

On the Regularization Method for Solving Ill-Posed Problems with Unbounded Operators

Nguyen Van Kinh

Faculty of Applied Science, Ho Chi Minh University of Food Industry, Ho Chi Minh City, Vietnam Email: nguyenvankinh58@gmail.com

How to cite this paper: Van Kinh, N. (2022) On the Regularization Method for Solving Ill-Posed Problems with Unbounded Operators. *Open Journal of Optimization*, **11**, 7-14.

https://doi.org/10.4236/ojop.2022.112002

Received: April 16, 2022 **Accepted:** June 11, 2022 **Published:** June 15, 2022

Copyright © 2022 by author(s) and Scientific Research Publishing Inc. This work is licensed under the Creative Commons Attribution International License (CC BY 4.0). http://creativecommons.org/licenses/by/4.0/

Abstract

Let $A: D(A) \subset X \to Y$ be a linear, closed, and densely defined unbounded operator, where X and Y are Hilbert spaces. Assume that A is not boundedly invertible. Suppose the equation Au = f is solvable, and instead of knowing exactly f only know its approximation f_{δ} satisfies the condition:

 $||f_{\delta} - f|| \le \delta, 0 < \delta \to 0$. In this paper, we are interested a regularization method to solve the approximation solution of this equation. This approximation is a unique global minimizer $u_{\alpha,\delta}$ of the functional $F_{\delta}(u) := ||Au - f_{\delta}||^2 + \alpha ||u||^2$, for any $f_{\delta} \in Y$, defined as follows: $u_{\alpha,\delta} = A^* (AA^* + \alpha I_x)^{-1} f_{\delta}$. We also study the stability of this method when the regularization parameter is selected a priori and a posteriori. At the same time, we give an application of this method to the weak derivative operator equation in Hilbert space $H = L^2[0,1]$.

Keywords

Ill-Posed Problem, Regularization Method, Unbounded Linear Operator

1. Introduction

Let $A: D(A) \subset X \to Y$ be a linear, closed, densely defined unbounded operator, where *X* and *Y* are Hilbert spaces. Consider the equation

$$Au = f \tag{1}$$

Problem-solving solution of Equation (1) is called ill-posed [1] if A is not boundedly invertible. This may happen if the null space $N(A) = \{u : Au = 0\}$ is not trivial, *i.e.* A is not injective, or if A is injective but A^{-1} is unbounded, *i.e.* the range of A, R(A) is not closed [2].

If $||A|| < \infty$, problem-solving stable solution of Equation (1) has been extensively studied in the literature in detail ([2] [3] [4] [5] [6] and references therein).

If f_{δ} , the noisy data, are given

$$\|f_{\delta} - f\| \le \delta \tag{2}$$

is a stable approximation to the unique minimal norn solution to Equation (1) was constructed by several methods (variational regularization, quasi solution, iterative regularization, ... [2] [3] [4] [5] [6] and references therein).

If *A* is a linear, closed, densely defined unbounded operator, problem (1) has been some recent research [2] [7] [8] [9] [10] [11], however, there are still many open problems such as parameter choice rules of regularization method with the linear closed, densely defined unbounded operator $A: D(A) \subset X \to Y$.

Our aim is to study problem-solving stable approximation solution of Equation (1) when operator A is a linear, closed, and densely defined from space Hilbert X into space Hilbert Y. We shall present the regularization method for solving the problem (1), we shall present a priori and a posteriori parameter choice rules of regularization; at the same time give an application to the weak derivative operator equation.

The paper structure consists of 3 sections: Section 1 the introduction briefly summarizes the recent research results and come up with the problem that needs to be studied; Section 2 presents some main results; Section 3 presents an application of this method.

2. Some Main Results

Lemma 1. [2] Let $A: D(A) \subset X \to Y$ be a linear, closed, densely defined operator, where X and Y are Hilbert spaces, then

1) the operators $T = A^*A$ and $Q = AA^*$ are densely defined, self-adjoint;

2) A^* is closed, densely defined and $A^{**} = A$;

3) the operators $\tilde{A} := (I_X + A^*A)^{-1} : X \to Y$, $A\tilde{A} : X \to Y$ are both defined on all of X and are bounded, $\sigma(\tilde{A}) \subseteq [0,1]$. Also, \tilde{A} is self-adjoint;

4) the operator $\hat{A} := (I_Y + AA^*)^{-1} : Y \to X$ is bounded and self-adjoint and $A^*\hat{A} : Y \to X$ is bounded.

Lemma 2. Let $A: D(A) \subset X \to Y$ be a linear, closed, densely defined operator, where X and Y are Hilbert spaces. If f = Ay, $y \perp N(A)$ then y is unique.

Proof. Suppose y_1 , and y_2 satisfy $f = Ay_1$, $y_1 \perp N(A)$, and $f = Ay_2$, $y_2 \perp N(A)$ then $A(y_1 - y_2) = 0$. Thus $y_1 - y_2 \in N(A)$. There exits $u \in N(A)$ such that $y_1 - y_2 = u$ imply $\langle y_1 - y_2, u \rangle = \langle y_1, u \rangle - \langle y_2, u \rangle = 0 = \langle u, u \rangle$. Thus u = 0, it follows that $y_1 = y_2$.

Theorem 1. For any $f \in Y$, the problem

$$F(u) = ||Au - f||^2 + \alpha ||u||^2 \rightarrow \min, \alpha = \operatorname{const} > 0,$$
(3)

has a unique solution $u_{\alpha} = A^* (AA^* + \alpha I_Y)^{-1} f$, where I_Y is the identity operator on *Y*.

Proof. Consider the equation

$$AA^* + \alpha I_{\gamma} w_{\alpha} = f, \alpha = \text{const} > 0$$
⁽⁴⁾

which is uniquely solvable $w_{\alpha} = (AA^* + \alpha I_Y)^{-1} f$ (Lemma 1). Let $u_{\alpha} = A^* w_{\alpha}$ then

$$Au_{\alpha} = AA^{*} \left(AA^{*} + \alpha I_{Y}\right)^{-1} f$$

= $\left(AA^{*} + \alpha I_{Y}\right) \left(AA^{*} + \alpha I_{Y}\right)^{-1} f - \alpha I_{Y} \left(AA^{*} + \alpha I_{Y}\right)^{-1} f$
= $f - \alpha w_{\alpha}$,

or

 $Au_{\alpha}-f=-\alpha w_{\alpha}.$

We have

$$F(u+v) = \|Au - f\|^{2} + \alpha \|u\|^{2} + \|Av\|^{2} + \alpha \|v\|^{2} + 2\operatorname{Re}\left[(Au - f, Av) + \alpha(u, v)\right], (5)$$

for any $v \in D(A)$. If $u = u_{\alpha}$, then

$$(Au_{\alpha} - f, Av) + \alpha(u_{\alpha}, v) = -\alpha(w_{\alpha}, Av) + \alpha(u_{\alpha}, v)$$

= $-\alpha(A^*w_{\alpha}, v) + \alpha(u_{\alpha}, v) = 0.$ (6)

Thus Equation (6) implies

$$F\left(u_{\alpha}+v\right) = F\left(u_{\alpha}\right) + \left\|Av\right\|^{2} + \alpha \left\|v\right\|^{2} \ge F\left(u_{\alpha}\right)$$

$$\tag{7}$$

and $F(u_{\alpha} + v) = F(u_{\alpha})$ if and only if v = 0, so u_{α} is the unique minimier of F(u).

Theorem 1 is proved.

Theorem 2. If f = Ay, $y \perp N(A)$ then

$$\lim_{\alpha \to 0} \|u_{\alpha} - y\| = 0, u_{\alpha} = A^* \left(A A^* + \alpha I \right)^{-1} f.$$
(8)

Proof. It follows from Lemma 2, y is unique. Write Equation (4) as $A(A^*w_{\alpha} - y) = -\alpha w_{\alpha}$. Apply A^* , which is possible because $w_{\alpha} \in D(A^*)$, we obtain

$$A^*A(u_\alpha - y) = -\alpha u_\alpha. \tag{9}$$

Multiply Equation (9) by $u_{\alpha} - y$, we obtain

$$(A^*A(u_{\alpha}-y),u_{\alpha}-y) = -\alpha(u_{\alpha},u_{\alpha}-y)$$

or

$$\|A(u_{\alpha} - y)\|^{2} = -\alpha (\|u_{\alpha}\|^{2} - (u_{\alpha}, y)).$$
(10)

Since $\alpha > 0$ this implies

$$\left\|\boldsymbol{u}_{\alpha}\right\|^{2} \leq (\boldsymbol{u}_{\alpha}, \boldsymbol{y}),$$

so

$$\|u_{\alpha}\| \leq \|y\|, \forall \alpha > 0.$$

Therefore one may assume (taking a subsequence) that u_{α} weakly converges to an element z, $u_n \coloneqq u_{\alpha_n} \dagger z$, as $\alpha_n \to 0$.

It follows from Equation (10) that

$$\lim_{n \to \infty} \|A(u_n - y)\| = 0, i.e. \lim_{n \to \infty} \|Au_n - f\| = 0.$$

We shall prove that z = y.

Let γ run through the set such that $\{A^*A\gamma\}$ is dense in N^{\perp} , where N := N(A). Note that N(T) = N(A), where $T = A^*A$. Because of the formulas $X = \overline{R(T)} \oplus N(T)$ the $\{\gamma\} = D(T)$ is dense in X, and the set $\{T\gamma\}$ is dense in N^{\perp} .

Multiply the equation $T(u_{\alpha} - y) = -\alpha u_{\alpha}$ by γ and pass to the limit $\alpha \to 0$. We obtain

$$(z-y,T\gamma)=0.$$

We have assume $y \perp N$. If $z \perp N$, then $z - y \perp N$ and $z - y \perp N^{\perp}$, so z - y = 0.

One may always assume that $z \perp N$ because $Tu_{\alpha} = Tu_{\alpha}$, where u_{α} is the orthogonal projection of u_{α} onto N^{\perp} .

Thus, we have $u_n := u_{\alpha_n} \dagger z$, $||u_n|| \le ||y||$. Thus implies $\lim_{n \to \infty} ||u_n - y|| = 0$. For convenience for the reader we prove this claim. Since $u_n := u_{\alpha_n} \dagger z$, one

gets $||y|| \le \lim_{n \to \infty} ||u_n||$. The inequality $||u_n|| \le ||y||$ implies $\lim_{n \to \infty} ||u_n|| \le ||y||$. Therefore $\lim_{n \to \infty} ||u_n|| = ||y||$. This and the weakly converge $u_n \coloneqq u_{\alpha_n} \ddagger z$ imply strong convergence

$$||u_n - y||^2 = ||u_n||^2 + ||y||^2 - 2\operatorname{Re}(u_n - y) \to 0$$
, as $n \to \infty$.

Theorem 2 is proved.

Theorem 3. If
$$||f_{\delta} - f|| \le \delta$$
, $f = Ay$, $y \perp N(A)$ and
 $F_{\delta}(u) = ||Au - f_{\delta}||^{2} + \alpha ||u||^{2} = \min,$
(11)

then there exists a unique global minimier $u_{\alpha,\delta}$ to (11) and $\lim_{\delta \to 0} ||u_{\delta} - y|| = 0$, where $u_{\delta} := u_{\alpha(\delta),\delta}$ and $\alpha(\delta)$ is properly chosen, in particular $\lim_{\delta \to 0} \alpha(\delta) = 0$.

Proof. It follows from Lemma 2, y is unique. The existence and uniqueness of the minimizer $u_{\alpha,\delta}$ of $F_{\delta}(u)$ follows from Theorem 1 and $u_{\alpha,\delta} = A^* (Q + \alpha I_Y)^{-1} f_{\delta}$. We have

$$\left\|u_{\alpha,\delta} - y\right\| \le \left\|u_{\alpha,\delta} - u_{\alpha}\right\| + \left\|u_{\alpha} - f\right\|.$$

By Theorem 2, $||u_{\alpha} - f|| \coloneqq \eta(\alpha) \to 0$, as $\alpha \to 0$. Let us estimate

$$\left|u_{\alpha,\delta}-u_{\alpha}\right|=\left\|A^{*}\left(Q+\alpha I_{Y}\right)^{-1}\left(f_{\delta}-f\right)\right\|\leq\delta\left\|A^{*}\left(Q+\alpha I_{Y}\right)^{-1}\right\|.$$

By the polar decomposition theorem [12], one has $A^* = UQ^{1/2}$, where U is a partial isometry, so $||U|| \le 1$. One has,

$$\begin{split} \left| A^* \left(Q + \alpha I_Y \right)^{-1} \right\| &= \left\| U Q^{1/2} \left(Q + \alpha I_Y \right)^{-1} \right\| \le \left\| Q^{1/2} \left(Q + \alpha I_Y \right)^{-1} \right\| \\ &= \max_{\lambda \ge 0c} \frac{\lambda^{1/2}}{\lambda + \alpha} = \frac{1}{2\sqrt{\alpha}}, \end{split}$$

where the spectral representation for Q was used.

Thus

$$\left\| u_{\alpha,\delta} - y \right\| \le \frac{\delta}{2\sqrt{\alpha}} + \eta\left(\alpha\right). \tag{12}$$

For a fixed small $\delta > 0$, choose $\alpha = \alpha(\delta)$ which minimizes the right side of

Equation (12). Then $\lim_{\delta \to 0} \alpha(\delta) = 0$ and $\lim_{\delta \to 0} \left(\frac{\delta}{2\sqrt{\alpha(\delta)}} + \eta(\alpha(\delta)) \right) = 0.$

Theorem 3 is proved.

Remark 1. We can also choose $\alpha(\delta) = c\delta^k$, with any k < 2 and c = const > 0. The constant *c* can be arbitrary.

We can also choose $\alpha(\delta)$ by a descrepancy principle. For example, consider the equation for finding $\alpha(\delta)$:

$$\|Au_{\alpha,\delta} - f_{\delta}\| = c\delta, c = \text{const} > 1.$$

We assume that $||f_{\delta}|| > c\delta$.

That is the content of the following theorem.

Theorem 4. The equation

$$\left|Au_{\alpha,\delta} - f_{\delta}\right| = c\delta, c = \text{const} > 1, \left\|f_{\delta}\right\| > c\delta,$$
(13)

has a unique solution $\alpha = \alpha(\delta) > 0$, $\lim_{\delta \to 0} \alpha(\delta) = 0$, and if $u_{\delta} := u_{\alpha(\delta),\delta}$, then $\lim_{\delta \to 0} ||u_{\delta} - y|| = 0$.

Proof. Let us prove that Equation (13) has a unique root $\alpha(\delta) > 0$, $\lim_{\delta \to 0} \alpha(\delta) = 0$. Indeed, using the spectial theorem [12], one gets

$$\begin{split} \left\|Au_{\alpha,\delta} - f_{\delta}\right\|^{2} &= \left\|\left[AA^{*}\left(Q + \alpha I\right)\right]^{-1} f_{\delta}\right\|^{2} = \int_{0}^{\infty} \left|\frac{s}{s + \alpha} - 1\right|^{2} d\left(E_{s}, f_{\delta}, f_{\delta}\right) \\ &= \alpha^{2} \int_{0}^{\infty} \frac{d\left(E_{s}, f_{\delta}, f_{\delta}\right)}{\left(s + \alpha\right)^{2}} \coloneqq g\left(\alpha, \delta\right), \end{split}$$

where E_s is the resolution of the identity of Q.

One has $g(\infty, \delta) = ||f_{\delta}||^2 > c^2 \delta^{\delta}$, and $g(+0, \delta) = ||P_{N^*} f_{\delta}||^2$, where P_{N^*} is the orthoprojector onto the subspace $N^* = N(Q) = N(A^*) = R(A)^{\perp}$.

Since $f \in R(A)$ and $||f_{\delta} - f|| \le \delta$, it follows that $||P_{N^*}f_{\delta}|| \le \delta$, so $g(+0,\delta) \le \delta^2$. The function $g(\alpha,\delta)$ for a fixed $\delta > 0$ is a continuous strictly in-

 $g(+0,\delta) \le \delta^2$. The function $g(\alpha,\delta)$ for a fixed $\delta > 0$ is a continuous strictly increasing function of α on $[0,\infty)$. Therefore there exists a unique $\alpha = \alpha(\delta) > 0$ which solves Equation (13) if $||f_{\delta}|| > c\delta$ and c > 1. Clearly $\lim_{\delta \to 0} \alpha(\delta) = 0$, because $\lim_{\delta \to 0} c\alpha(\delta) = 0$ and the relation $\lim_{\delta \to 0} \alpha^2(\delta) \int_0^\infty \frac{d(E_s, f_{\delta}, f_{\delta})}{(s + \alpha(\delta))^2} = 0$ implies

 $\lim_{\delta \to 0} \alpha(\delta) = 0$. The function $\alpha = \alpha(\delta)$ is a monotonically growing function of

 δ with $\alpha(+0) = 0$.

Let us prove that $\lim_{\delta \to 0} ||u_{\delta} - y|| = 0$, where $u_{\delta} \coloneqq u_{\alpha(\delta),\delta}$, and $\alpha(\delta)$ solves Equation (13). By the definition of u_{δ} , we get

$$\|Au_{\alpha}-f_{\delta}\|^{2}+\alpha(\delta)\|u_{\delta}\|^{2} \leq \|Ay-f_{\delta}\|^{2}+\alpha(\delta)\|y\|^{2}=\delta^{2}+\alpha(\delta)\|y\|^{2}.$$

Since $||Au_{\alpha} - f_{\delta}||^2 = c^2 \delta^2 > \delta^2$, it follows that $||u_{\delta}|| \le ||y||$. Thus $u_{\delta} \dagger z$, and, as in the proof of Theorem 2, we obtain z = y and $\lim_{\delta \to 0} ||u_{\delta} - y|| = 0$.

Theorem 4 is proved.

Remark 2. Theorems 1 - 4 are well known in the case of a bounded operator *A*.

If *A* is bounded, then a necessary condition for the minimum of the functional $f(u) = ||Au - f||^2 + \alpha ||u||^2$ is the equation

$$A^*Au + \alpha u = A^*f. \tag{14}$$

Hence in this case conditions are required $f \in D(A^*)$.

If *A* is unbounded, then *f* does not necessarily belong to $D(A^*)$, so Equation (14) may have no sence. Therefore, some changes in the usual theory are necessary. The changes are given in this paper. We prove, among other things, that for any $f \in Y$, in particular for $f \notin D(A^*)$, the element $u_{\alpha} = A^* (AA^* + \alpha I_Y)^{-1} f$ is well defined for any $\alpha = \text{const} > 0$, provided that *A* is a closed, linear, densely defined operator in Hilbert space (Theorem 1).

3. Applications

As a simple concrete example of this type of approximation, consider differentiation in $H = L^2[0,1]$.

We define the operator $A: D(A) \subset H \to H$ as follows

$$Af = \frac{\mathrm{d}f}{\mathrm{d}x}, \, f \in D(A)$$

with $D(A) = \{ f \in H : f \text{ is absolutely continuous on } [0,1] \text{ and } f'(x) \in H \}$.

Then D(A) is dense in *H* since it contains the complete orthonormal set $\{\sin n\pi x\}_{n=1}^{\infty}$.

Clearly, A is a linear operator.

We show that A is a closed operator in Hilbert space H. Indeed, for suppose $\{f_n\} \subset D(A)$ and $f_n \to f$ and $f'_n \to g$, in each case the convergence being in the $L^2[0,1]$ norm. Since

$$f_n(x) = f_n(0) + \int_0^x f_n'(t) \mathrm{d}t,$$

we see that the sequence of constant functions $\{f_n(0)\}$ converges in $L^2[0,1]$ and hence the numerical sequence $\{f_n(0)\}$ converges to some real number *C*.

Now define $h \in D(A)$ by $h(x) = C + \int_0^x g(t) dt$. Then, for any $x \in [0,1]$, we have by of the Cauchy-Schwarz inequality

$$|f_n(x) - h(x)| = |f_n(0) - C + \int_0^x (f'_n(t) - g(t)) dt|$$

$$\leq |f_n(0) - C| + \int_0^x |f'_n(t) - g(t)| dt$$

$$\leq |f_n(0) - C| + ||f'_n - g||$$

and hence $f_n \to h$ uniformly. Therefore, $f = h \in D(A)$ and Af = f' = h' = g, verifying that the operator A is closed, linear, densely defined in $L^2[0,1]$. Let

$$D^* = \{g \in D(A) : g(0) = g(1) = 0\}.$$

Then for $f \in D(A)$ and $g \in D^*$, we have

$$\left\langle Af,g\right\rangle = \int_{0}^{1} f'(t)g(t)dt = f(t)g(t)\Big|_{0}^{1} - \int_{0}^{1} f(t)g'(t)dt = \left\langle f,-g'\right\rangle$$

Therefore $D^* \subset D(A^*)$ and $A^*g = -g'$, for $g \in D^*$. On the other hand, if $g \in D(A^*)$, let $g^* = A^*g$. Then

$$\langle Af,g \rangle = \langle f,g^* \rangle$$

for all $f \in D(A)$. In particular, for $f \equiv 1$, we find that $\int_0^1 g^*(t) dt = 0$. Now let

$$h(t) = -\int_0^t g^*(s) \mathrm{d}s.$$

Then $h \in D^*$ and $A^*h = g^* = A^*g$ and hence $h - g \in N(A^*)$. Therefore, $\langle Af, h - g \rangle = 0$, for all $f \in D(A)$. But R(A) contains all continuous function and hence $g = h \in D^*$.

We conclude that

$$D(A^*) = D^*$$
, and $A^*g = -g'$.

According to Theorem 1, for any $f \in Y = L^2[0,1]$, the problem

$$F(u) = ||Au - f||^2 + \alpha ||u||^2 \to \min, \alpha = \text{const} > 0,$$

has a unique solution $u_{\alpha} = A^* (AA^* + \alpha I)^{-1} f$, where *I* is the identity operator on $Y = L^2[0,1]$. $f \in Y = L^2[0,1]$ does not necessarily belong to $D(A^*)$.

It follows from Theorem 2, that if f = Ay, $y \perp N(A)$ then

$$\lim_{\alpha \to 0} \|u_{\alpha} - y\| = 0, u_{\alpha} = A^* (AA^* + \alpha I)^{-1} f.$$

It follows from Theorem 3, that if $||f_{\delta} - f|| \le \delta$, f = Ay, and

$$F_{\delta}(u) = \|Au - f_{\delta}\|^{2} + \alpha \|u\|^{2} = \min,$$
(15)

then there exists a unique global minimier $u_{\alpha,\delta}$ to Equation (15) and $\lim_{\delta \to 0} ||u_{\delta} - y|| = 0$, where $u_{\delta} \coloneqq u_{\alpha(\delta),\delta}$ and $\alpha(\delta)$ is properly chosen, in particular $\lim_{\delta \to 0} \alpha(\delta) = 0$.

It follows from Theorem 4, that the equation \vec{I}

$$\left|Au_{\alpha,\delta} - f_{\delta}\right| = c\delta, c = \text{const} > 1, \left\|f_{\delta}\right\| > c\delta,$$

has a unique solution $\alpha = \alpha(\delta) > 0$, $\lim_{\delta \to 0} \alpha(\delta) = 0$, and if $u_{\delta} := u_{\alpha(\delta),\delta}$, then $\lim_{\delta \to 0} ||u_{\delta} - y|| = 0$.

Conflicts of Interest

The author declares no conflicts of interest regarding the publication of this paper.

References

- [1] Tikhonov, A.N. and Arsenin, V.Ya. (1978) Solution of Ill-Posed Problems. John Wiley & Sons, Hoboken.
- Groetsch, C.W. (2006) Stable Approximate Evualuation of Unbounded Operators. Springer, Berlin. <u>https://doi.org/10.1007/3-540-39942-9</u>
- Bakushinsky, A. and Goncharsky, A. (1994) Ill-Posed Problems: Theory and Applications. Springer, Berlin. <u>https://doi.org/10.1007/978-94-011-1026-6</u>
- [4] Engl, H.W., Hanke, M. and Neubauer, A. (2000) Regularization of Inverse Problems. Kluwer, Alphen aan den.
- [5] Morozov, V.A. (1984) Methods for Solving Incorrectly Posed Problems. Springer-Verlag, New York. <u>https://doi.org/10.1007/978-1-4612-5280-1</u>
- [6] Ramm, A.G. (2005) Inverse Problems. Springer-Verlag, New York.
- [7] Ramm, A.G. (2007) Ill-Posed Problems with Unbounded Operators. Journal of Mathematical Analysis and Applications, 325, 490-495. <u>https://doi.org/10.1016/j.jmaa.2006.02.004</u>
- [8] Van Kinh, N., Chuong, N.M. and Gorenflo, R. (1996) Regularization Method for Nonlinear Variational Inequalities. *Proceedings of the First National Workshop "Optimization and Control*", Quinhon, May 27 - June 1, 1996, 53-64. (Preprint: Nr. A-89-28, Freie Universitat, Berlin).
- [9] Van Kinh, N. (2007) Lavrentiev Regularization Method for Nonlinear Ill-Posed Problems. Quy Nhon Uni. *Journal of Science*, No. 1, 13-28.
- [10] Van Kinh, N. (2014) On the Stable Method of Computing Values of Unbounded Operators. *Journal Science of Ho Chi MInh City University of Food Industry*, No. 2, 21-30.
- [11] Van Kinh, N. (2020) On the Stable Method Computing Values of Unbounded Operators. *Open Journal of Optimization*, 9, 129-137. https://doi.org/10.4236/ojop.2020.94009
- [12] Zwart, K. (2018) The Spectral Theorem for Unbounded Self-Adjoint Operators and Nelson's Theorem. Bachelor Thesis, Universiteit Utrecht, Utrecht.