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Abstract 
Compositional data, such as relative information, is a crucial aspect of ma-
chine learning and other related fields. It is typically recorded as closed data 
or sums to a constant, like 100%. The statistical linear model is the most used 
technique for identifying hidden relationships between underlying random 
variables of interest. However, data quality is a significant challenge in ma-
chine learning, especially when missing data is present. The linear regression 
model is a commonly used statistical modeling technique used in various 
applications to find relationships between variables of interest. When esti-
mating linear regression parameters which are useful for things like future 
prediction and partial effects analysis of independent variables, maximum li-
kelihood estimation (MLE) is the method of choice. However, many datasets 
contain missing observations, which can lead to costly and time-consuming 
data recovery. To address this issue, the expectation-maximization (EM) al-
gorithm has been suggested as a solution for situations including missing da-
ta. The EM algorithm repeatedly finds the best estimates of parameters in sta-
tistical models that depend on variables or data that have not been observed. 
This is called maximum likelihood or maximum a posteriori (MAP). Using the 
present estimate as input, the expectation (E) step constructs a log-likelihood 
function. Finding the parameters that maximize the anticipated log-likelihood, 
as determined in the E step, is the job of the maximization (M) phase. This 
study looked at how well the EM algorithm worked on a made-up composi-
tional dataset with missing observations. It used both the robust least square 
version and ordinary least square regression techniques. The efficacy of the 
EM algorithm was compared with two alternative imputation techniques, 
k-Nearest Neighbor (k-NN) and mean imputation ( x ), in terms of Aitchison 
distances and covariance. 
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1. Introduction 

Compositional data exclusively consists of relative information. These entities 
are part of a broader entity. Typically, closed data or data that aggregates to a 
constant value, such as 100%, is commonly documented. An illustrative instance 
within the field of medicine involves the examination of the constituent elements 
present in bodily fluids such as blood and urine. The statistical linear model is 
frequently employed to uncover latent associations among relevant random va-
riables due to its user-friendly nature and interpretability. In the domain of ma-
chine learning and its associated disciplines, ensuring the quality of data is a sig-
nificant difficulty. The quality of the underlying data plays a crucial role in de-
termining the quality of information obtained through Machine Learning algo-
rithms, as these algorithms rely solely on data for their functioning. One signifi-
cant concern pertaining to data quality involves the presence of missing data, 
particularly in compositional datasets. The linear regression model is a widely 
employed statistical modeling technique that is utilized across various applica-
tions to ascertain correlations between variables of interest. The method of maxi-
mum likelihood estimation (MLE) is commonly employed to estimate the para-
meters of linear regression by determining the values that maximize the likelih-
ood function given the observed data. The obtained model can be utilized for 
doing partial effects analysis on the independent variables as well as for making 
predictions about future outcomes.  

However, it is important to note that many datasets often exhibit missing ob-
servations. In the context of research, it is possible for participants to opt out of 
providing a response to a survey query, for files to finally undergo destruction, 
or for data to be inadequately preserved. The process of recommencing data col-
lecting and recovery in this case will incur financial expenses and necessitate a 
significant amount of time. The matter pertaining to the evaluation of inade-
quate data necessitates attention. The expectation-maximization (EM) technique 
has been proposed as a potential solution for scenarios with missing data due to 
its robust convergence properties. The estimation of parameters in statistical 
models that involve unobserved variables or unobserved data is commonly 
achieved by the repetitive use of the Expectation-Maximization (EM) technique, 
which seeks to find the maximum likelihood or maximum a posteriori (MAP) 
estimates. The M phase of the EM algorithm involves the estimation of parame-
ters that maximize the expected log-likelihood obtained during the E stage. The 
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E-step, in contrast, constructs a function that calculates the expected value of the 
log-likelihood, using the current estimate as the parameters. In the subsequent E 
phase, these estimates are subsequently employed to determine the distribution 
of the latent variables or missing data.  

Despite the wide investigation of the EM algorithm as an imputation tool, 
there is a lack of knowledge regarding its effectiveness when used for compo-
sitional data. This study investigates the performance of the EM method on a 
synthetic compositional dataset with missing observations. Two imputation 
techniques, namely the robust least square version and least square, are uti-
lized and evaluated. The EM technique is applied to simulated studies by mak-
ing iterative assumptions about a compositional dataset with random missing 
data and outliers, assuming a normal distribution. The effectiveness of the 
EM method was evaluated by comparing its results with two commonly em-
ployed imputation techniques, namely k-Nearest Neighbor (k-NN) and mean 
imputation ( x ), in terms of Aitchison distance and covariance [1]. Based on 
the conducted trials, it was shown that the robust variant of the EM algorithm 
exhibited superior performance compared to alternative imputation strate-
gies.  

2. Methodolgy 
2.1. Linear Regression Model 

We take into consideration a one-dimensional estimator and response linear re-
gression model. Let’s say we have n observations in our dataset. We define the 
predictor ( )1 2, , , nX x x x=  , and the response ( )1 2, , , nY y y y=  . For the ith 
observation, we assume that iy  and ix  are related by the linear regression 
model and in Equation (1):  

( )2
0 1 , ~ 0,i iy x NIDβ β σ= + +                    (1) 

We assume that ( )2~ ,ix N α δ , i.i.d. Under such assumptions, the condition-
al distribution of Y given X is [ ] ( )2

0 1| ~ ,Y X N Xβ β σ+ . Then we can write 
down the joint probability density of X and Y given by  

( ) ( ) ( )
( ) ( )2 2

0 12 2
1 1

2 2

, |

1 1e e
2 2

i i i

i i i i i

y x x

f y x f y x f x

β β α
σ δ

σ δ

− − − − −

=

= ×
π π

         (2) 

2.2. Missing Values 

The data is not completely observed in a lot of real-world scenarios. We expand 
our model to have response values Y fully observed and only m of the predictor 
values observed (i.e., n m−  predictor values missing), and the response values 
Y are fully observed. We can arrange the dataset so that the first m observation is 
fully observed.  

( ) ( )1 1, , , , ,,comp m m n obs missX x x x x X X+= =                (3) 
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Equation (4) thus allows for the decomposition of the entire data log-likelihood 
for the model into the observable and missing parts. 

( ) ( )
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x

θ θ
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= +

=

= − π − π − − −

− − − − −

− −

∑

∑ ∑

∑

   (4) 

where ( )2 2 5
0 1, ,, ,θ β β σ α δ= ∈  

2.3. The EM Algorithm Formulation 

The issue with the above calculation is that Xmis with not observed and needs to 
be estimated. One reasonable approach is that we simply require each 1, ,m nx x+   
to be replaced by its conditional expectation given the observed data, Xobs and 
Y. 

1) E-step:  

( )

( ) ( ) ( ) ( )( )

2
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2 2 2 * *
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| , 2 | ,
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= − +

∑

∑
            (5) 

where *| ,i iE x y θ    and 2 *| ,i iE x y θ    are the first and second conditional 
moments, respectively. Since X and Y have a bivariate normal distribution, we 
can derive the conditional of X given Y and *θ  

( )
2 2 2

* 1
0 12 2 2 2 2 2

1 1

| , ~ ,i i iE X y N yβ δ σ δθ α β β α
σ β δ σ β δ

 
  + − −   + + 

     (6) 

Then we can easily find the conditional first and second moment of Xmiss given 
Y and *θ , denoted as 1M  and 2M  respectively.  

( )
2

1 1
0 12 2 2

1
i iM yβ δ

α β β α
σ β δ

= + − −
+

               (7) 

( )
22 2 2

2 1
0 12 2 2 2 2 2

1 1
i iM yβ δ σ δα β β α

σ β δ σ β δ
 

= + − − + + + 
        (8) 

With these terms computed above, the E-step formulation is shown in Equa-
tion (9) below.  
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where 1M , 2M  are given in Equations (7) and (8). 
2) M-step:  
The M-step maximizes ( )*,Q θ θ  calculated in the E-step. Solving  

( )*,
0

Q θ θ

θ

∂
=

∂
, we get the following results. The updated estimates of β ′  is just 

the OLS solution to the model, i.e., ( ) ( )1T TX X X Yβ
−

′ =  








*

1
*

10 1

** 21 11 1

n n

nn n

i ii i

i iii ii i

n x y

x yx x

β
β

−

= =

== =

   ′     = ′    ∗    

∑ ∑
∑∑ ∑

  

where  ( )* 1*, n
obsX X M= ∈  and  ( )*2 2 2*, n

obsX X M= ∈  are estimated com-
pleted predictor under current estimated parameter 

*θ . Similarly, the other 
updated parameters will be: 
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2.4. Convergence of EM Algorithm 

We will discuss the convergence of EM algorithm in a more general setting. 
Suppose we have dataset of m independent examples and want to fit a parame-
tric model ( ),p x z  to the dataset, then the log likelihood function is: 

( ) ( )( )
( )( )

1

1

log ;

log , ;

m
i

i
i
m

il p x

p x z

θ θ

θ

=

=

=

=

∑

∑
 

where z are the latent random variables. Explicitly finding the maximum like-
lihood estimate of the parameter θ  is quite hard, but if ( )iz  is observed, the 
estimation would be easy. Let ( ) 0iQ z ≥ , ( ) 1iz Q z =∑ . Since ( ) ( )logf x x=  
is a concave function and by Jensen’s Inequality, we get the lower-bound of 
( )l θ : 

( )( ) ( ) ( )( )( )log ; , ;i
i i i

i i zp x p x zθ θ=∑ ∑ ∑              (10) 

https://doi.org/10.4236/ojmsi.2024.122002


Y. A. Abolade, Y. C. Zhao  
 

 

DOI: 10.4236/ojmsi.2024.122002 38 Open Journal of Modelling and Simulation 
 

( )( )
( ) ( )( )
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=∑ ∑                (11) 
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≥∑ ∑                (12) 

Note that this inequality holds for any distribution iQ , it gives the lower 
bound on ( )l θ . Later we will show that the ( )l θ  increases monotonically with 
successive iterations of EM if the lower-bound is tight at θ. We know that the 
Jensen’s Inequality holds with equality if the random variables are constant. So, 
it suffices to satisfy: 

( ) ( )( )
( )( )

, ;i i

i
i

p x z
c

Q z

θ
=  

( )( ) ( ) ( )( ). . , ;i i i
ii e Q z p x z θ∝  

where c is constant and does not depend on ( )iz . Under this assumption, since 
( ) 1iz Q z =∑ , we get: 
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So Qi’s is just the posterior distribution of the z(i)’s given x(i) and the setting of 
θ. Now we introduce the iteration of EM algorithm: 

While ( ) ( )1t tθ θ −− >   do 
E-step: 
Compute ( ) ( )( ) ( ) ( ) ( )( ): | ;t i i i i

iQ z p z x θ=  
M-step 
Compute 

( ) ( ) ( )( )
( ) ( )( )
( ) ( )( )( )

1
, ;

: arg max logi

i i
t t i

iz t ii
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End 
Consider that: 
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logi

i i t
t i
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i

i t i

p x z
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Q z

θ
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( )( )tl θ=                          (15) 

The first inequality holds because of (13). By the definition of ( )1tθ + , (15) is 
obvious. The last equality holds because lower-bound in (13) is tight at ( )tθ θ=  
under our previous assumption. So, the sequence ( )( ){ }t

t
l θ  is both upper 
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bounded (by 0) and increasing. Hence, in EM algorithm the log likelihood con-
verges monotonically. 

3. Application 

This section covers the model-based simulation research application of the EM 
algorithm with least square and resilient least square regression on composition-
al data. We also analyze the resilience and efficiency of the EM approach and 
compare its output to two other commonly used imputation techniques, k-Nearest 
Neighbor (k-NN) and mean imputation ( x ), to address missing data. 

3.1. Data Description 

Compositional data is a unique kind of non-negative data that contains the per-
tinent information not in the actual data values but rather in the ratios between 
the variables. An observation ( )1, , Dx x x=   is a D-part composition if, and 
only if, 0ix > , 1, ,i D=  , and according to Aitchison [2], the ratios between 
the components include all the important information. 

[ ] ( ){ }1 1, , : 0 1, , , 1D
D i DS x x x i D x x= > = + + =    and  

( ) ( )1
1

1

, ,
, , D

D
D

w w
x x

w w
=

+ +






 where (w) denote = total weight and ( )1, , Dw w   

are the component weights. According to Aitchison [2], compositional data is 
not directly represented in Euclidean space. The Aitchison distance Ad  is a 
suitable way to measure the D-part composition known as (simplex) [3]. Ac-
cording to Egozcue et al. [4], the isometric log-ratio (ilr) is used to convert the 
D-dimensional simplex into the real space 1D− . With this transformation, the 
Aitchison distance can be expressed as  

( ) ( ) ( )( ), ,A Ed x y d ilr x ilr y= , where Ed  denotes the Euclidean distance. The 
data in this simulation is generated by a normal distribution on the simplex, de-
noted by ( ),D

s µ Σ  (Mateu-Figueras, Pawlowsky-Glahn, and Egozcue) [5]. We 
generated 10,000 realizations of a random variable [6] ( )4~ ,sX µ Σ  with 

( )T0,2,3µ =  and ( ) ( ) ( )( )T T T1, 0.5,1.4 , 0.5,1, 0.6 , 1.4, 0.6,2Σ = − − − −  [7]. 

3.2. Experimental Design 

• To assess the effectives of the EM algorithm, we look at the results using least 
squares (LS) and its robust version (RLS) across a range of missing data rates 
(contamination levels between 5% and 10%) and outlier rates (1%, 3%, 5%, 
and 10%) expressed in terms of their Aitchison distance (dA) [8]. 

• We also look at the EM algorithm’s output in terms of the covariances of 
various rates of outliers (1%, 3%, 5%, and 10%) and missing data (contami-
nation levels ranging from 5% to 10%). 

3.3. Results and Analysis 

The detailed results for all experiments are discussed in this section (Table 1, 
Table 2, Figure 1, Figure 2). 
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Table 1. Performance metrics for different imputation methods in terms of distance. 

S/N Epsilon1 NArate2 xMean3 kNN4 LS5 RLS6 

1 0.01 0.05 1.208117 0.8815717 0.9277800 0.7544389 

2 0.03 0.05 1.869092 1.6451996 1.9300590 1.5242680 

3 0.05 0.05 2.613898 2.2722186 2.5338586 2.1552349 

4 0.10 0.05 4.044281 3.8628814 4.1707580 3.6228353 

5 0.01 0.10 1.087026 0.7727159 0.8874163 0.6802822 

6 0.03 0.10 1.419570 1.2479738 1.3840970 1.0872886 

7 0.05 0.10 1.798377 1.5482930 1.7860411 1.4121292 

8 0.10 0.10 2.693001 2.4922940 2.8084783 2.2551779 

1Epsilon denote rate of outlier at (1%, 3%, 5% and 10%); 2NArate denote missing rate (contamination level 
at 5% and 10%); 3xMean denote arithmetic mean imputation method; 4kNN denote k-Nearest Neighbor 
imputation method; 5LS denote least square regression version of EM algorithm; 6RLS denote robust least 
square regression version of EM algorithm; *Bold numbers indicate the best performing imputation me-
thod for a given epsilon and missing rate. 

 

 
Figure 1. Performance for different imputation methods in terms of distance. 
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Table 2. Performance metrics for different imputation methods in terms of Covariance. 

S/N Epsilon1 NArate2 xMean3 kNN4 LS5 RLS6 

1 0.01 0.05 0.1982435 0.1686442 0.1756952 0.1668150 

2 0.03 0.05 0.4107212 0.4087216 0.3966203 0.3836261 

3 0.05 0.05 0.5342290 0.5234262 0.5219798 0.5126078 

4 0.10 0.05 0.7064511 0.7005467 0.7037723 0.6945066 

5 0.01 0.10 0.2274753 0.1765070 0.1968090 0.1695136 

6 0.03 0.10 0.4497979 0.3934609 0.4346386 0.3849345 

7 0.05 0.10 0.5563971 0.5472681 0.5541094 0.5150961 

8 0.10 0.10 0.7163915 0.6997279 0.7142401 0.6907288 

1Epsilon denote rate of outlier at (1%, 3%, 5% and 10%); 2NArate denote missing rate (contamination level 
at 5% and 10%); 3xMean denote arithmetic mean imputation method; 4kNN denote k-Nearest Neighbor 
imputation method; 5LS denote least square regression version of EM algorithm; 6RLS denote robust least 
square regression version of EM algorithm; *Bold numbers indicate the best performing imputation me-
thod for a given epsilon and missing rate. 

 

 
Figure 2. Performance for different imputation methods in terms of Covariance. 
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4. Conclusions 

In this study, it is postulated that the missing rate follows a random pattern. 
Consequently, both the least square and robust least square EM algorithm ap-
proaches are employed to address the issue of missing compositional data. The 
simulated compositional synthetic data was utilized as the practical dataset in 
our study. It has been shown that when the occurrence of missing and outlier 
data decreases, the Aitchison distance approaches zero. Furthermore, the robust 
least square variant of the EM method yields the smallest values in this regard 
making it the best performing algorithm. Distance values close to zero represent 
the most efficacious imputation strategies.  

We also compare the Expectation-Maximization (EM) method to arithmetic 
mean imputation and k-Nearest Neighbor and find that the robust EM version is 
the best of the bunch when it comes to co-variances. In this study, we provided 
evidence to support the effectiveness of all strategies when applied under condi-
tions of low missing rates, specifically those below 5%. The EM algorithm de-
monstrates improved performance as the rate of missing data increases. Howev-
er, when the incidence of missing data exceeds 10%, most imputation methods 
become inadequate in generating a dependable approximation, hence exacer-
bating the difficulty in recovering the data. 
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