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Abstract 
Background: Degeneration of the intervertebral disc is one of the causes of 
kyphosis. Several biomechanical studies have investigated the mechanisms of 
development of spinal deformity using simulation models. Realistic muscu-
loskeletal models are helpful for investigating the pathophysiology and changes 
in internal forces in patients with kyphosis. However, the association between 
intervertebral disc pressure and kyphosis has not been fully elucidated to 
date. Purpose: To calculate intervertebral disc pressure in elderly women 
with kyphosis using a novel and precise thoracolumbar three-dimensional 
musculoskeletal model. Materials and Method: Ten female patients with a 
mean age of 80.0 ± 6.5 years who visited our hospital for medical examination 
of osteoporosis were included. The subjects were divided into the normal and 
kyphosis groups depending on their sagittal vertical axis. Intervertebral disc 
pressures in the thoracic and lumbar spines of subjects were analyzed by in-
verse dynamics analysis using a novel three-dimensional musculoskeletal model, 
and were compared between the groups. Result: Significant differences in 
lumbar lordosis (LL) were observed between the two groups. Furthermore, 
the kyphosis group was older and shorter. In the kyphosis group, the upper 
thoracic vertebrae (T1 - T6) showed significantly higher intervertebral pres-
sure than the normal group. Conclusion: Intervertebral disc pressure in the 
thoracic and lumbar spines of patients with spinal deformities was evaluated 
using a novel thoracolumbar three-dimensional musculoskeletal model. Us-
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ing this novel model with separated thoracic spine and modified muscle path 
reflecting actual physiological curvature, disc pressure closer to the realistic 
condition was obtained. Intervertebral disc pressure in the upper thoracic 
spine in the kyphosis group was significantly increased compared with that in 
the normal group. Moreover, intervertebral disc pressures in the upper tho-
racic spine correlated negatively with LL. 
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Intervertebral Disc Pressure, Three-Dimensional Musculoskeletal Model, 
Adult Spinal Deformity, Anybody Modeling System 

 

1. Introduction 

Kyphosis progresses with advancing age [1], and has been found to be associated 
with multiple health-related problems, including back pain [2], imbalance, a 
tendency to fall [3] [4] [5], gastroesophageal disorders [6], multifaceted dis-
orders such as mental depression [7], and decrease in health-related quality of 
life [8]. The possible causes of kyphosis are degeneration of intervertebral discs, 
development of vertebral fractures, and decrease in trunk muscle strength [9]. 
Hence, it is important to understand the mechanical behavior of the interverte-
bral disc as a part of the entire spinal column in order to understand the etiology 
of spinal deformity. However, the mechanisms of progression of kyphosis other 
than due to the development of vertebral fractures are still unclear. 

Several biomechanical studies have used simulation models to investigate the 
mechanisms of the development of spinal deformity [10] [11] [12]. Most of these 
studies focused mainly on vertebral body stress rather than intervertebral disc 
pressure. In vitro studies using human or animal cadavers have evaluated the 
internal forces in vertebral bodies and intervertebral discs [13] [14] [15] [16]. 
Disc pressure has also been measured in vivo during various movements and 
lifting operations, by inserting a pressure sensor inside the intervertebral disc 
[17] [18] [19] [20]. However, the in vivo procedures are basically invasive, espe-
cially for healthy subjects. Besides, the majority of these studies were performed 
mainly on the lumbar spine. Therefore, evaluation of intervertebral disc pressure 
of the entire spinal column, to determine how kyphosis occurs and progresses, is 
necessary. Realistic musculoskeletal models might be helpful for investigating 
the pathophysiology and changes in internal forces in patients with kyphosis. 

Recently, several biomechanical studies using a musculoskeletal model of the 
entire spine, including the rib cage or whole body, have been developed [10] [21] 
[22] [23] [24]. We also developed a novel musculoskeletal model of the entire 
spinal column, which was modified from the original model for the lumbar spine, 
which included the thoracic cage as one rigid body [23]. The predicted interver-
tebral disc pressure of the spinal column as a whole with this model was vali-
dated to show the accuracy of measurements including the thoracic spine. Since 
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previous studies using a musculoskeletal model for the whole spine focused on 
the development of vertebral fractures [10] [25] or the effect of various move-
ments on disc pressure [22], the association between intervertebral disc pressure 
and kyphosis has not been fully elucidated to date. The purpose of this study was 
to calculate intervertebral disc pressure in elderly women with kyphosis using a 
novel thoracolumbar three-dimensional musculoskeletal model. 

2. Materials and Methods 
2.1. Participants 

Ten female participants with osteoporosis were recruited from among post-
menopausal women who visited our outpatient clinic for the purpose of medi-
cal examination of osteoporosis. Participants were included on the basis that 
they had been diagnosed with primary osteoporosis requiring treatment. All 
participants were housewives without experiences of heavy work, and were 
ambulatorywithout any complaints of back pain. Individuals with histories of 
spinal surgery, vertebroplasty/kyphoplasty, and multiple vertebral fractures 
(≥2) were excluded. The ethics committee of our institute approved this study 
protocol.  

2.2. Imaging 

Lateral radiographs of the whole spine, including the pelvis, with both hands 
placed on the clavicle, were taken in the relaxed standing position. The following 
parameters were measured on the radiographs: sagittal vertical axis (SVA: Hori-
zontal distance from the C7 plumb line originating at the middle of the C7 ver-
tebral body to the posterior superior endplate of S1), lumbar lordosis (LL: Cobb 
angle from the upper endplate of L1 to the lower endplate of S1), and thoracic 
kyphosis (TK: Cobb angle from the upper endplate of T4 to the lower endplate 
of T12). 

2.3. Biomechanical Model 

The novel thoracolumbar spine model used in this study was constructed with the 
commercially available AnyBody Modeling System software (AMS. V.6.0.5.4379) 
(AnyBody Technology, Alborg, Denmark) [23]. The original model was con-
structed based on a generic lumbar spine model [26], although the thorax was 
constructed as one rigid unit. In the novel model, the thorax was divided into 33 
parts, including 12 thoracic vertebrae, 10 pairs of articulated ribs, and the ster-
num. Trunk muscles, including 15 individual muscles and 328 fascicles, were 
newly defined. The origin and insertion points of the muscles and muscle cross 
sections were decided based on magnetic resonance imaging (MRI) data [27]. 
The muscle path were determined using a previously described wrapping me-
thod [28] that follows the geometric shape of the figure. The model was pre-
viously validated for accuracy of the predicted intervertebral disc pressure using 
inverse dynamics analysis [23], and was shown to accurately predict interverte-
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bral disc pressure in comparison with previous in vivo data [17] [18] [29]. The 
constructed model is shown in Figure 1. 

2.4. Input of Vertebral Geometry 

The vertebral centroid was determined to be located at the intersection of the 
diagonal lines of the quadrilateral formed by each vertebral body in lateral 
standing radiographs. Next, the centroids of vertebral bodies from C7 to S1 were 
plotted on the x-axis and y-axis directions in the sagittal plane (Figure 2). Body 
weight and height for each patient were input into the model. 
 

 
Figure 1. Overview of the novel musculoskeletal spine model. The thorax in the novel 
model was divided into separated thoracic vertebrae, articulated ribs, and the sternum. 
The origin and insertion points of the muscle path and muscle cross section were decided 
based on MRI data. The muscle paths were determined using the wrapping method. 
 

 
Figure 2. The centroids of vertebral bodies measured from lateral standing radiographs 
were plotted in the x-axis and y-axis directions in the sagittal plane. 
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2.5. Conditions for Calculation of Intervertebral Disc Pressure 

The patients were asked to stand still with their hands on their clavicles, and the 
pelvis and sacrum were fixed in the sagittal plane using three-dimensional coor-
dinates. In each subject, inverse dynamics analysis was performed in the model 
to estimate joint movement and muscle tension, and intervertebral disc com-
pression force was calculated from these values. Intervertebral disc compression 
force was converted to intervertebral disc pressure by substituting the correction 
factor of a previously reported equation [30]. 

2.6. Statistical Analysis 

Statistical analyses were performed with SPSS® software version 24 (IBM Corp., 
Armonk, NY, USA). The correlation coefficient between spinal column align-
ment, intervertebral disc pressure, and height and weight was analyzed with 
Pearson’s test. Comparisons between the two groups were made using the un-
paired test. A P-value of < 0.05 was considered statistically significant. 

3. Results 

Demographic data for all the patients are presented in Table 1. The average age  
 
Table 1. Demographic data of the study subjects (n = 10). 

Variables Values (mean ± SD) 

Age (years) 80.0 ± 6.5 
Height (cm) 147.0 ± 7.1 
Weight (kg) 44.5 ± 9.2 

TK (˚) 38.0 ± 9.9 

LL (˚) 42.0 ± 13.2 

SVA (mm) 38.5 ± 19.1 
T1-2 (N) 34.0 ± 20.3 
T2-3 (N) 31.9 ± 23.2 

T3-4 (N) 46.8 ± 38.0 

T4-5 (N) 68.7 ± 42.7 

T5-6 (N) 84.8 ± 51.0 

T6-7 (N) 104.3 ± 58.2 
T7-8 (N) 131.0 ± 58.8 
T8-9 (N) 146.5 ± 62.4 

T9-10 (N) 186.6 ± 67.0 

T10-11 (N) 273.2 ± 84.1 

T11-12 (N) 314.1 ± 85.1 
T12-L1 (N) 330.0 ± 90.4 

L1-2 (N) 353.2 ± 77.0 
L2-3 (N) 362.0 ± 89.5 
L3-4 (N) 321.9 ± 88.3 

L4-5 (N) 422.6 ± 96.3 

L5-S (N) 493.2 ± 96.9 

TK: thoracic kyphosis (˚), LL: lumbar lordosis (˚), SVA: sagittal vertical axis (mm), The values for the indi-
vidual spinal levels denote indicate intervertebral disc pressure (N: Newton). 
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of the patients was 80.0 ± 6.5 years. The spinopelvic parameters indicated mod-
erate deterioration of alignment. One vertebral fracture each was seen in four of 
the study subjects. The calculated intervertebral disc pressure at each spinal level 
increased in a caudal direction. 

The patients were divided into two groups based on SVA. Patients with an 
SVA of more than 40 mm were defined as the kyphosis group, and those in 
whom SVA was less than 40 mm as the normal group [31]. Significant differ-
ences in LL were observed between the two groups. Furthermore, the kyphosis 
group was older and shorter (Table 2). 

In the kyphosis group, the disc spaces between the upper thoracic vertebrae of 
T1-2, T2-3, T3-4, T4-5 and T5-6 showed significantly higher intervertebral 
pressures than the normal group (Figure 3). 

Correlation coefficients between intervertebral disc pressure and sagittal spin-
al alignment are presented in Table 3. Intervertebral disc pressures significantly 
positively correlated with SVA from T1-2 to T6-7, and negatively correlated with 
LL from T3-4 to T5-6. Both findings were mainly found in the upper thoracic 
vertebrae. 

4. Discussion 

This study examined intervertebral disc pressure of the entire spine, including 
the thoracic and lumbar spine, and evaluated the effect of kyphosis on interver-
tebral disc pressure using a novel musculoskeletal model developed at our insti-
tution [23]. One of the characteristics of this new model is that the thoracic cage, 
which was originally a rigid structure in a previous model [26], was divided into 
12 vertebrae, 10 pairs of articulated ribs, and the sternum. In addition, geometric 
muscle structures were constructed based on our own precise anatomical data 
obtained using computed tomography and MRI [27]. Initially, the pathways of 
the muscles were defined as straight lines between the origin and insertion of the 
muscle. However, since the actual muscles of the trunk often turn around bony 
structures or soft tissues, the muscle paths were re-constructed using a wrapping 
method, which reproduces the muscle path, closely reflecting actual physiologi-
cal curvature around the underlying bony structures and soft tissues [28]. Then, 
intervertebral disc pressures that were calculated with this model under several  
 
Table 2. Comparison of spinopelvic parameters between the two groups. 

 
SVA ≥ 40˚ 

(n = 4) 
SVA < 40˚ 

(n = 6) 
p value 

Age (years) 85.5 ± 2.8 77.0 ± 6.1 0.05 

Height (kg) 141.5 ± 3.0 152.0 ± 5.3 0.01 

Weight (cm) 38.0 ± 2.2 52.5 ± 7.0 0.01 

TK (˚) 38.5 ± 8.1 33.0 ± 10.9 Ns 

LL (˚) 31.0 ± 3.6 42.0 ± 11.4 0.02 

SVA: sagittal vertical axis (mm), TK: thoracic kyphosis (˚), LL: lumbar lordosis (˚). 
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Table 3. Pearson’s correlation coefficients between intervertebral disc pressure and sagit-
tal parameters. 

 SVA TK LL 

T1-2 0.70* 0.27 −0.44 

T2-3 0.69* 0.13 −0.55 

T3-4 0.70* 0.08 −0.61* 

T4-5 0.70* −0.60 −0.63* 

T5-6 0.69* −0.27 −0.61* 

T6-7 0.64* −0.06 −0.58 

T7-8 0.61 −0.12 −0.49 

T8-9 0.59 −0.15 −0.45 

T9-10 0.56 −0.17 −0.39 

T10-11 0.53 −0.24 −0.38 

T11-12 0.52 −0.17 −0.37 

T12-L1 0.48 −0.22 −0.31 

L1-2 0.29 −0.21 −0.05 

L2-3 0.48 −0.23 −0.24 

L3-4 0.27 −0.20 0.00 

L4-5 0.28 −0.01 −0.03 

L5-S 0.34 −0.24 −0.12 

SVA: sagittal vertical axis (mm), TK: thoracic kyphosis (˚), LL: lumbar lordosis (˚), (*p < 0.05). 

 

 
Figure 3. Comparison of intervertebral disc pressure between the groups. 
 
conditions of daily activities were validated and demonstrated to accurately pre-
dict the load [23]. Therefore, the results obtained in this study are considered 
realistic and reliable for estimating intervertebral disc pressure under various 
conditions of spinal alignment, including kyphosis. 

Biomechanical studies evaluating the internal forces in the intervertebral disc 
are mostly performed for the lumbar spine, with measurements performed in 
vivo, using cadaver studies, or by model simulation. Numerous cadaver studies 
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have been conducted on the load and kinematics of vertebral bodies or interver-
tebral discs [13] [14] [15] [16] [32]. Brown et al. reported the effect of functional 
spinal unit instability on lumbar disc degeneration using cadavers [13]. Ander-
son et al. investigated intervertebral disc pressures of the thoracic spine and 
demonstrated the effect of the rib cage and follower load [15]. Liebsch et al. also 
showed the effect of follower load on the motion of the thoracic spine using an 
entire rib cage specimen, trying to simulate physiological loading conditions 
[32]. Although these in vitro studies using cadavers demonstrated accurate mea-
surement of disc pressure and kinematic data, the cadaveric spine does not com-
pletely reflect in vivo conditions in terms of the effects of muscle tone or in-
tra-thoracic and abdominal pressure. Besides, in vitro cadaver studies are gener-
ally performed with isolated thoracic spines with or without rib cages. 

Several reports have described measurement of changes in in vivo forces due 
to postural changes by a method involving actual insertion of a pressure sensor 
in the intervertebral disc [17] [18] [19] [20]. Nachemson et al. first reported in-
tervertebral disc pressure in various postures, such as standing, sitting and su-
pine positions, in 1964 [20]. Wilke et al. measured the intervertebral disc pres-
sure in daily life in various sitting postures and with lifting of heavy weights [19] 
[29]. Sato et al. reported that the internal disc pressure in degenerated L4-5 discs 
was significantly reduced compared with that of normal discs [17]. Polga et al. 
measured intervertebral disc pressure in the thoracic vertebrae and showed that 
changes in the lumbar spine with posture differed from those previously re-
ported, depending on the posture [18]. These in vivo studies are considerably 
important to understand the fundamental mechanisms of the intact spine. How-
ever, these experiments are increasingly difficult to reproduce due to their inva-
siveness for healthy subjects and the associated ethical issues. Therefore, a vali-
dated musculoskeletal model comparable to these previous studies is helpful to 
expand opportunities for investigation of the biomechanical behavior of the 
complete spine. The model employed in the present study was compared with 
these previous in vivo data [17] [18] [20], which showed that the predicted value 
with this model showed significant correlation with the literature value [23]. 
Further, while the results of intervertebral disc pressure in the validation study 
were calculated for healthy subjects, the present results demonstrated the value 
in patients with kyphosis for the first time. 

As a less invasive strategy for assessment of intervertebral disc dynamics, ana-
lyses using a finite element model or musculoskeletal models are being actively 
developed. A majority of the studies on intervertebral discs were conducted on 
the lumbar spine [33] [34] [35] [36]. Few studies investigated the whole spine to 
determine the association between kyphosis and spinal loads in vertebral bodies 
and intervertebral discs [10] [12] [37]. Okamoto et al. constructed a kyphosis 
model with vertebral fractures, and concluded that presence of a pre-existing 
vertebral fracture causes an increase in stress on adjacent vertebrae [10]. Briggs 
et al. reported the effects of increased kyphosis on the loading profile of the tho-
racolumbar spine by constructing a two-dimensional biomechanical model us-
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ing the radiographic data from patients with kyphosis, and concluded that in-
creases in thoracic kyphosis were associated with significantly higher mul-
ti-segmental spinal load and trunk muscle forces in the upright stance [12]. Ig-
nasiak et al. investigated the effects of muscle aging and sarcopenia on spinal 
load using generic AnyBody musculoskeletal multibody modeling, which was 
similar to our original model [24]. In their study which highlighted the effect of 
muscle or sarcopenia, forward flexion of the whole spine was simulated to ob-
serve changes in spinal load. The conclusion from these previous studies was 
that kyphosis increases intervertebral load, moving it in a more cranial direction, 
which was a similar trend to the results of the present study. In addition, these 
previous musculoskeletal models used geometric data from a single typical hu-
man body, while the present study used the data from 10 subjects with different 
spinal alignments and input the data in the model. Therefore, this study might 
be the introduction of patient specific biomechanical evaluation before treat-
ment in patients with kyphosis. 

There are several limitations to this study. First, the number of subjects was 
small. Since this study demonstrated preliminary results, further research would 
be expected based on the findings from this study. Second, the data were ob-
tained only in the standing position without any movement. However, the re-
sults can serve as the basis for future study of whole thoracic and lumbar spine 
under dynamic conditions in patients with kyphosis. Third, in this analysis, co-
ronal deformity and pelvic alignment were not considered. Sagittal spinopelvic 
alignment is a significant factor when considering the relationship between the 
health-related quality of life and spinal alignment in adult patients with spinal 
deformity [31] [38]. Further, pelvic tilt and lower limb compensation are very 
important in spinal alignment studies. However, this study focused on estab-
lishing a simple method to evaluate the effect of progression of kyphosis with the 
position of the pelvis fixed. Since this model has a three-dimensional structure, it 
might be possible to evaluate pelvic and coronal alignment and the connection 
with the lower limbs in future studies. 

5. Conclusion 

Intervertebral disc pressure in the thoracic and lumbar spines of patients with 
spinal deformities was evaluated using a novel three-dimensional thoracolumbar 
musculoskeletal model. Using this novel model with separated thoracic spine 
and modified muscle path reflecting actual physiological curvature, disc pressure 
closer to the realistic condition was obtained. Intervertebral disc pressure in the 
upper thoracic spine in the kyphosis group was significantly higher than that in 
the normal group. Moreover, intervertebral disc pressure correlated negatively 
with LL in the upper thoracic spine. 
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provided written informed consent before participating in this study. 
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