

Linear Programming Techniques and Its Application in Optimizing Lecture Room in an Institution

Nathaniel Kayode Oladejo^{*}, Mohammed Abdul-Shakuru, Alhassan Wumpini Jafar, Mohammed Damba Kadri

Department of Industrial Mathematics, School of Mathematical Sciences, C.K. Tedam University of Technology and Applied Sciences, Navrongo, Ghana

Email: *noladejo@cktutas.edu.gh

How to cite this paper: Oladejo, N.K., Abdul-Shakuru, M., Jafar, A.W. and Kadri, M.D. (2025) Linear Programming Techniques and Its Application in Optimizing Lecture Room in an Institution. *Open Journal of Optimization*, **14**, 10-28.

https://doi.org/10.4236/ojop.2025.141002

Received: February 10, 2025 **Accepted:** March 17, 2025 **Published:** March 20, 2025

Copyright © 2025 by author(s) and Scientific Research Publishing Inc. This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

Abstract

This paper deals with linear programming techniques and their application in optimizing lecture rooms in an institution. This linear programming formulated based on the available secondary data obtained from the information Technology units of an institution as the secondary data as well as the primary data source obtained by the researchers, which includes measuring the classroom dimension, lecture current seating capacity, number of registered students in each of department within the eight (8) schools in the institution, number of registered students per programme in each department in the schools totaling 3249. Maximizing the current available classroom space using AMPL software revealed that in all the available 32 lecture rooms with a current seating capacity of 2023 to accommodate a total student population of 3249, the finding revealed three (3) important solutions, which were categorized as: 1) For the calculated current good seating capacity can accommodate 9234 students and 2) the calculated current seating capacity of both good and bad seating can accommodate 10,431 students and 3) the projected seating capacity as indicated by the AMPL software can accommodate 13,300 students with current and existing 32 lecture rooms for all departments in the eight (8) schools provided that the seating capacities is fully maximize and this will help the school management to have more internal revenue.as school fees using the same and current classroom facility assuming each students pays GHC1500.00 as academic fees yearly, the institution could generate an additional GHC 8977, 500.00 in revenue for the good sitting capacity only if it is fully maximized, *i.e.* (5985 × GHc1500.00); GHc.10,773,000.00 (7182 × GHC1500) for the current sitting capacity, and GHc.15,076,500.00 as internal revenue, *i.e.* (10,051 students × GHC1500.00) from the projected seating capacity respectively while

maintaining the same lecture room and seating capacity were fully maximized.

Keywords

Optimize, Maximize, Linear Programming, Capacity, Classroom Facility

1. Introduction

Optimizing lecture room in educational Institutions is crucial for maximizing resource utilization and enhancing the learning environment by applying linear programming technique which is a powerful tool to address issues of over-allocation and under-allocation of lecture room spaces.

C.K. Tedam University of Technology and Applied Sciences is one of the Universities in Ghana established and became autonomous in 2020 with a student population of 3249 students, both undergraduates and post-graduate students and runs 45 regular programs in its 8 schools and 18 departments with only 32 lecture rooms and laboratories. It has been observed that allocating lecture room for an effective teaching and learning process currently becomes worrisome and makes teaching and learning ineffective. This posed the question of how the institution can manage the current lecture room capacity so that more space can be created for the institution to admit more students over 2000 and improve the internally generated revenue. This has prompted researchers to apply linear programming optimization techniques to find an optimal solution to this problem by maximizing the objective function subject to a set of constraints as it was fully applied by [1] and [2].

In this case, our aim is to maximize the current seating capacity in the lecture room of the institution, the constraints and the number of students with the available lecture space in the lecture hall to determine the optimal value of the lecture room in the institution

[3] studied and applied linear programming techniques in allocating classroom space in Premier Nurses Training College, Kumasi, where he adopted linear programming to solve the problem of over-allocation and under-allocation of the scarce classroom space was considered with particular reference and data collected from the Premier Nurse's Training College, Kumasi. The authors apply POM-QM for Windows 4 (Software for Quantitative Methods, Production and Operation Management by Howard J. Weiss) to run and analyze results which show that six (50%) of the twelve classrooms could be used to obtain a maximum classroom space of six hundred and forty while the two hundred and eighty (280) surplus spaces can be used to increase its student's intake from three hundred and sixty (360) to six hundred and forty (640) students, an increase to about 77.78% with only 50% of the total number of classrooms.

[4] Modelled classroom space allocation at the University of Rwanda using linear programming approach where he emphasized that education and training play a key role in the human capital function. Their research seeks to assess the Rwandan education system using linear programming model formulated to assess the level of usage of the available classroom space at the College. The model adopted the Dual Simplex algorithm via the Cplex solver implemented in AMPL. It was revealed that out of the 68 classrooms available on the Nyarugenge campus, only 18 classrooms with seating capacity of 2147 are being used to facilitate the teaching and learning process of approximately 4088 students, and that 50 classrooms with a seating capacity of 1506 are being underutilized or not being used at all. It was then recommended that the college explore the usage of virtual laboratory platforms to overcome space and material limitations associated with physical laboratories.

In this paper, we apply linear programming technique to optimize the lecture rooms in C.K. Tedam University of Technology and Applied Sciences to minimize conflicts and challenges being faced and maximize lecture room facility and resource management as there is a growing need for the University management to maximize the resources, especially lecture rooms as an effective lecture room allocation can result in better learning outcomes for students and achieve higher academic results all around.

2. Design and Methodology Approach

According to [5], research methodology provides the effective principle for planning, arranging, designing and conducting fruitful research. Hence, it can be considered as a pioneer path with the application of science and philosophy to perform all research confidently.

2.1. Data Collection

The current seating capacity, dimensions of the lecture rooms, dimensions of the desks in the lecture rooms and the total number of lecture rooms in the institution were determined by the researcher through measurement, as shown in **Table 1** below. Likewise, the total number of registered students in each academic level of the programmes in each department of all 8 schools was also collected through the information Technology units of the school, all serve as the secondary data of this research, as shown in **Table 2**.

2.2. Formulation of Linear Programming Model

Here, we formulate the Linear programming model as proposed by [6] and well applied by [7] to determine how to adequately allocate class spaces to each course in the department, which consists of types of classrooms, seating capacities, number of such classrooms according to the departments and programs in each of the schools as well as the total number of the students in each of the departments according to the levels, which was collected from the director of the Information Technology (IT) unit of the University and examination time table committee for the attainment of our stated aims and objective.

Table 1. Below is the summary of class types and respective capacities, expected capacities after taking dimensions of the classrooms, differences in capacities of current and expected capacities, and dimensions of the classrooms.

Available	Number of	Good Seating	Bad Seating	Bad Seating	Classroom	Projected.	Difference
Classroom	Current Desk	Capacity	Capacity	Capacity	Dimension	Seating Capacity	
32	2023	1867	156	2113	3113	-	1248

Source: Researcher 2024.

Table 2. Below shows summary of the registered students in each program in the Department, of each School according to the academic level.

Cabaal	Dementary and	ant Dua qua mana a		Curred ToT					
301001	Department	Programme	Dip.	100	200	300	400	PG	Grand 101.
SCBCS	2	6	0	106	61	46	52	50	315
SELS	2	3	0	30	23	21	34	36	149
SMS	4	6	12	44	65	66	86	136	410
SPH	2	2	0	310	114	0	0	31	465
SCIS	3	6	140	240	188	173	247	99	1373
SPS	2	5	0	23	20	17	11	7	78
SMEDS	1	3	0	25	0	0	0	64	88
SMES	2	3	23	0	15	35	21	214	371
ToT. 8	18	34	183	778	642	448	502	696	3249

Source: IT unit 2024.

We then consider a standard form of linear programming as:

$$\operatorname{Max}: F = \sum_{i=1}^{n} c_i x_j \tag{1}$$

subject to

$$\sum_{j=1}^{n} a_{i,j} = b_i, \ i = 1, 2, \cdots, n$$
$$i_j \le x \le u_j, \ j = 1, 2, \cdots, m$$

where,

 c_i is the *n* objects function coefficients a_{ij} and *b* are parameters in them linear inequality constraints i_j and u_j are lower and upper bound with $i_j \le u_j$ Both i_j and u_j maybe positive or negative.

Thus we have:

Maximize:
$$Z = \sum_{j=1}^{n} c_j x_j$$
 (2)

Subject to

$$x_1 + x_2 + x_3 + x_4 + x_5 + x_6 + x_7 + x_8 = b_1$$

$$\begin{aligned} a_{11}x_1 + a_{12}x_2 + a_{13}x_3 + a_{14}x_4 + a_{15}x_5 + a_{16}x_6 + a_{17}x_7 + a_{18}x_8 &\leq b_2 \\ a_{21}x_1 + a_{22}x_2 + a_{23}x_3 + a_{24}x_4 + a_{25}x_5 + a_{26}x_6 + a_{27}x_7 + a_{28}x_8 &\leq b_3 \\ a_{31}x_1 + a_{32}x_2 + a_{33}x_3 + a_{34}x_4 + a_{35}x_5 + a_{36}x_6 + a_{37}x_7 + a_{38}x_8 &\leq b_4 \\ a_{41}x_1 + a_{42}x_2 + a_{43}x_3 + a_{44}x_4 + a_{45}x_5 + a_{46}x_6 + a_{47}x_7 + a_{48}x_8 &\leq b_5 \\ a_{51}x_1 + a_{52}x_2 + a_{53}x_3 + a_{54}x_4 + a_{55}x_5 + a_{56}x_6 + a_{57}x_7 + a_{58}x_8 &\leq b_6 \\ a_{61}x_1 + a_{62}x_2 + a_{63}x_3 + a_{64}x_4 + a_{65}x_5 + a_{66}x_6 + a_{67}x_7 + a_{68}x_8 &\leq b_7 \\ a_{71}x_1 + a_{72}x_2 + a_{73}x_3 + a_{74}x_4 + a_{75}x_5 + a_{76}x_6 + a_{77}x_7 + a_{78}x_8 &\leq b_8 \\ a_{81}x_1 + a_{82}x_2 + a_{83}x_3 + a_{84}x_4 + a_{85}x_5 + a_{96}x_6 + a_{97}x_7 + a_{98}x_8 &\leq b_9 \\ a_{91}x_1 + a_{92}x_2 + a_{93}x_3 + a_{94}x_4 + a_{105}x_5 + a_{106}x_6 + a_{107}x_7 + a_{108}x_8 &\leq b_{11} \end{aligned}$$

2.3. Modelling Technique

The University lecture room space allocation problem is considered as a linear programming problem and was categorized according to the number of seat available, and the type of sitting, equipment and capacity available. The students were classified and considered according to the level in the classes based on the program and the class level of the students as follows:

1) We let the capacity of each category (type) of a lecture room be: $C_i = C_1, C_2, C_3, C_4, \dots, C_n$ for $i = 1, 2, 3, \dots, n$ where:

> $c_{1} \text{ is the capacity of lectureroom type 1}$ $c_{2} \text{ is the capacity of lectureroom type 2}$ $c_{3} \text{ is the capacity of lectureroom type 3}$ $c_{4} \text{ is the capacity of lectureroom type 4}$ (4)

 c_n is the capacity of lectureroom type n

2) We let the lecture rooms be categorized into types as:

$$X_i = x_1, x_2, x_3, x_4, \cdots, x_n$$

For $i = 1, 2, 3, 4, \dots, n$ based on the capacities of the, where

 $\begin{array}{c} x_{1} \text{ is the lectureroom type 1 with seating capacity of } c_{1} \\ x_{2} \text{ is the lectureroom type 1 with seating capacity of } c_{2} \\ x_{3} \text{ is the lectureroom type 1 with seating capacity of } c_{3} \\ x_{4} \text{ is the lectureroom type 1 with seating capacity of } c_{4} \\ \vdots \\ x_{n} \text{ is the lectureroom type 1 with seating capacity of } c_{n} \end{array}$

3) We let the number of classrooms of each type be:

(5)

 $a_1, a_2, a_3, \cdots, a_n$

where,

a_1 is the number of room of classroom type 1	
a_2 is the number of room of classroom type 2	
a_3 is the number of room of classroom type 3	(6)
a_4 is the number of room of classroom type 4	(6)
÷	

 a_n is the number of room of classroom type n

4) We let the total available lecture room space of all the types of classrooms denoted by d.

Thus,

$$d = \sum_{i=1}^{n} a_i c_i \tag{7}$$

where:

 a_1, \dots, a_n is the number of lecturroom of each type d is the total available lectureroom space of all type c_3, \dots, c_n is the capacity of each category of lectureroom

Then the linear programming is applied to determine the objective function as we consider the following assumptions

$$\operatorname{Max}: \sum_{i=1}^n c_i x_j$$

Subject to constraints:

$$\sum_{i=1}^{n} a_i c_j \le d, \ i = 1, 2, 3, \cdots, n$$

With the assumptions that:

1) The total number of students assigned to certain categories of lecture rooms cannot exceed the total classroom space available in each of the classrooms.

2) Given that $x_i \ge 0$: $(i = 1, 2, 3, \dots, n)$ is non-negative since a number of students can be assigned to a room cannot be a negative number

2.4. Objective Function and the Constraints

In this paper, we considered the following three categories of objective functions:

1) The current capacity of good desks in the various lecture rooms

2) The current capacity of desks (good and Bad) in the various lecture rooms

3) The capacity of projected desks in each of the lecture rooms after taking the dimensions of the lecture rooms

Thus:

We considered the current capacity of the good desk/sitting in various lecture rooms as:

Maximize : $P = 285x_1 + 166x_2 + 72x_3 + 48x_4 + 13x_5 + 30x_6 + 87x_7 + 132x_8$ + $30x_9 + 23x_{10} + 33x_{11} + 24x_{12} + 27x_{13} + 75x_{14} + 16x_{15} + 13x_{16}$ + $33x_{17} + 339x_{18} + 87x_{19} + 30x_{20} + 31x_{21} + 14x_{22} + 20x_{23}$ + $56x_{24} + 19x_{25} + 6x_{26} + 39x_{27} + 22x_{28} + 33x_{29} + 30x_{30} + 34x_{31}$

Subject to:

 $\begin{aligned} &a_2x_1+a_2x_2+a_2x_3+a_2x_4+a_2x_5+a_2x_6+a_2x_7+a_2x_8+a_2x_9+a_2x_{10}+a_2x_{11}\\ &+a_2x_{12}+a_2x_{13}+a_2x_{14}+a_2x_{15}+a_2x_{16}+a_2x_{17}+a_2x_{18}+a_2x_{19}+a_2x_{20}+a_2x_{21}\\ &+a_2x_{22}+a_2x_{23}+a_2x_{24}\leq T_2\end{aligned}$

 $\begin{aligned} &a_3x_1 + a_3x_2 + a_3x_3 + a_3x_4 + a_3x_5 + a_3x_6 + a_3x_7 + a_3x_8 + a_3x_9 + a_3x_{10} + a_3x_{11} \\ &+ a_3x_{12} + a_3x_{13} + a_3x_{14} + a_3x_{15} + a_3x_{16} + a_3x_{17} + a_3x_{18} + a_3x_{19} + a_3x_{20} + a_3x_{21} \\ &+ a_3x_{22} + a_3x_{23} + a_3x_{24} \le T_3 \end{aligned}$

 $\begin{aligned} & a_4x_1 + a_4x_2 + a_4x_3 + a_4x_4 + a_4x_5 + a_4x_6 + a_4x_7 + a_4x_8 + a_4x_9 + a_4x_{10} + a_4x_{11} \\ & + a_4x_{12} + a_4x_{13} + a_4x_{14} + a_4x_{15} + a_4x_{16} + a_4x_{17} + a_4x_{18} + a_4x_{19} + a_4x_{20} + a_4x_{21} \\ & + a_4x_{22} + a_4x_{23} + a_4x_{24} \leq T_4 \end{aligned}$

 $\begin{aligned} &a_5x_1 + a_5x_2 + a_5x_3 + a_5x_4 + a_5x_5 + a_5x_6 + a_5x_7 + a_5x_8 + a_5x_9 + a_5x_{10} + a_5x_{11} \\ &+ a_5x_{12} + a_5x_{13} + a_5x_{14} + a_5x_{15} + a_5x_{16} + a_5x_{17} + a_5x_{18} + a_5x_{19} + a_5x_{20} + a_5x_{21} \\ &+ a_5x_{22} + a_5x_{23} + a_5x_{24} \le T_5 \end{aligned}$

 $\begin{aligned} &a_6x_1 + a_6x_2 + a_6x_3 + a_6x_4 + a_6x_5 + a_6x_6 + a_6x_7 + a_6x_8 + a_6x_9 + a_6x_{10} + a_6x_{11} \\ &+ a_6x_{12} + a_6x_{13} + a_6x_{14} + a_6x_{15} + a_6x_{16} + a_6x_{17} + a_6x_{18} + a_6x_{19} + a_6x_{20} + a_6x_{21} \\ &+ a_6x_{22} + a_6x_{23} + a_6x_{24} \leq T_6 \end{aligned}$

 $\begin{aligned} & a_7 x_1 + a_7 x_2 + a_7 x_3 + a_7 x_4 + a_7 x_5 + a_7 x_6 + a_7 x_7 + a_7 x_8 + a_7 x_9 + a_7 x_{10} + a_7 x_{11} \\ & + a_7 x_{12} + a_7 x_{13} + a_7 x_{14} + a_7 x_{15} + a_7 x_{16} + a_7 x_{17} + a_7 x_{18} + a_7 x_{19} + a_7 x_{20} + a_7 x_{21} \\ & + a_7 x_{22} + a_7 x_{23} + a_7 x_{24} \leq T_7 \end{aligned}$

 $\begin{aligned} &a_8x_1 + a_8x_2 + a_8x_3 + a_8x_4 + a_8x_5 + a_8x_6 + a_8x_7 + a_8x_8 + a_8x_9 + a_8x_{10} + a_8x_{11} \\ &+ a_8x_{12} + a_8x_{13} + a_8x_{14} + a_8x_{15} + a_8x_{16} + a_8x_{17} + a_8x_{18} + a_8x_{19} + a_8x_{20} + a_8x_{21} \\ &+ a_8x_{22} + a_8x_{23} + a_8x_{24} \le T_8 \end{aligned}$

Thus we have:

Maximize : $P = 285x_1 + 166x_2 + 72x_3 + 48x_4 + 13x_5 + 30x_6 + 87x_7 + 132x_8$ + $30x_9 + 23x_{10} + 33x_{11} + 24x_{12} + 27x_{13} + 75x_{14} + 16x_{15} + 13x_{16}$ + $33x_{17} + 339x_{18} + 87x_{19} + 30x_{20} + 31x_{21} + 14x_{22} + 20x_{23}$ + $56x_{24} + 19x_{25} + 6x_{26} + 39x_{27} + 22x_{28} + 33x_{29} + 30x_{30} + 34x_{31}$

Subject to:

$$\begin{aligned} &10x_1 + 56x_2 + 15x_3 + 22x_4 + 3x_5 + 16x_6 + 14x_7 + 13x_8 + 16x_9 + x_{10} + 5x_{11} \\ &+ 9x_{12} + 85x_{13} + 225x_{14} + 33x_{15} + 12x_{16} + 73x_{17} + 3x_{18} + 94x_{19} + 25x_{20} \\ &+ 2x_{21} + 13x_{22} + 8x_{23} + 25x_{24} \leq 778 \end{aligned}$$

$$\begin{aligned} &14x_1 + 32x_2 + 16x_3 + 5x_4 + 21x_5 + 15x_6 + 3x_7 + 16x_8 + 11x_9 + 24x_{10} + 6x_{11} \\ &+ 109x_{12} + 3x_{13} + 98x_{14} + 23x_{15} + 4x_{16} + 6x_{17} + 7x_{18} + 35x_{19} \leq 448 \end{aligned}$$

$$\begin{aligned} &41x_1 + 23x_2 + 13x_3 + 19x_4 + 2x_5 + 14x_6 + 6x_7 + 8x_8 + 22x_9 + 23x_{10} + x_{11} \\ &+ 11x_{12} + 8x_{13} + 29x_{14} + 95x_{15} + 17x_{16} + 9x_{17} + 111x_{18} + x_{19} + 3x_{20} + 137x_{21} \\ &+ 48x_{22} + 6x_{23} + 5x_{24} + 9x_{25} + 18x_{26} \leq 642 \end{aligned}$$

 $\begin{array}{l}9x_1+43x_2+29x_3+5x_4+19x_5+23x_6+7x_7+25x_8+13x_9+167x_{10}+86x_{11}\\+44x_{12}+5x_{13}+6x_{14}+21x_{15}\leq 502\\\\5x_1+7x_2+9x_3+2x_4+44x_5+85x_6+8x_7+17x_8+6x_9\leq 183\\18x_1+32x_2+27x_3+9x_4+29x_5+10x_6+26x_7+65x_8+6x_9+19x_{10}+12x_{11}\\+30x_{12}+69x_{13}+7x_{14}+29x_{15}+34x_{16}+199x_{17}+75x_{18}\leq 696\\\\x_1+x_2+x_3+x_4+x_5+x_6+x_7+x_8+x_9+x_{10}+x_{11}+x_{12}+x_{13}+x_{14}+x_{15}\\+x_{16}+x_{17}+x_{18}+x_{19}+x_{20}+x_{21}+x_{22}+x_{23}+x_{24}+x_{25}+x_{26}+x_{27}+x_{28}\\+x_{29}+x_{30}+x_{31}+x_{32}\leq 32\\\\x_1,x_2,x_3,x_4,x_5,x_6,x_7,x_8,x_9,x_{10},x_{11},x_{12},x_{13},x_{14},x_{15},x_{16},x_{17},x_{18},x_{19},x_{20},\\x_{21},x_{22},x_{23},x_{24},x_{25},x_{26},x_{27},x_{28},x_{29},x_{30},x_{31},x_{32}\geq 0\end{array}$

where:

 x_1 represents the lecture room type 1 with seating capacity of 285 x_2 represents the lecture room type 2 with seating capacity of 166 x_3 represents the lecture room type 3 with seating capacity of 72 x_4 represents the lecture room type 4 with seating capacity of 48 x_5 represents the lecture room type 5 with seating capacity of 13 x_6 represents the lecture room type 6 with seating capacity of 30 x_7 represents the lecture room type 7 with seating capacity of 87 x_8 represents the lecture room type 8 with seating capacity of 132 x_9 represents the lecture room type 9 with seating capacity of 30 x_{10} represents the lecture room type 10 with seating capacity of 23 x_{11} represents the lecture room type 11 with seating capacity of 33 x_{12} represents the lecture room type 12 with seating capacity of 24 x_{13} represents the lecture room type 13 with seating capacity of 27 x_{14} represents the lecture room type 14 with seating capacity of 75 x_{15} represents the lecture room type 15 with seating capacity of 16 x_{16} represents the lecture room type 16 with seating capacity of 13 x_{17} represents the lecture room type 17 with seating capacity of 33 x_{18} represents the lecture room type 18 with seating capacity of 339 x_{19} represents the lecture room type 19 with seating capacity of 97 x_{20} represents the lecture room type 20 with seating capacity of 30 x_{21} represents the lecture room type 21 with seating capacity of 31 x_{22} represents the lecture room type 22 with seating capacity of 14 x_{23} represents the lecture room type 23 with seating capacity of 20 x_{24} represents the lecture room type 24 with seating capacity of 56 x_{25} represents the lecture room type 25 with seating capacity of 19 x_{26} represents the lecture room type 26 with seating capacity of 6 x_{27} represents the lecture room type 27 with seating capacity of 39 x_{28} represents the lecture room type 28 with seating capacity of 22 x_{29} represents the lecture room type 29 with seating capacity of 33 x_{30} represents the lecture room type 30 with seating capacity of 30 x_{31} represents the lecture room type 31 with seating capacity of 34

2.5. Development of AMPL Software for Good Desks as Objective Functions

We then develop and run the above data using AMPL. Software to obtain an optimal solution for the current good desks or seating only as objective functions which gives the following optimal solutions:

$$x_1 = 29.8947; x_{18} = 2.10526;$$

$$x_2 = x_3 = x_4 = x_{17} = x_{18} = x_{20} = x_{21} = \dots = x_{32} = 0;$$

$$P_{\text{max}} = 9234$$

1) Current capacity of good and bad seating.

We consider the current capacity of good and bad seating in various lecture rooms.

Thus, we formulate the L.P as follows:

Subject to:

$$\begin{aligned} &10x_1 + 56x_2 + 15x_3 + 22x_4 + 3x_5 + 16x_6 + 14x_7 + 13x_8 + 16x_9 + x_{10} + 5x_{11} \\ &+ 9x_{12} + 85x_{13} + 225x_{14} + 33x_{15} + 12x_{16} + 73x_{17} + 3x_{18} + 94x_{19} + 25x_{20} \\ &+ 2x_{21} + 13x_{22} + 8x_{23} + 25x_{24} \le 778 \end{aligned}$$

 $\begin{aligned} &41x_1 + 23x_2 + 13x_3 + 19x_4 + 2x_5 + 14x_6 + 6x_7 + 8x_8 + 22x_9 + 23x_{10} + x_{11} \\ &+ 11x_{12} + 8x_{13} + 29x_{14} + 95x_{15} + 17x_{16} + 9x_{17} + 111x_{18} + x_{19} + 3x_{20} + 137x_{21} \\ &+ 48x_{22} + 6x_{23} + 5x_{24} + 9x_{25} + 18x_{26} \leq 642 \end{aligned}$

 $14x_1 + 32x_2 + 16x_3 + 5x_4 + 21x_5 + 15x_6 + 3x_7 + 16x_8 + 11x_9 + 24x_{10} + 6x_{11} + 109x_{12} + 3x_{13} + 98x_{14} + 23x_{15} + 4x_{16} + 6x_{17} + 7x_{18} + 35x_{19} \le 448$

 $\begin{array}{l}9x_1+43x_2+29x_3+5x_4+19x_5+23x_6+7x_7+25x_8+13x_9+167x_{10}+86x_{11}\\+44x_{12}+5x_{13}+6x_{14}+21x_{15}\leq 502\end{array}$

 $5x_1 + 7x_2 + 9x_3 + 2x_4 + 44x_5 + 85x_6 + 8x_7 + 17x_8 + 6x_9 \le 183$ $18x_1 + 32x_2 + 27x_3 + 9x_4 + 29x_5 + 10x_6 + 26x_7 + 65x_9 + 6x_9 + 19x_{10} + 12x_{11}$

 $+30x_{12}+69x_{13}+7x_{14}+29x_{15}+34x_{16}+199x_{17}+75x_{18} \le 696$

 $\begin{aligned} & x_1 + x_2 + x_3 + x_4 + x_5 + x_6 + x_7 + x_8 + x_9 + x_{10} + x_{11} + x_{12} + x_{13} + x_{14} + x_{15} \\ & + x_{16} + x_{17} + x_{18} + x_{19} + x_{20} + x_{21} + x_{22} + x_{23} + x_{24} + x_{25} + x_{26} + x_{27} + x_{28} \\ & + x_{29} + x_{30} + x_{31} + x_{32} \leq 32 \end{aligned}$

$$\begin{split} & x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8, x_9, x_{10}, x_{11}, x_{12}, x_{13}, x_{14}, x_{15}, x_{16}, x_{17}, x_{18}, x_{19}, x_{20}, \\ & x_{21}, x_{22}, x_{23}, x_{24}, x_{25}, x_{26}, x_{27}, x_{28}, x_{29}, x_{30}, x_{31}, x_{32} \ge 0 \end{split}$$

where:

 x_1 represents the lecture room type 1 with seating capacity of 318 x_2 represents the lecture room type 2 with seating capacity of 100 x_3 represents the lecture room type 3 with seating capacity of 78 x_4 represents the lecture room type 4 with seating capacity of 54 x_5 represents the lecture room type 5 with seating capacity of 13 x_6 represents the lecture room type 6 with seating capacity of 30 x_7 represents the lecture room type 7 with seating capacity of 100

 x_8 represents the lecture room type 8 with seating capacity of 33 x_9 represents the lecture room type 9 with seating capacity of 30 x_{10} represents the lecture room type 10 with seating capacity of 34 x_{11} represents the lecture room type 11 with seating capacity of 147 x_{12} represents the lecture room type 12 with seating capacity of 33 x_{13} represents the lecture room type 13 with seating capacity of 27 x_{14} represents the lecture room type 14 with seating capacity of 33 x_{15} represents the lecture room type 15 with seating capacity of 24 x_{16} represents the lecture room type 16 with seating capacity of 27 x_{17} represents the lecture room type 17 with seating capacity of 75 x_{18} represents the lecture room type 18 with seating capacity of 16 x_{19} represents the lecture room type 19 with seating capacity of 13 x_{20} represents the lecture room type 20 with seating capacity of 33 x_{21} represents the lecture room type 21 with seating capacity of 384 x_{22} represents the lecture room type 22 with seating capacity of 93 x_{23} represents the lecture room type 23 with seating capacity of 30 x_{24} represents the lecture room type 24 with seating capacity of 31 x_{25} represents the lecture room type 25 with seating capacity of 20 x_{26} represents the lecture room type 26 with seating capacity of 20 x_{27} represents the lecture room type 27 with seating capacity of 57 x_{28} represents the lecture room type 28 with seating capacity of 21 x_{29} represents the lecture room type 29 with seating capacity of 8 x_{30} represents the lecture room type 30 with seating capacity of 39 x_{31} represents the lecture room type 31 with seating capacity of 22 Then

AMPL Software was run using the above given data to obtain optimal solution for the current good and bad desks/seating as objective functions which gives the following optimal solutions:

> $x_1 = 28.1354; x_{21} = 3.86466;$ $x_2 = x_3 = x_4 = x_{20} = x_{22} = x_{24} = x_{25} = \dots = x_{32} = 0;$ $P_{\text{max}} = 10431$

2) Expected seating/desks capacity in each of the lecture rooms after measuring its dimensions and formulating as follows.

Maximize :
$$P = 351x_1 + 210x_2 + 90x_3 + 90x_4 + 36x_5 + 36x_6 + 100x_7 + 70x_8$$

+ $80x_9 + 80x_{10} + 186x_{11} + 48x_{12} + 90x_{13} + 54x_{14} + 36x_{15} + 36x_{16}$
+ $36x_{17} + 75x_{18} + 16x_{19} + 33x_{20} + 33x_{21} + 528x_{22} + 219x_{23} + 73x_{24}$
+ $73x_{25} + 73x_{26} + 73x_{27} + 73x_{28} + 73x_{29} + 73x_{30} + 39x_{31} + 30x_{32}$

Subject to:

$$10x_{1} + 56x_{2} + 15x_{3} + 22x_{4} + 3x_{5} + 16x_{6} + 14x_{7} + 13x_{8} + 16x_{9} + x_{10} + 5x_{11} + 9x_{12} + 85x_{13} + 225x_{14} + 33x_{15} + 12x_{16} + 73x_{17} + 3x_{18} + 94x_{19} + 25x_{20} + 2x_{21} + 13x_{22} + 8x_{22} + 25x_{24} \le 778$$

 $\begin{aligned} &41x_1 + 23x_2 + 13x_3 + 19x_4 + 2x_5 + 14x_6 + 6x_7 + 8x_8 + 22x_9 + 23x_{10} + x_{11} \\ &+ 11x_{12} + 8x_{13} + 29x_{14} + 95x_{15} + 17x_{16} + 9x_{17} + 111x_{18} + x_{19} + 3x_{20} + 137x_{21} \\ &+ 48x_{22} + 6x_{23} + 5x_{24} + 9x_{25} + 18x_{26} \le 642 \\ &14x_1 + 32x_2 + 16x_3 + 5x_4 + 21x_5 + 15x_6 + 3x_7 + 16x_8 + 11x_9 + 24x_{10} + 6x_{11} \\ &+ 109x_{12} + 3x_{13} + 98x_{14} + 23x_{15} + 4x_{16} + 6x_{17} + 7x_{18} + 35x_{19} \le 448 \\ &9x_1 + 43x_2 + 29x_3 + 5x_4 + 19x_5 + 23x_6 + 7x_7 + 25x_8 + 13x_9 + 167x_{10} + 86x_{11} \\ &+ 44x_{12} + 5x_{13} + 6x_{14} + 21x_{15} \le 502 \\ &5x_1 + 7x_2 + 9x_3 + 2x_4 + 44x_5 + 85x_6 + 8x_7 + 17x_8 + 6x_9 \le 183 \\ &18x_1 + 32x_2 + 27x_3 + 9x_4 + 29x_5 + 10x_6 + 26x_7 + 65x_8 + 6x_9 + 19x_{10} + 12x_{11} \\ &+ 30x_{12} + 69x_{13} + 7x_{14} + 29x_{15} + 34x_{16} + 199x_{17} + 75x_{18} \le 696 \\ &x_1 + x_2 + x_3 + x_4 + x_5 + x_6 + x_7 + x_8 + x_9 + x_{10} + x_{11} + x_{12} + x_{13} + x_{14} + x_{15} \\ &+ x_{16} + x_{17} + x_{18} + x_{19} + x_{20} + x_{21} + x_{22} + x_{23} + x_{24} + x_{25} + x_{26} + x_{27} + x_{28} \\ &+ x_{29} + x_{30} + x_{31} + x_{32} \le 32 \\ &x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8, x_9, x_{10}, x_{11}, x_{12}, x_{13}, x_{14}, x_{15}, x_{16}, x_{17}, x_{18}, x_{19}, x_{20}, \\ &x_{21}, x_{22}, x_{23}, x_{24}, x_{25}, x_{26}, x_{27}, x_{28}, x_{29}, x_{30}, x_{31}, x_{32} \ge 0 \end{aligned}$

We also run the AMPL Software using the given data to obtain optimal solution for the projected desks/seating capacity as objective functions which gives the following optimal solutions:

$$x_1 = 20.3182; x_{22} = 11.6818;$$

$$x_2 = x_3 = x_4 = x_{21} = x_{23} = x_{24} = x_{25} = \dots = x_{32} = 0$$

$$P_{\text{max}} = 13300$$

3. Discussion of Results

Here, we present the analysis of data and discuss the results obtained from the AMPL software system as related to our main aims and objective of this paper as categories into three (3) main results.

1) Results generated by the AMPL. Software with current good seating capacity only

Results and analysis of linear programming model using the Cplex method in AMPL software system estimated the value of the objective function to be 9234 students.

With the current registered student population of the university as 3249, the model indicated that the institution can still admit and accommodate an additional 5985 students with the existing good seating desks. This suggests that the institution has the capacity to admit 5985 more students using the current and existing seating capacity if it is well and fully maximized. Assuming each student pays GHc1500.00 as academic fees yearly, the institution could generate an additional GHc 8,977,500.00 in revenue, *i.e.* (5985 students \times GHC1500.00 = GHc.8,977,500.00) while maintaining the same classroom and seating capacity.

2) Results generated by the AMPL. Software with Current Seating Capacity (Both Good and Bad)

The results and analysis from AMPL software estimated the optimal value of 10,431 students. The current student population is 3249, and the maximum student capacity based on available current desks (both good and bad) is 10,431. This represents an additional capacity of 7182 students with the current seating capacity (both good and bad) arrangement. If a student pays GHc.1500.00 as annual school fees, the institution would have generated an additional GHc.10,773,000.00, *i.e.* (7182 × GHC1500) as internally generated revenue from tuition fees while utilizing the existing classroom facilities and seating capacity.

3) Projected capacity after taking the full dimensions of the Lecture Rooms

From the analysis of the linear programming model using Cplex in AMPL, the objective function's value is 13,300 students. Given the current student population of 3249, the model indicates that the institution can accommodate an additional 10,051 students based on the expected capacity after measuring the full dimensions of each lecture room. This suggests that the institution has the capacity to admit 10,051 more students, taking into consideration the dimensions of the lecture rooms and the expected seating capacity. If each student pays GHc.1500.00 as academic fees yearly, the institution could generate an additional GHc. 15,076,500.00 in revenue, *i.e.* (10,051 students \times GHC1500.00) while maintaining the same lecture rooms and maximizing the projected capacity based on the lecture room dimensions

4. Conclusions

In this paper, we have fully determined the total seating capacity in each of the available lecture rooms at C.K. Tedam University of Technology and Applied Sciences and proposed appropriate solutions and recommendations to the lecture room allocation problem using linear programming by maximizing the existing 32 lecture room available to accommodate about 9234, 10,431 and 13,300 additional students respectively taking into consideration the objective function using the same and existing lecture rooms this probably will earn the institution management an additional revenue of GHc.8,977,500 (GHC1500 \times 5985), GHc 10,773,000 (GHC1500 \times 7182) and GHc.15,076,500 (1500 \times 10,051) as school fees respectfully using the same lecture room facility and as well as the existing seating capacity, working on the broken desks and furnishing the lecture rooms with the expected capacities.

It is recommended that the institution's management consider the following suggestion: even without constructing new lecture rooms, the institution should admit more students in the upcoming academic years, as the current lecture rooms can accommodate them conveniently.

1) The Institution should take into consideration the three maximized optimal values. This would aid them in deciding on which model could generate more revenue as school fees mobilization.

2) The management should fully utilize lecture rooms labelled as JA2 and KB5 and should be well furnished with more seating desks.

3) Lecture rooms with regular dimensions should be furnished with good desks (three per dual desk), and lecture rooms with irregular dimensions should be furnished with single tables and chairs desks.

4) Courses with highly populated students should be assigned to lecture rooms with large capacity. Or be divided into two or more to be taken by different lecturers, and courses with less populated students should be assigned to lecture rooms with lower capacity.

5) The management should partition large lecture rooms to facilitate easy interactions between students and lecturers.

6) The broken desks should be repaired to accommodate more students in the institution.

7) All old science laboratories and the old library should be renovated to convert to a lecture room with well-furnished seating or desks.

Conflicts of Interest

The authors declare no conflicts of interest regarding the publication of this paper.

References

- Oladejo, N.K., Abolarinwa, A., Salawu, S.O., Bamiro, M.O., Lukman, A.F. and Bukari, H.I. (2019) Application of Optimization Principles in Classroom Allocation using Linear Programming. *International Journal of Mechanical Engineering and Technol*ogy (*IJMET*), 10, 874-885.
- [2] Oladejo, N.K., Abolarinwa, A. and Salawu, S.O. (2020) Linear Programming and Its Application Techniques in Optimizing Portfolio Selection of a Firm. *Journal of Applied Mathematics*, 2020, Article ID: 8817909. <u>https://doi.org/10.1155/2020/8817909</u>
- [3] Frimpong, F.O. and Owusu, A. (2015) Allocation of Classroom Space Using Linear Programming (A Case Study: Premier Nurses Training College, Kumasi). *Journal of Economics and Sustainable Development*, 6, 12-19.
- [4] Mtonga, K., Twahirwa, E., Kumaran, S. and Jayavel, K. (2021) Modelling Classroom Space Allocation at University of Rwanda—A Linear Programming Approach. *Applications and Applied Mathematics: An International Journal (AAM)*, 16, 724-738.
- [5] Ademola, E.O., Ogundipe, A.T. and Babatunde, W.T. (2014) Students' Enrolment into Tertiary Institutions in Nigeria: The Influence of the Founder's Reputation—A Case Study. *Computing, Information Systems, Development Informatics & Allied Research Journal*, 5, 1-28.
- [6] Danzig, G. (1947) The Dantzig Simplex Method for Linear Programming. *IEEE Explore*, **2**, 234-241.
- [7] Mohammed, A.S. and Grema, A.D. (2011) Management of Available Infrastructural Facilities and Students' Academic Achievement in Borno State Colleges of Education in Nigeria. *Journal of Research in Education and Society*, 2, 7-14.

Available Classroom	Number of current Desk	Good Seating Capacity	Bad Seating Capacity	Classroom Dimension	Projected. Seating capacity	Difference
SA1 (1)	(106 × 3) 318	285	33	922 × 552	(117 × 3) 351	66
SA2 (1)	(60 × 3) 180	166	14	465×710	(70 × 3) 210	44
SA3 (1)	(26 × 3) 78	72	6	457×350	(30 × 3) 90	18
SA4 (1)	(18 × 3) 54	48	6	457×350	(30 × 3) 90	42
SB1 (1)	(13 × 1) 13	13	0	210×251	(36 × 1) 36	23
SB2 (1)	(30 × 1) 30	30	0	210×251	(36 × 1) 36	6
SB3 (1)	(25 × 4) 100	87	13	277 × 767	(25 × 4) 100	13
SC1 (1)	(33 × 1) 33	33	0	75×223	(70 × 1) 70	37
SC2 (1)	(30 × 1) 30	30	0	75×223	(80 × 1) 80	50
SC3 (1)	(34 × 1) 34	34	0	75 × 223	$(80 \times 1) 80$	46
JA1 (1)	(49 × 3) 147	132	15	307 × 916	(62 × 3) 186	54
JA2 (1)	(0 0) 0	0	0	307×417	(24 × 2) 48	48
JA3 (1)	(11 × 3) 33	30	3	307×421	(30 × 3) 90	60
JA4 (1)	(9 × 3) 27	23	4	307×276	(18 × 3) 54	31
JB1 (1)	(11 × 3) 33	33	0	190 × 283	(12 × 3) 36	3
JB2 (1)	(8 × 3) 24	24	0	190 × 283	(12 × 3) 36	12
JB3 (1)	9 × 3) 27	27	0	190 × 283	(12 × 3) 36	9
JB4 (1)	(25 × 3) 75	75	0	518×243	(25 × 3) 75	0
JB5 (1)	(16 × 1) 16	16	0	190 × 283	(16 × 1) 16	0
JB6 (1)	(13 × 1) 13	13	0	190 × 283	(33 × 1) 33	20
JB7 (1)	(33 × 1) 33	33	0	190×28	(33 × 1) 33	0
KA1 (1)	(128 × 3) 384	339	45	845 × 940	(176 × 3) 528	189
KA2 (1)	(31 × 3) 93	87	6	463×654	(73 × 3) 219	132
KB1 (1)	(30 × 1) 30	30	0	$379 \times 146/107 \times 347/72 \times 207$	(73 × 1) 73	43
KB2 (1)	(31 × 1) 31	31	0	$379 \times 146/107 \times 347/72 \times 207$	(73 × 1) 73	42
KB3 (1)	(20 × 1) 20	14	6	$379 \times 146/107 \times 347/72 \times 207$	(73 × 1) 73	59
KB4 (1)	(20 × 1) 20	20	0	$379 \times 146/107 \times 347/72 \times 207$	(73 × 1) 73	53
KB5 (1)	(57 × 1) 57	56	1	$379 \times 146/107 \times 347/72 \times 207$	(73 × 1) 73	17
KB6 (1)	(21 × 1) 21	19	2	$379 \times 146/107 \times 347/72 \times 207$	(73 × 1) 73	54
KB7 (1)	(8 × 1) 8	6	2	$379 \times 146/107 \times 347/72 \times 207$	(73 × 1) 73	67
KB8 (1)	(39 × 1) 39	39	0	-	(39 × 1) 39	0
KB9 (1)	(22 × 1) 22	22	0	250 × 215	(30 × 1) 30	8
TOTAL. 32	2023	1867	156	3113		1248

Appendix 1. Classroom Measurement and Dimension

Source: IT unit 2024.

Appendix 2. Number of Registered Students

0.1 1		D	LEVELS						TOT	Grand.	
School	Department	Programme	100	200	300	400	DIP	P G	- 101.	Total.	
		Applied Chemistry	10	4	14	9	0	18	55		
		Industrial Chemistry	0	0	0	0	0	0	0		
	Applied Chemistry	Pharmaceutical Tech	56	23	0	0	0	0	79	162	
SCBCS	Gheimstry	Dip in Lab Tech	15	13	0	0	0	0	28		
		Total	81	40	14	9	0	18	162		
		Biochem	22	19	32	43	0	32	148		
	Biochemistry & Forensic Sc	Forensic Science	3	2	0	0	0	0	5	153	
	i orensie se.	Total	25	21	32	43	0	32	153		
	4 1: 1 D: 1	Applied Biology	16	14	16	29	0	27	102	100	
	Applied Biology	Total	16	14	16	29	0	27	102	102	
SEI S		Environmental Science	0	6	5	5	0	9	25		
OLLO	Environmental	Environment and Sustainable	14	8	0	0	0	0	22	47	
	science	Development	14	0	0	0	0	0	22	.,	
		Total	14	14	5	5	0	9	47		
	Mathematics Industrial Mathematics	Mathematics	13	22	21	19	5	29	109		
		Computational Mathematics	0	0	0	0	0	10	10	119	
		Total	13	22	21	19	5	39	119		
		Mathematics with Economics	16	23	15	23	0	0	77		
		Mathematics with Finance	1	1	3	7	0	0	12	89	
SMS		TOTAL	17	24	18	30	0	0	89		
01010.		Statistics	5	11	16	25	7	26	90		
	Statistics &	Actuarial Science	9	8	11	13	0	0	41	104	
	Actuarial Sc.	Applied statistic	0	0	0	0	0	65	65	190	
		TOTAL	14	19	27	38	7	91	196		
	Biometry	Biometry	0	0	0	0	0	6	6	6	
	Diometry	TOTAL	0	0	0	0	0	6	6		
	Public Health	Public Health in Health Control	85	29	0	0	0	19	133		
SPH	and control	TOTAL	85	29	0	0	0	19	133	107	
	Epidemiology &	Public Health in Disease Control	225	95	0	0	0	12	332	405	
	Biostats	TOTAL	225	95	0	0	0	12	332		
	Cyber Security	Cyber Security	33	17	24	0	9	0	83		
SCIS	and Computer.	Software Engineering.	12	9	6	0	2	0	29	112	
3013	Engineering.	Total	45	26	30	0	11	0	112		

Grand T	OTAL		778	642	448	502	183	696	3249	3249	
	Education	TOTAL	0	18	35	21	6	75	155		
	Science	Science Education	0	18	35	21	6	75	155		
SMES.	Tor Education.	TOTAL	0	0	0	0	17	199	216	371	
	Mathematics & ICT Education	Mathematics Education	0	0	0	0	0	199	199		
	_	Diploma in ICT Education	0	0	0	0	17		17		
		TOTAL	25	0	0	0	0	63	88		
SMEDS	Critical Care	Infectious disease and immunology	0	0	0	0	0	34	34	88	
	Anasthasis 9-	Anesthesia and Critical care	0	0	0	0	0	29	29		
		Medical Laboratory Science	25	0	0	0	0	0	25	30	
	Science	Total	8	9	7	6	0	0	30		
	Geological	Geological Science	8	9	7	6	0	0	30		
		Total	15	11	10	5	0	7	48		
SPS		Industrial Physics	0	0	0	0	0	7	7		
	Applied Physics	Geophysics	0	0	0	0	0	0	0	48	
		Medical Physics	13	5	6	0	0	0	24		
		Applied Physics	2	6	4	5	0	0	17		
	computing	Total	25	48	23	44	0	0	148		
	Business	Dip in Business Computing	0	0	0	0	8	0	8	148	
		Computing-with-Acct.	25	48	23	44	0	0	140		
	Technology	Total	94	137	98	86	85	69	569		
	Info. System &	Information Tech	94	137	98	86	85	69	569	569	
		Total	76	115	112	167	44	30	544		
	Science	Network Science	0	3	0	0	0	0	3	544	
	Computer	Data Science	3	1	3	0	0	0	7	544	
		Computer Science	73	111	109	167	44	30	534		

Continued

Sources: IT unit 2024.

Appendix 3. Keys to the Table

1. SA (1-4)	NHA BLOCK, SB (1-3)	C-BLOCK & COMPUTER LAB and SC (1-3)	SCIENCE LABS
		(Chem	istry, Biology and physics)
2. JA (1-4)	NGF & NTF BLOCK, JB	(1-7) SPANISH LAB BOTH LECTURE ROOMS	AND LABS
3. KA (1-2)	NH BLOCK, KB (1-9)	LECTURE ROOM AT SCH, PUB.H AND SCH.	MED SC. &
AL	LIED BIOLOGY LABS		

Appendix 4. AMPL Software

1. Develop AMPL Software Programme (USING GOOD SEATING CAPACITY)

PART 1: DECISION VARIABLES

var x1>= 0;var x2>= 0;var x3>= 0;var x4>= 0;var x5>= 0;var x6>= 0;var x7>= 0;var x8>= 0; $var x^{9} = 0$; $var x^{10} = 0$; $var x^{11} = 0$; $var x^{12} = 0$; $var x^{13} = 0$; $var x^{14} = 0$; $var x^{15} = 0$; var x16>= 0;var x17>= 0;var x18>= 0;var x19>= 0;var x20>= 0;var x21>= 0;var x22>= 0; var x23>= 0;var x24>= 0;var x25>= 0;var x26>= 0;var x27>= 0;var x28>= 0;var x29>= 0; $var x30 \ge 0:var x31 \ge 0:var x32 \ge 0:$ **# PART 2: OBJECTIVE FUNCTION** maximize P: 285*x1 + 166*x2 + 72*x3 + 48*x4 + 13*x5 + 30*x6 + 87*x7 + 132*x8 + 30*x9 + 23*x10 + 33*x11 + 13*x5 + 30*x6 + 87*x7 + 132*x8 + 30*x9 + 23*x10 + 33*x11 + 13*x5 + 30*x6 + 87*x7 + 132*x8 + 30*x9 + 23*x10 + 33*x11 + 13*x5 + 30*x6 + 87*x7 + 132*x8 + 30*x9 + 23*x10 + 33*x11 + 13*x5 + 30*x6 + 87*x7 + 132*x8 + 30*x9 + 23*x10 + 33*x11 + 13*x5 + 30*x6 + 87*x7 + 132*x8 + 30*x9 + 23*x10 + 33*x11 + 13*x5 + 30*x6 + 87*x7 + 132*x8 + 30*x9 + 23*x10 + 33*x11 + 13*x5 + 30*x6 + 87*x7 + 132*x8 + 30*x9 + 23*x10 + 33*x11 + 13*x5 + 30*x6 + 87*x7 + 132*x8 + 30*x9 + 23*x10 + 33*x11 + 13*x5 + 30*x6 + 87*x7 + 132*x8 + 30*x9 + 23*x10 + 33*x11 + 13*x5 + 30*x6 +24*x12 + 27*x13 + 75*x14 + 16*x15 + 13*x16 + 33*x17 + 339*x18 + 87*x19 + 30*x20 + 31*x21 + 14*x22 + 20*x23 + $+ 56 \times 24 + 19 \times 25 + 6 \times 26 + 39 \times 27 + 22 \times 28 + 33 \times 29 + 30 \times 30 + 34 \times 31$; #Capacity of each class type **# PART 3: CONSTRAINTS s.t.** M1: 10*x1 + 56*x2 + 15*x3 + 22*x4 + 3*x5 + 16*x6 + 14*x7 + 13*x8 + 16*x9 + x10 + 5*x11 + 9*x12 + 85*x13 + of students in 100level s.t. M2: 4*x1 + 23*x2 + 13*x3 + 19*x4 + 2*x5 + 14*x6 + 6*x7 + 8*x8 + 22*x9 + 23*x10 + x11 + 11*x12 + 8*x13 + $29*x14 + 95*x15 + 17*x16 + 9*x17 + 111*x18 + x19 + 3*x20 + 137*x21 + 48*x22 + 6*x23 + 5*x24 + 9*x25 + 18*x26 < = 10^{-10}$ 642; #Total of students in 200level s.t. M3: 14*x1 + 32*x2 + 16*x3 + 5*x4 + 21*x5 + 15*x6 + 3*x7 + 16*x8 + 11*x9 + 24*x10 + 6*x11 + 109*x12 + 109*x123*x13 + 98*x14 + 23*x15 + 4*x16 + 6*x17 + 7*x18 + 35*x19<= 448; #Total of students in 300level s.t. M4: 9*x1 + 43*x2 + 29*x3 + 5*x4 + 19*x5 + 23*x6 + 7*x7 + 25*x8 + 13*x9 + 167*x10 + 86*x11 + 44*x12 + $5*x13 + 6*x14 + 21*x15 \le 502$; #Total of students in 400 level s.t. M5: $5*x1 + 7*x2 + 9*x3 + 2*x4 + 44*x5 + 85*x6 + 8*x7 + 17*x8 + 6*x9 \le 183$; #Total of students in diploma level s.t. M6: 18*x1 + 32*x2 + 27*x3 + 9*x4 + 29*x5 + 10*x6 + 26*x7 + 65*x8 + 6*x9 + 19*x10 + 12*x11 + 30*x12 + $69*x13 + 7*x14 + 29*x15 + 34*x16 + 199*x17 + 75*x18 \le 696$; #Total of students in postgraduate level **s.t.** M7: x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9 + x10 + x11 + x12 + x13 + x14 + x15 + x16 + x17 + x18 + x19 + $x20 + x21 + x22 + x23 + x24 + x25 + x26 + x27 + x28 + x29 + x30 + x31 + x32 \le 32$; # No of available classrooms The part that was run for the result is (example2.run); **#RESET THE AMPL ENVIRONMENT** reset: **#LOAD THE MODEL model** example1.mod; **#CHANGE THE SOLVER (optional) option** solver **cplex**; **#SOLVE** solve; **#SHOW RESULTS** display x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12, x13, x14, x15, x16, x17, x18, x19, x20, x21, x22, x23, x24, x25, x26, x27, x28, x29, x30, x31, x32, P; The AMPL Software Results ampl: include wumpini2.run; CPLEX 22.1.1: optimal solution; objective 9233.684211 1 simplex iterations x1 = 29.8947 $x^{2}, x^{3}, x^{4}, \dots, x^{17} = 0$ x18 = 2.10526 $x19, x20, x21, \dots, x32 = 0$ and Pmax = 9233.68

Appendix 5

2. Develop AMPL Software Programme (USING CURRENT CAPACITY)# PART 1: DECISION VARIABLES

var x1>= 0;var x2>= 0;var x3>= 0;var x4>= 0;var x5>= 0;var x6>= 0;var x7>= 0;var x8>= 0; $var x^{9} = 0$; $var x^{10} = 0$; $var x^{11} = 0$; $var x^{12} = 0$; $var x^{13} = 0$; $var x^{14} = 0$; $var x^{15} = 0$; var $x16 \ge 0$; var $x17 \ge 0$; var $x18 \ge 0$; var $x19 \ge 0$; var $x20 \ge 0$; var $x21 \ge 0$; var $x22 \ge 0$; $x^{23} = 0; x^{24} = 0; x^{25} = 0; x^{2$ $var x30 \ge 0:var x31 \ge 0:var x32 \ge 0:$ **# PART 2: OBJECTIVE FUNCTION** maximize P: 318*x1 + 180*x2 + 78*x3 + 54*x4 + 13*x5 + 30*x6 + 100*x7 + 33*x8 + 30*x9 + 34*x10 + 147*x11 + 33*x12 + 27*x13 + 33*x14 + 24*x15 + 27*x16 + 75*x17 + 16*x18 + 13*x19 + 33*x20 + 384*x21 + 93*x22 + 30*x23 + 384*x21 + 93*x22 + 30*x23 + 384*x21 + 93*x20 + 384*x20 + 3 $+31^{x}24 + 20^{x}25 + 20^{x}26 + 57^{x}27 + 21^{x}28 + 8^{x}29 + 39^{x}30 + 22^{x}31$; #Capacity of each class type **# PART 3: CONSTRAINTS s.t.** M1: 10*x1 + 56*x2 + 15*x3 + 22*x4 + 3*x5 + 16*x6 + 14*x7 + 13*x8 + 16*x9 + x10 + 5*x11 + 9*x12 + 85*x13 + of students in 100level **s.t.** M2: 4*x1 + 23*x2 + 13*x3 + 19*x4 + 2*x5 + 14*x6 + 6*x7 + 8*x8 + 22*x9 + 23*x10 + x11 + 11*x12 + 8*x13 + 642; #Total of students in 200level s.t. M3: 14*x1 + 32*x2 + 16*x3 + 5*x4 + 21*x5 + 15*x6 + 3*x7 + 16*x8 + 11*x9 + 24*x10 + 6*x11 + 109*x12 + 109*x123*x13 + 98*x14 + 23*x15 + 4*x16 + 6*x17 + 7*x18 + 35*x19<= 448; #Total of students in 300level s.t. M4: 9*x1 + 43*x2 + 29*x3 + 5*x4 + 19*x5 + 23*x6 + 7*x7 + 25*x8 + 13*x9 + 167*x10 + 86*x11 + 44*x12 + $5*x13 + 6*x14 + 21*x15 \le 502$; #Total of students in 400 level **s.t.** M5: 5*x1 + 7*x2 + 9*x3 + 2*x4 + 44*x5 + 85*x6 + 8*x7 + 17*x8 + 6*x9<= 183; #Total of students in diploma level **s.t.** M6: 18*x1 + 32*x2 + 27*x3 + 9*x4 + 29*x5 + 10*x6 + 26*x7 + 65*x8 + 6*x9 + 19*x10 + 12*x11 + 30*x12 + $69*x13 + 7*x14 + 29*x15 + 34*x16 + 199*x17 + 75*x18 \le 696$; #Total of students in postgraduate level **s.t.** M7: x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9 + x10 + x11 + x12 + x13 + x14 + x15 + x16 + x17 + x18 + x19 + $x20 + x21 + x22 + x23 + x24 + x25 + x26 + x27 + x28 + x29 + x30 + x31 + x32 \le 32$; # No of available classrooms The part that was run for the result is (example2.run); **#RESET THE AMPL ENVIRONMENT** reset: **#LOAD THE MODEL model** example1.mod; **#CHANGE THE SOLVER (optional) option** solver cplex: **#SOLVE** solve: **#SHOW RESULTS display** x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12, x13, x14, x15, x16, x17, x18, x19, x20, x21, x22, x23, x24, x25, x26, x27, x28, x29, x30, x31, x32, P; The AMPL Software Results ampl: include example2.run; CPLEX 22.1.1: optimal solution; objective 10431.06767 1 simplex iterations x1 = 28.1353, x2, x3, x4, x20 = 0, x21 = 3.86466, $x22, x23, x24, \dots, x32 = 0$ and Pmax = 10431.1

Appendix 6

3. Develop AMPL Software Programme (USING PROJECTED SEATING CAPACITY)

PART 1: DECISION VARIABLES $var x_1 \ge 0$; $var x_2 \ge 0$; $var x_3 \ge 0$; $var x_4 \ge 0$; $var x_5 \ge 0$; $var x_6 \ge 0$; $var x_7 \ge 0$; $var x8 \ge 0; var x9 \ge 0; var x10 \ge 0; var x11 \ge 0; var x12 \ge 0; var x13 \ge 0; var x14 \ge 0;$ var x15>= 0;var x16>= 0;var x17>= 0var x18>= 0;var x19>= 0;var x20>= 0;var x21>= 0; var $x22 \ge 0$; var $x23 \ge 0$; var $x24 \ge 0$; var $x25 \ge 0$; var $x26 \ge 0$; var $x27 \ge 0$ var $x28 \ge 0$; $var x29 \ge 0$: $var x30 \ge 0$: $var x31 \ge 0$: $var x32 \ge 0$: **# PART 2: OBJECTIVE FUNCTION** maximize P: 351*x1 + 210*x2 + 90*x3 + 90*x4 + 36*x5 + 36*x6 + 100*x7 + 70*x8 + 80*x9 + 80*x10 + 186*x11 + 186*x1148*x12 + 90*x13 + 54*x14 + 36*x15 + 36*x16 + 36*x17 + 75*x18 + 16*x19 + 33*x20 + 33*x21 + 528*x22 + 219*x23 + 528*x22 + 528* $+73 \times 24 + 73 \times 25 + 73 \times 26 + 73 \times 27 + 73 \times 28 + 73 \times 29 + 73 \times 30 + 39 \times 31 + 30 \times 32$; #Capacity of each class type **# PART 3: CONSTRAINTS** s.t. M1: 10*x1 + 56*x2 + 15*x3 + 22*x4 + 3*x5 + 16*x6 + 14*x7 + 13*x8 + 16*x9 + x10 + 5*x11 + 9*x12 + 85*x13 + of students in 100level s.t. M2: 4*x1 + 23*x2 + 13*x3 + 19*x4 + 2*x5 + 14*x6 + 6*x7 + 8*x8 + 22*x9 + 23*x10 + x11 + 11*x12 + 8*x13 + $29*x14 + 95*x15 + 17*x16 + 9*x17 + 111*x18 + x19 + 3*x20 + 137*x21 + 48*x22 + 6*x23 + 5*x24 + 9*x25 + 18*x26 < = 10^{-10}$ 642: #Total of students in 200level s.t. M3: 14*x1 + 32*x2 + 16*x3 + 5*x4 + 21*x5 + 15*x6 + 3*x7 + 16*x8 + 11*x9 + 24*x10 + 6*x11 + 109*x12 + 3*x13 + 98*x14 + 23*x15 + 4*x16 + 6*x17 + 7*x18 + 35*x19<= 448; #Total of students in 300level s.t. M4: 9*x1 + 43*x2 + 29*x3 + 5*x4 + 19*x5 + 23*x6 + 7*x7 + 25*x8 + 13*x9 + 167*x10 + 86*x11 + 44*x12 + $5*x13 + 6*x14 + 21*x15 \le 502$; #Total of students in 400 level

s.t. M5: $5*x1 + 7*x2 + 9*x3 + 2*x4 + 44*x5 + 85*x6 + 8*x7 + 17*x8 + 6*x9 \le 183$; #Total of students in diploma level **s.t.** M6: $18*x1 + 32*x2 + 27*x3 + 9*x4 + 29*x5 + 10*x6 + 26*x7 + 65*x8 + 6*x9 + 19*x10 + 12*x11 + 30*x12 + 69*x13 + 7*x14 + 29*x15 + 34*x16 + 199*x17 + 75*x18 \le 696$; #Total of students in postgraduate level **s.t.** M7: $x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9 + x10 + x11 + x12 + x13 + x14 + x15 + x16 + x17 + x18 + x19 + x20 + x21 + x22 + x23 + x24 + x25 + x26 + x27 + x28 + x29 + x30 + x31 + x32 \le 32$; # No of available classrooms The part that was run for the result is (example2.run); #RESET THE AMPL ENVIRONMENT

reset;

#LOAD THE MODEL model example1.mod; #CHANGE THE SOLVER (optional) **option** solver cplex; **#SOLVE** solve: **#SHOW RESULTS display** x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12, x13, x14, x15, x16, x17, x18, x19, x20, x21, x22, x23, x24, x25, x26, x27, x28, x29, x30, x31, x32, P; The AMPL Software Results ampl: include example2.run; CPLEX 22.1.1: optimal solution; objective 13299.68182 1 simplex iterations x1 = 20.3182, $x^{2}, x^{3}, x^{4}, \dots, x^{21} = 0,$ x22 = 11.6818. $x23, x24, x25, \dots, 32 = 0$ and

Pmax: = 13299.7