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Abstract 
Seeking effective solutions to control and mitigate the interaction between 
drilling fluids and clay formations has been a challenge for many years, and 
various shale inhibitors have shown excellent results in problematic shale 
formations around the world. Herein, the hyperbranched polyamine (HBPA) 
inhibitor with a higher ratio of amine groups and obvious tendentiousness in 
protonation was successfully synthesized from ethylenediamine, acryloyl 
chloride and aziridine by five steps, in which the metal-organic framework 
(MOF) was employed as a catalyst for ring-open polycondensation (ROP). The 
structure and purity were confirmed by nuclear magnetic resonance hydrogen 
spectroscopy and high-performance liquid chromatography (HPLC) respec-
tively. The HBPA displays more excellent performance than EDA and KCl 
widely applied in the oil field. After aging at 80˚C and 180˚C, the YP of a 
slurry system containing 25 wt.% bentonite and 2 wt.% HBPA are just 8.5 Pa 
and 5.5 Pa (wt.%: percentage of mass), respectively. The swelling lengths of 2 
wt.% HBPA are estimated to be 1.78 mm, which falls by 70% compared with 
that of freshwater. Under a hot rolling aging temperature of 180˚C, the HBPA 
system demonstrates a significant inhibition with more than 85% shale cut-
tings recovery rate and is superior to conventional EDA and KCl. Mechanism 
analysis further validates that the HBPA can help to increase the zeta poten-
tial. 
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1. Introduction 

According to the complex and numerous chemical and physical variations present 
in the formation, normal inhibitors don’t deliver satisfactory performances for 
preventing shale hydration swelling and dispersion in water-based drilling fluids 
[1] [2], and the existence of water sensitivity would produce a series of problems 
such as instability and collapse of the wellbore, bit balling, stuck pipe, etc [3] [4]. 

The linear-chain molecular structure is a much important factor that restricts 
the performance of the existing inhibitors [5]. Molecules adsorbed on the surface 
of the electronegative clay particles have absorbing groups with low density at 
either end and desorption takes place most easily when subjected to every 
downhole factor, resulting in a sharp decline in inhibitory action [6] [7] [8]. 

Compared with linear polymer, hyperbranched polymer, as a kind of qua-
si-spherical shape polymer with dominated branched structure, can introduce 
numerous absorbing groups at the end of the molecular chains by the functiona-
lization and modification of end-groups, which was propitious for the molecular 
chain to the adsorption on the surface of clay [5]. Excluding terminal groups, the 
increase of absorbing groups along the chains could also enhance the adsorption 
capacity. The resulting molecular is adsorbed onto the negatively charged clay 
mineral and enters the interlayer space to tighten the crystalline layers of clay 
minerals, preventing shale hydration swelling [9]. 

In this study, a kind of hyperbranched polymer with a higher ratio of amine 
groups was designed and synthesized. Benefiting from this structure, primary 
amine, secondary amine and amide groups would produce protonated products 
in serious alkaline drilling fluids, which endow the molecule with strong adsor-
bability and thus help boost the inhibition performance of HBPA. Attributing to 
the characterization results of inhibitive properties, the as-synthesized HBPA 
significantly performances better than currently available EDA and KCl in ben-
tonite inhibition test, linear swelling test and shale cuttings hot-rolling disper-
sion test. Besides, zeta potential measurements were carried out to investigate 
the inhibiting mechanism. Compared to EDA and KCl, the HBPA system expe-
riences the greatest drop and no charge reversal appears.  

2. Experimental 
2.1. Materials 

Ethylenediamine (EDA, AR, >99%): colorless or slightly yellow viscous liquid, 
melting point 8.5˚C, boiling point 116˚C, relative density 0.899, belongs to alka-
line material, soluble in water, ethanol, slightly soluble in ether.  

Di-tert-butyl dicarbonate (Boc2O, >98%): a new type of amino protective 
agent, the product is a colorless crystal or colorless liquid, melting point 22˚C, 
boiling point 56˚C, relative density 0.950, dissolved in tetrahydrofuran, trichlo-
romethane and other organic solvents, slightly soluble in water. 

Trifluoroacetic acid (TFA) (AR, >99%): excellent solvent for organic reaction, 
melting point −15.6˚C, boiling point 71.1˚C, relative density 1.5351, used in this 
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paper for the removal of BOC protective group. 
Triethylamine (AR, >99%): an organic compound, colorless oily liquid, melt-

ing point −114.8˚C, boiling point 89.5˚C, relative density 0.728, used as an ac-
id-binding agent.  

Citric acid monohydrate (AR, >99%): organic compound, melting point 
−94˚C, boiling point 56˚C, relative density 0.791, used in this paper for remov-
ing impurities of the product.  

KCl: white crystal powder, melting point 770˚C, boiling point 1420˚C, relative 
density 1.98, was used as the control experiment of inhibition performance of 
synthetic hyperbranched polyamine (HBPA) (Figure 1). 
 

 
Figure 1. Schematic diagram of synthesis of the HBPA. 
 

Aziridine was prepared based on the relevant reference [10].  
The Sodium bentonite (Na-bent) was a natural smectic aluminosilicate. 

2.2. Sample Preparation  
2.2.1. Tert-Butyl (2-Aminoethyl)Carbamate (1) 
To a solution of EDA (0.224 mol, 15 mL) and tetrahydrofuran (THF) (75 mL) 
was added the di-tert-butyl dicarbonate (Boc2O) (0.04353 mol, 10 mL) at 0˚C - 
5˚C. The reaction mixture was stirred at 25˚C for 24 h and then yellow oily liq-
uid (5.57 g, 80%) was obtained through filtration, washing and concentration. 1H 
NMR (400 MHz, CDCl3) δ: 1.44 (s, 9H, CH3), 1.53 (s, 2H, NH2), 2.54 - 2.56 (m, 
2H, N-CH2), 3.41 - 3.43 (m, 2H, CH2-N), 6.75 (s, 1H, NH). 

2.2.2. Tert-Butyl (2-Acrylamidoethyl)Carbamate (2) 
Acryloyl chloride (4.5 mmol, 0.41 g) was added to a solution of 1 (4.5 mmol, 
0.72 g), triethylamine (5.4 mmol, 0.55 g) and methylene chloride (DCM) (20 
mL), and the acryloyl chloride (4.5 mmol, 0.41 g) dissolved in DCM (15 mL) was 
added slowly at 0˚C - 5˚C. The solution was stirred overnight and warmed to 
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25˚C during this period. and then excess solvent was removed under vacuum. 
The residue was diluted with saturated sodium bicarbonate solution following 
extraction with CH2Cl2, then the combined solution was dried and concentrated 
to give 3 (0.72 g, 75%) as a light-yellow powder. 1H NMR (400 MHz, DMSO) δ: 
1.37 (s, 9H, CH3), 3.14 (s, 4H, CH2-CH2), 5.60 (s, 1H, CH=C), 6.07 (d, 1H, 
CH=C), 6.12 - 6.26 (m, 1H, C=CH), 6.81 (s, 1H, NH), 8.10 (s, 1H, NH). 

2.2.3. N-(2-Aminoethyl)Acrylamide (3) 
TFA (2.5 mL) was added to a solution of 2 (4.5 mmol, 0.963 g) and ethyl acetate 
(10 mL) at 0˚C - 5˚C. The solution was heated in an oil bath (100˚C) for 12 h, 
and then the excess solvent was removed under vacuum. The remains were di-
luted with n-butanol (15 mL) and washed with saturated sodium carbonate solu-
tion. The yellow solution was concentrated to give 4 (0.36 g, 70%). 1H NMR (400 
MHz, CDCl3) δ: 1.31 (s, 2H, NH2), 2.52 (d, 2H, CH2-N), 3.37 (d, 2H, N-CH2), 
5.61 (d, 1H, CH=C), 6.11 (d, 1H, CH=C), 6.23-6.25 (m, 1H, C=CH), 8.44 (s, 1H, 
NH). 

2.2.4. NAAEA (4) 
The aqueous solution with 3 (4.5 mmoL, 0.51 g) and aziridine (13.5 mmol, 0.58 
g) were mixed, then the reaction mixture was stired at 65˚C for 10 h. the yellow 
liquid 5 (0.90 g, 82%) was obtained by alkali treatment process and concentra-
tion. 1H NMR (400 MHz, CDCl3) δ: 1.44 (s, 6H, NH2), 2.55 (s, 6H, N-CH2), 2.78 
(s, 4H, CH2-N), 3.04 (d, 2H, CH2-N), 3.2 - 3.3 (m, 2H, N-CH2), 3.4 (s, 2H, 
N-CH2), 3.83 - 3.85 (m, 1H, CH=C), 3.99 (s, 1H, CH=C), 4.97 (s, 1H, C=CH). 

2.2.5. Hyperbranched Amine Inhibitor (HBPA) (5) 
A suspension of 4 (2.19 g, 9 mmol), NaOH (21 mg) and EDA (3 mmol, 0.2 mL) 
in methanol (20 mL) was stirred at 40˚C for 6 h under a nitrogen atmosphere. 
Compound 6 (1.88 g, 79%) was obtained as a light-yellow oil.1H NMR (400 
MHz, CDCl3) δ: 1.10 - 1.15 (m, 1H, CH3), 1.44 (s, 6H, NH2), 2.54 (s, 6H, N-CH2), 
2.59 (s, 4H, CH2-N), 2.68 (s, 2H, N-CH2), 2.78 (s, 2H, CH2-N), 3.22 (s, 2H, 
CH2-N), 3.30 (d, 2H, CH2-N), 3.33 (s, 1H, NH), 3.45 - 3.49 (m, 2H, N=CH2). 

2.3. Characterization 
1H-NMR and HPLC Analysis 
The product of each step was investigated by use of nuclear magnetic resonance 
hydrogen spectroscopy with tetramethylsilane as an internal reference, and the 
measurement was performed on an advanced −400 spectrometer at 25˚C. In or-
der to further verify the rationality and reliability of these strategies in the syn-
thesis of HBPA, High-Performance Liquid Chromatography (HPLC) was used 
to characterize the high purity of the target compound. 

2.4. Inhibition Property Evaluation 
2.4.1. Bentonite Inhibition Test 
The incorporation of highly active drilled solids into a drilling fluid is simulated 
in the technique, which closely resembles the process of drilling in water-sensitivity 
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soil. A solution of 5 wt.% bentonite (20 g) and a certain concentration of shale 
inhibitors dissolved in 400 mL freshwater was stirred for about 30 min, then the 
mixture was hot rolled for 16 h at different temperatures. After cooling to 25˚C, 
their rheology was measured. Then, added an equal amount of bentonite and the 
operation was the same as the previous. This process repeated until the data was 
unreadable resulting from the excessive viscosity of the sample. 

2.4.2. Linear Swelling Test 
The impact of inhibitor on shale cuttings exposed to the water-based drilling 
fluid can be assessed by linear swelling measurements which are carried out at 
25˚C. A large linear swelling rate corresponds to fairly strong hydration reactiv-
ity. Firstly, bentonite powder (10 g) was compressed into bentonite pellets. Then 
the swelling heights of pellets soaked in a certain concentration of a solution 
containing various inhibitors were investigated. 

2.4.3. Shale Cuttings Hot-Rolling Dispersion Test 
This method is designed to evaluate exactly the ability of inhibitors to prevent 
shale hydration swelling and dispersion by determining the influence of inhibi-
tors on determining the effect of an inhibitor on the structural integrity of sized 
cuttings at elevated temperature. Added a 350 mL solution containing 50 g shale 
cuttings and various concentrations of inhibitors to the aging jars for hot rolling 
aging for 16 h, then, the remaining shale cuttings of a certain size were screened 
with a 40 mesh sieve. After washing and drying to a constant mass, the recovery 
of cuttings can be calculated according to the formula below.  

The constant massRecovery 100%
50

= ×  

2.5. Inhibition Mechanism Analysis 
Zeta Potential Measurement 
For clay particles, the trend of swelling and dispersion weakens with the absolute 
value of negative zeta potential decreasing. Normally, this test is used to evaluate 
the stability of clay dispersions via the changing trends of electrokinetic proper-
ties for bentonite affected by inhibitors. A series of bentonite suspensions of the 
same concentration (4 wt.%) were employed as base slurry samples and kept 
stirring for 24 h. Then adding various concentrations of inhibitors to these slur-
ry samples to continue to stir for another 24 h, the supernatant was diluted to 
zeta potential determination. 

3. Results and Discussion 
3.1. Characterization 

The polybasic primary amine structure of HBPA was confirmed by 1H NMR 
analysis, which spectra were shown in Figure 2(a). The 1H NMR spectrum con-
firms the presence of primary amine in this HBPA structure with the chemical 
shift peaks of 1.5 ppm. It can be observed that the spectra have characteristic 
shifts of methylene groups, corresponding to seven kinds of protons in methy-
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lene under different chemical environments on this sample. There is chemical 
shift peaks at 3.32 ppm, attributed to protons of NH groups. Figure 2(b) is the 
typical analytical HPLC (High-Performance Liquid Chromatography) chroma-
tograms for the prepared HBPA. The results indicated that the contents of two 
components in the product were 72.1% and 27.9%, respectively. 
 

 
(a) 

 
(b) 

Figure 2. (a) 1H-NMR of the HBPA; (b) The HPLC chromatogram of the HBPA. 
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3.2. Inhibitive Properties Evaluation 
3.2.1. Bentonite Inhibition Test 
The ability of the inhibitor to prevent shale hydration swelling can be detected 
by the changing rules of yield points for bentonite slurries with various concen-
trations [11] [12] [13]. The evaluation results of the bentonite inhibition test 
were shown in Figure 3. When increasing the addition of bentonite under the 
absence of inhibitors, the YP shows a rapid increase, and the value quickly be-
comes unmeasurable as the additive content of bentonite reaches 15% of the to-
tal drilling fluid mass, suggesting the swelling behavior of bentonite [14]. By 
comparison, the increasing of YP of a slurry system containing different inhibi-
tors develops slowly initially, and the value changes abruptly under higher ben-
tonite concentration. Encouraging, compared with the two conventional inhibi-
tors, the swelling of bentonite is inhibited by HBPA (2 wt.%) to maximum. To 
further evaluate the inhibition effect of these serious additives at elevated tem-
peratures, trends in yield points for bentonite slurries with various inhibitors 
were examined under the conditions of 180˚C. Figure 3 reveals that the 2 wt.%  
 

 
(a) 

 
(b) 

Figure 3. Variation of yield value with bentonite concentration in various inhibitor Solu-
tions at 80˚C (a) and 180˚C (b). *apparatus: Model 900 viscometer, the data was meas-
ured at 25˚C. 
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HBPA displays superior performance, and the order was 2 wt.% HBPA > 2 wt.% 
EDA > 7 wt.% KCl for the properties of inhibition. 

3.2.2. Linear Swelling Test 
Linear swelling test can specifically estimate the swelling degree of rock samples 
with drilling fluids [15], especially for highly reactive shale formation containing 
abundant swelling clays [16] [17] [18]. The inhibitive durability of the prepared 
HBPA inhibitor was detected and the results were shown in Figure 4. For com-
parison, the EDA, KCl and freshwater systems were also tested under identical 
conditions. During the initial test phase, the swelling and hydration of bentonite 
pellet increase rapidly, and then a plateau is reached where the linear swelling 
lengths turn to be relatively stable. Measurement results suggest that the swelling 
lengths of 0.5 wt.% EDA, 1 wt.% EDA, 2 wt.% EDA, 7 wt.% KCl, 0.5 wt.% HBPA, 1 
wt.% HBPA, 2 wt.% HBPA are estimated to be 3.39, 2.51, 2.09, 2.94, 2.20, 1.86 and 
1.78 mm, respectively. Obviously, compared with EDA and KCl systems, the 
HBPA has resulted in the biggest drops in the expandability of bentonite [19]. 
 

 

Figure 4. Linear swelling lengths of bentonite pellets in various inhibitor systems. 
 

Ultimately, the excellent performance of the HBPA to prevent shale hydration 
swelling owes a great deal to the inherent characteristics [20] [21] [22] [23]: 1) 
the relatively more amine groups can evenly adsorb on the clay to render the 
clay surface more hydrophobic and promote the release of interlayer water. 2) 
Hyperbranched polymer, as a kind of quasi-spherical shape polymer with dom-
inated branched structure, can introduce numerous absorbing groups at the end 
of the molecular chains by the functionalization and modification of end-groups. 

3.2.3. Rolling Recovery Tests 
According to the test standards released by ISO 10416: 2008 Petroleum and 
Natural Gas Industries Industries Drilling Fluids Laboratory Testing, shale re-
covery is the most used approach for further evaluating the inhibiting perfor-
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mance of bentonite [24] [25]. By comparison of the results in Table 1 and Fig-
ure 5, it can be clearly seen that the shale recovery rate is extremely low in fresh 
water at various hot-rolling temperatures, declining from 49.68% for 80˚C to 
34.68% for 120˚C, 29.50% for 160˚C and 27.31% for 180˚C, respectively, exem-
plifying the hydration tendency of shale cuttings [26]. Compared to those under 
freshwater, the shale recovery rates which are treated by inhibitors are all satis-
factory under the lower temperature of 80˚C. The recovery rates are with respect 
to the order of 7 wt.% KCl < 5 wt.% KCl < 0.5 wt.% EDA < 1 wt.% EDA < 2 wt.% 
EDA < 0.5 wt.% HBPA < 1 wt.% HBPA < 2 wt.% HBPA. At elevated tempera-
tures, maintaining the integrity of shale becomes more difficult. The swelling 
and hydration of shale are strongly accelerated, and the adsorption of inhibitors 
on the clay surface, on the other hand, will weaken. These defects could cause 
rock fragments to separate from the wellbore wall during the drilling [27]. From 
Figure 5 and Table 1, although the recovery rates for all inhibitors decline as  
 

 

Figure 5. Shale recovery ratios of various inhibitors after hot rolling at different temper-
atures for 16 h. 
 
Table 1. Shale cuttings recoveries of different inhibitor systems at different rolling tem-
peratures. 

Temperature 

Inhibitors 

Fresh 
Water 

EDA KCl HBPA 

0.5 wt.% 1.0 wt.% 2.0 wt.% 5.0 wt.% 7.0 wt.% 0.5 wt.% 1.0 wt.% 2.0 wt.% 

80˚C 49.68% 68.66% 75.80% 78.60% 55.00% 54.00% 89.41% 91.13% 92.26% 

120˚C 34.68% 62.56% 68.86% 75.06% 47.50% 46.72% 88.10% 90.21% 91.48% 

160˚C 29.50% 59.50% 66.00% 73.66% 43.90% 44.30% 84.52% 86.90% 88.61% 

180˚C 27.31% 57.72% 62.04% 69.32% 40.20% 39.32% 81.30% 83.71% 85.12% 

*Rolling time: 16 h. 
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temperature rises, among which the 2 wt.% HBPA shows the smallest drop, only 
0.8% for 120˚C and 3.9% for 160˚C. Besides, According to the data under a high 
temperature of 180˚C, the HBPA system remains ahead of its rivals in shale re-
covery with a satisfactory value of 85.12%, further confirming the excellent inhi-
bitive and heat-resistance [28]. The above mentioned together could elucidate 
the prepared HBPA could effectively inhibit shale dispersion during drilling. 

3.3. Mechanism Analysis 
Zeta Potential Test 
Electrokinetic properties of clay were performed to reveal the interactions be-
tween HBPA and clay particles, and the zeta potential pattern was displayed in 
Figure 6, with EDA and KCl inhibitor as reference. Commonly, the bentonite 
particle is a negative charge surface due to isomorphic replacements of ions in 
layers [29] [30]. The highly negative zeta potential of clay particles represents the 
enhanced shale hydration swelling and dispersion. As shown in Figure 6, the 
zeta potential value of sodium bentonite-based slurry is about −34 mV, implying 
higher discursiveness [31] [32]. Due to the diffuse electric double layer suppres-
sion by metal ions, that value decreases with the addition of KCl. As the concen-
tration reaches 1.5 wt.%, the HBPA system experiences the greatest rise from 
−34 mV to −12.8 mV, about 21.2 mV, then a plateau is reached and no charge 
reversal appears during the whole concentration range, indicating that the ad-
sorption of HBPA onto the clay surface reached saturation. Though the chang-
ing trend of the EDA is similar to HBPA, the latter can increase the zeta poten-
tial more positively than EDA. 
 

 

Figure 6. Zeta potential variation of different inhibitors with concentrations. 
 

Amine group would be protonated when dissolved in an aqueous solution 
[33], The protonated ammonium ions neutralized the negatively charged clay 
surface and resulted in the increase of zeta potential. Besides, attributing to the 
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alkalescent property of the amine, no charge reversal was observed throughout 
the testing stage. Benefiting from this hyperbranched polymer with a higher ra-
tio of amine groups, the HBPA increased the zeta potential to a higher degree 
than EDA and KCL, indicating the excellent performance to prevent shale hy-
dration swelling and dispersion. 

4. Conclusion 

Hyperbranched polyamine (HBPA) inhibitor with a higher ratio of amine 
groups and obvious tendentiousness in protonation used as an effective shale in-
hibitor in water-based drilling fluids has been developed, and a kind of MOFs 
was chosen as ring-open polycondensation catalyst for this process. Compared 
with the traditional inhibitors, the HBPA inhibitor shows significantly inhibitive 
properties which can meet the demands of controlling and mitigating the shale 
hydrating and dispersing. In bentonite inhibition evaluation, the swelling of clay 
is inhibited by HBPA to maximum, and the same is true at up to 180˚C condi-
tions. The HBPA also exhibits the lowest linear swelling lengths of 1.78 mm. 
Meanwhile, the shale recovery rates of HBPA for 16 h reach 92.26%, 91.48%, 
88.61% and 85.12% for 80˚C, 120˚C, 160˚C and 180˚C, respectively. Further, the 
validity of test results was verified by analyzing the inhibiting mechanism. In a 
conclusion, the prepared HBPA can effectively reduce shale hydration and dis-
persion and apply to high-temperature wells application.  
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