)=f,(0)+ ] f,(t)dt,
we see that the sequence of constant functions {f, (0)} converges in L*[0,1]
and hence the numerical sequence {fn (0)} converges to some real number C.

Now define he D(A) by h(x) =C+J'0Xg(t)dt . Then, for any xe[0,1], we
have by of the Cauchy-Schwarz inequality
f, () =n(x)] = | (0)=C+ [} (£i(1) - (1))t
<[f,(0)=Cl+ [ ]f/(t)- g (t)|dt

1:n (O)_C|+” fn'_g"

<
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and hence f —h uniformly. Therefore, f =heD(A) and Af =f'=h'=g,
verifying that the operator A is closed, linear, densely defined in L [0,1] .
Let

D' ={geD(A):g(0)=g(1)=0}.
Thenfor f eD(A) and geD",we have
(Af.9)=J, (D g(Odt=f (DO, [ f (g (dt=(f.-0")
Therefore D' < D(A') and A'g=-g’, for geD".
On the other hand, if g e D(A*), let g*=A"g.Then
<Af,g>=<f,g*>

forall f eD(A). In particular, for f =1, we find that j:g*(t)dtzo.
Now let

h(t)=-[ g" (s)ds.

Then heD” and A'h=g"=A'g and hence h—-geN (A) . Therefore,
(Af,h—g)=0, for all feD(A). But R(A) contains all continuous function
and hence g=heD".

We conclude that

D(A")=D",and A'g =-g".
According to Theorem 1, forany f eY =L?[0,1], the problem

F(u)=]Au= ]+ el —min, & = const >0,

has a unique solution u, = A* (AA +al )71 f , where | is the identity operator on
Y=L*[01]. feY=L?[01] doesnot necessarily belong to D(A").
It follows from Theorem 2, that if f =Ay, y L N(A) then
l —0,u, = A (AN +al)
limfu, —y|=0.u, = (AN +al) " f.
It follows from Theorem 3, that if ||f, - f||<s5, f=Ay,and
F, () =[Au— f,| +eu]* = min, (15)
then there exists a unique global minimier u,, to Equation (15) and

Ling||u5 —y|=0, where u,:= U, and a(&) is properly chosen, in particular
limea(5)=0.

60

It follows from Theorem 4, that the equation

|Au, 5 = 5] =5, c = const > 1, ||, > c5,
has a unique solution o =a(5)>0, Ligg)a(&)=0, and if u;=U,, ;, then
i, -1 -0
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