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Abstract 
In crime science, understanding the dynamics and interactions between 
crime events is crucial for comprehending the underlying factors that drive 
their occurrences. Nonetheless, gaining access to detailed spatiotemporal 
crime records from law enforcement faces significant challenges due to confi-
dentiality concerns. In response to these challenges, this paper introduces an 
innovative analytical tool named “stppSim,” designed to synthesize fine-grained 
spatiotemporal point records while safeguarding the privacy of individual lo-
cations. By utilizing the open-source R platform, this tool ensures easy acces-
sibility for researchers, facilitating download, re-use, and potential advance-
ments in various research domains beyond crime science. 
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1. Introduction 

Understanding crime dynamics holds immense significance in shaping effective 
policies and fostering safer communities [1]. By delving into the complex inter-
play of factors that drive criminal behavior and patterns, we gain insights that 
can guide targeted interventions and law enforcement strategies. This impor-
tance lies in its potential to prevent crime. The analysis of temporal patterns and 
spatial concentrations, along with the intricate interconnection of these dimen-
sions in criminal behaviour, empowers law enforcement entities to allocate re-
sources strategically and deploy preventive measures proactively [2] [3]. This, in 
turn, reduces the opportunity for criminal acts to occur. 

Nonetheless, the ongoing advancements in digital data acquisition systems 
have undoubtedly improved the quality of urban crime recordings [4] [5] across 
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various policing jurisdictions, enabling police practitioners to enhance their un-
derstanding of crime dynamics. Fine-grained crime data is particularly useful in 
hotspot policing, where it is used to identify problematic areas and target appro-
priate policing responses [6] [7]. However, with improved data quality arise 
concerns regarding the confidentiality of personal information [8] [9]. The dis-
closure of personal information from crime data is a serious concern, as it can 
put individuals at risk of harm, discrimination, or other negative consequences. 
As such, police agencies take steps to protect the confidentiality of individuals 
relating to the data. This includes implementing strict data sharing protocols, 
limiting access to data, and ensuring that any data released is anonymized. Data 
aggregation is one common technique used to coarsen spatiotemporal data for 
the purpose of sharing while protecting privacy [10] [11]. However, these tech-
niques can also have negative impacts on the data accuracy [12] [13] [14] [15], 
data quality [16] [17], and data fitness for purpose [18] [19]. While aggregation 
(spatial) may serve to reduce biases in analytical outcomes [20], fine-grained raw 
data sets are often considered more valuable due to their flexibility for manipu-
lation and suitability for a wider range of purposes. 

Accessing detailed spatiotemporal crime records presents a set of formidable 
challenges. Chief among them is the intricacy of data privacy and security [21]. 
Police is responsible for sensitive and confidential data related to criminal activ-
ity, and must ensure that any data sharing is done in compliance with legal re-
quirements and security protocols. Moreover, the fragmentation of data sources 
across jurisdictions poses a significant hurdle. The diverse methods, formats, and 
standards of data collection within different geographical boundaries necessitate 
complex integration efforts, hindering seamless analysis of spatiotemporal pat-
terns. Additionally, resource constraints within law enforcement agencies can 
impede data quality and accessibility [22] [23]. Many agencies lack the necessary 
technological infrastructure and expertise to effectively manage and share the 
complex spatiotemporal data [22]. As a result, inconsistencies and gaps in data 
reporting can arise. Overcoming these challenges demands collaborative efforts 
to ensure data security, integration, and accessibility while maintaining the pri-
vacy of individuals and the integrity of ongoing investigations. 

As an alternative, a synthetic data that models specific aspects of crime dy-
namics, such as patterns of biases in crime counting [24], spatial concentration 
of crimes [25] [26], and target selection by offenders [27], can be developed. 
However, existing studies lack adaptable methodologies and practical tools to 
replicate real-world datasets or synthetise predefined patterns and interactions 
among crime occurrences in both spatial and temporal domains. The signific-
ance of crime event interactions in crime science cannot be overstated. Numer-
ous crime phenomena, including repeat victimisation [28] [29] [30] [31], crime 
concentrations [32], and optimal foraging idea [33] [34] emanate from the in-
terplay between crime events in space and time. Consequently, scrutinizing 
space-time interactions of crime carries both research and operational benefits. 
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For instance, the recurrent patterns of residential offenders can guide law en-
forcement in targeting limited police resources. Hence, this paper addresses this 
methodological challenge by developing “stppSim” tool in R platform in order to 
allow reproducibility and advancement in other domains. 

Specific criminological theories played important roles in the development of 
“stppSim” tool. These include the rational choice theory (RCT) [35], routine activi-
ty theory (RAT) [36], and crime pattern theory (CPT) [37]. In particular, the RAT 
describes the conditions that have to be met while the offender moves and interacts 
with the environment. It states that a crime occurs when three elements, namely; 
motivated offenders, suitable targets, and the absence of capable guardians, con-
verge in space and time: The use of RAT and other related theories for the simula-
tion studies of crime can be found in many existing literature [38] [39] [40]. 

In order to simulate crime in a virtual environment, two approaches are 
commonly used, namely: the agent-based modeling (ABM) [41] [42] and micro-
simulation (MSM) [43] [44]. These techniques operate at the individual (entity) 
level and rely on assumptions, domain theories, and previous findings. ABM 
focuses on the interactions between individuals to produce unexpected out-
comes. It can simulate complex social systems and model how individuals’ ac-
tions affect each other and their environment. MSM, on the other hand, focuses 
on individual stochastic behavior to generate aggregated/dissagregated patterns. 
In other words, it can simulate the behavior of large populations by modeling 
the behavior of individual members. [45] demonstrated that ABM and MSM can 
be integrated to simulate burglary crimes in a heterogeneous environment by 
combining street network and land use information. This hybrid approach is 
considered more dynamic than traditional methods and allows for more realistic 
simulation of crime patterns. 

This article introduces an innovative fusion of ABM and MSM techniques to 
establish a versatile framework for simulating point events across spatial and 
temporal dimensions. Complementing this framework is an analytical tool 
named “stppSim”, developed within the R programming platform. The primary 
objective of this study is to elucidate the operational mechanics of the frame-
work, highlight the tool’s functionalities, and offer insights into its pivotal out-
comes. By harnessing the potential synergy of ABM and MSM, the stppSim tool 
creatively replicates crime patterns to align with pre-defined specifications. It 
simulates the stochastic conduct of individual offenders, their engagements with 
the environment, resulting in the emergence of crime patterns and interactions 
spanning both spatial and temporal dimensions. In order to ensure a balance 
between safeguarding the spatiotemporal identities of real individuals and gene-
rating valuable data (i.e., accurate records), the simulation commences by anc-
horing the process at a higher macro (global) level. This involves capturing the 
overall behaviour, trends, and patterns of the system without delving into the 
details of individual components. As simulation parameters are gradually dissi-
pated from a broad perspective to a finer granularity, the framework generates 
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outputs in alignment with the predefined data structure, concurrently upholding 
location privacy at the detailed level. 

This paper is organized as follows: Section 2 presents a detailed overview of 
the proposed agent-based microsimulation framework. In Section 3, the imple-
mentation of the “stppSim” tool is described, emphasizing its key features and 
functionalities. The application of the tool for generating synthetic spatiotem-
poral point patterns of crime is described in Section 4. The last section of the 
paper discussed the significance of the tool in research and practical contexts, 
while concluding with essential considerations for users and identifying poten-
tial areas for future enhancements. 

2. Spatio-Temporal Point Pattern Simulation Framework 

The proposed simulation framework is aimed at synthesizing crime events 
marked by the locations and reference times, through artificial offenders 
(agents) within a specified geographical region and time period. The objective is 
to ensure that a significant number of events which are relatively close in space 
are also relatively close in time [46], according to specified spatial and temporal 
thresholds, hence the space-time interactions between the events. 

The framework consists of two main components: Features Calibration and 
Model Integration, as shown in Figure 1. The Features Calibration component 
contains two sets of variables: global and individual level variables. These variables 
are identified as important to crime modeling based on existing theories. The in-
itial values of these variables are set using expert knowledge and research 

 

 
Figure 1. Spatio-temporal point pattern simulation framework. 
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findings. The global variables are those that affect the overall spatial patterns and 
trend of crime, such as the spatial proportional ratio [47] and trend direction. 
On the other hand, individual level variables refer to the characteristics of agents 
(e.g., offenders) that are embedded in the simulation. These variables may in-
clude residences (origins) and speed (step length) of offenders. 

The Model Integration component takes the selected variables from the Fea-
tures Calibration component to initialize and configure the modeling functions 
(ABMs and MSMs) within the simulation environment. This integration results 
in the changing of agents’ states from “exploratory” to “offending” and vice ver-
sa. A crime event is said to occur when an agent assumes an “offending” state. 
Each component is further described as follows: 

2.1. Features Calibration 

Using global level variables (see Table 1), the framework configures the spatial 
and temporal properties of the simulation environment. For example, the spatial 
proportional ratio is a global level variable that controls the spatial concentration 
of events across the simulation space [47]. Similarly, the trend is a global level 
variable that determines the long-term direction of the simulated time series. 
These variables play a critical role in defining the overall characteristics of the 
simulation environment and ensuring that the synthetic data generated by the 
simulation is realistic and comparable to the existing data. 

The individual level variables connect the global level variables in order to 
ensure that the simulated data has the desired characteristics at low levels. In 
other words, the variables control local variations in the simulation, such as the 
variance in local concentration of events (using “s_band” variable), as well as 
short-term patterns in the time series. It’s important to note that the landscape 
in which the simulation takes place can be either homogeneous or heterogene-
ous, with varying levels of restrictions depending on the features included, such 
as land use or street network. 

2.2. Model Integration 

In order to initialize and configure the functions that enable agents’ movements 
and interactions across the landscape, the selected variables are integrated to-
gether with the environmental features to allow changes in the behaviours 
(states) of the agents. The process is summarised as pseudocode in Table 2. 

3. “stppSim” in Practice 

The proposed framework is developed into an add-on package “stppSim” to the 
statistical software R [56]. The utility and the reproducibility are described as 
follow: 

3.1. Implementation 

The “stppSim” package is freely available under Open-Source GNU GPL 3  
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Table 1. Simulation parameters and their descriptions. 

Variable Parameter Description 

Global Focal point A point location (x, y) that is considered the focal point of the city. Usually a location within 
the main central part of the city or an area with the highest concentration of crime 
opportunities in line with the RAT [36]. 

Proportional ratio The ratio that describes the minimum area to maximum crime concentration in the city, in 
accordance with law of crime concentration [47]. 

Trend Defines the direction of the time series over time. 

ShortTerm Specifies the short- to medium-term fluctuations of the time series over time. 

s_range/t_band A pair of spatial thresholds that defines a geographical region within which point events 
interact. For guidance on the spatial bandwidth associated with different offender types, see 
[29] [48] [49] [50] [51]. 

Restriction surface A raster map showing landscape features with different restriction levels (i.e., level of 
guardianship) [52] [53] depicted by the pixel values. Each feature class will have the same pixel 
values. At most extreme, the raster may consist of only 0 s (no restrictions) and 1 s (highest 
restriction). At the other extreme, simulations may be performed without any raster, i.e., on a 
homogeneous terrain. All intermediate scenarios are also possible. Lower restrictions also 
imply that an agents can move faster (and so cover more areas and create more interactions), 
and vice versa. 

Boundary A shapefile (.shp) object delineating the extent of the landscape. Typically, the.shp object will 
form the baseline surface on top of which landscape (restrictive) features are stacked. Pixels 
outside the boundary are by default assigned value 1 s. 

Individual 
level 

Initial state The initial status of an agent. Each agent assumes an ‘exploratory’ state at the start of 
simulation, i.e., no criminal activities is expected. The state may change as a reaction to agent 
interaction with the environment, driven by the ABM and MSM functions. 

Sources Defined as a set of x, y coordinates representing the origins of the agents. May be calibrated 
using the known offender residences [54] [55] or proxy datasets, such as land use patterns or 
observed crime clustering. 

Spatial threshold Defines the perception range of an agent at any instant. This is currently defined as a circle 
around an agent’s current location. 

Temporal bin The temporal unit of analysis. Time intervals within which agents reset (i.e., assumed to 
re-emerge). 

Step length Defines the maximum temporal step of an agent. This controls the levels of possible 
interactions between agents and the environment. 

 
license on the Comprehensive R Archive Network (CRAN)  
(https://cran.r-project.org/web/packages/stppSim/index.html). The development 
version and code are available on Github  
(https://github.com/MAnalytics/stppSim). To install stppSim, open R console 
(or RStudio) and type: “install.packages (‘stppSim’)”, then run “library 
(stppSim)” to load the package. 
• Package name: stppSim 
• Current version: 1.3.1 
Package home page: https://github.com/MAnalytics/stppSim  
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Table 2. Model integration and state change. 

Pseudocode 1: 

1. Specify the global temporal parameters over a specified time period, Tk, where k is 
the number of temporal units in T. 

2. Define a specified number of agents, AZ, in line with the pre-conceived spatial 
concentration across the landscape, 

3. for an agent Az: 

 a) for a temporal bin kt ⊂ T and allowed number of time steps, s 

 i) Sample the locations around the agent and determine the next agent’s 
location, using the inbuilt (ABM) decision-making process (e.g., preferring 
low resistance to high resistance location) 

 ii) Draw a new state while transiting to the new location (an)n𝜖𝜖N using the in-built 
stochastic (MSM) function, 

 iii) Record agent’s current details (i.e., location ID, x, y coordinates, time stamp, 
state, etc.), 

iv) Return to 4a (i) if n < s. 

 b) Commence the next temporal bin, kt 

4. Next agent (Ai)i 𝜖𝜖 I. 
 

• Operating system(s): Platform independent. 
• Programming language: R 
• Other requirements: R (≥4.1.0) 
• Key dependencies: SiMRiv [57]; raster [58] 
• License: e.g. GNU GPL v3.0 
• Any restrictions to use by non-academics: None。 

3.2. Modes of Operation and Assessments 

The tool operates in two modes. The first mode allows users to generate com-
plete synthetic data from a sample (source) data, using “psim_real” function. 
The function learns the spatial and temporal properties of the sample data and 
generates the synthetic dataset accordingly. This method is particularly useful 
when there is only a sparse or small sample of crime records available. The 
second mode, using “psim_artif” function, generates synthetic data based on 
pre-defined spatiotemporal characteristics provided by the user, without the 
need for a sample dataset. This mode is useful when there is no available sample 
source datasets. In using either of these modes, many of the arguments have 
been set with default values which are chosen to be suitable for a wide range of 
scenarios. However, users can re-define any argument to suit their specific re-
search objectives. The detailed instructions and reproducible examples can be 
found in the package manual and vignette. 

The efficacy of the “stppSim” tool can be evaluated through both visual in-
spection and basic statistical methods. From a visual standpoint, the spatiotem-
poral patterns can be observed by mapping the distribution of points and track-
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ing event trajectories over a given period. Here, using a scatterplot for spatial 
distribution and a time series plot for temporal patterns would be most appro-
priate. Conversely, the space-time interactions present in point datasets can be 
scrutinized with the NearRepeat calculator [59]. This tool determines the statis-
tical significance of proximity of points in both space (within a set spatial range) 
and time (within a specified temporal frame). 

4. Applications 
4.1. Replicating Spatio-Temporal Patterns 

Besides its ability to generate pre-conceived spatiotemporal point patterns across 
a research area (via the “psim_artif” function), “stppSim” also excels in discern-
ing the spatiotemporal patterns and trends present in a sample source dataset 
(through the “psim_real” function) and subsequently curating new datasets based 
on those patterns. To illustrate the proficiency of stppSim in this regard, we uti-
lized a randomly chosen subset of residential burglary records from a section of 
Southwest-side Detroit (Michigan, US) [60]. This subset facilitated the creation of 
a fully synthesized 1960 events. Figure 2 offers a visual comparison of the spatial 
and temporal point arrangements between the source sample (Figure 2A(i-ii)), 
representing 40% (or around 780 records), and the comprehensive original da-
taset (Figure 2B(i-ii)) with its 1960 records. Notably, the sample datasets exhibit 
a spatial point distribution (SPD) akin to their full dataset counterparts. Moreo-
ver, the time series (TS) plots of both groups align considerably, with the overall 
trends appearing more consistent than their medium-term variations, which, in 
turn, are more consistent than their short-term variations. 

Figure 3A(i) displays the spatial point distribution (SPD) of the synthetic 
dataset, with its corresponding time series (TS) plot illustrated in Figure 3A(ii). 
At a glance, the SPD and prominent hotspots closely mirror those of the original 
datasets, particularly the pronounced hotspots in the southern and western sec-
tors. Nonetheless, some differences are evident, such as the missing cluster in the 
area’s southwest corner within the synthetic data. This omission could be coun-
teracted by leveraging the interactive argument of the function, which previews 
potential results prior to initiating the simulation. Regions marked as off-limits 
(like parks or swamps) based on land use data are consistently bypassed in the 
simulation. For instance, the tract between the south-west corner and the west is 
designated as a swamp (“resistriction value of 1”). The original dataset’s hotspots 
seem more condensed than their synthetic counterparts, which appear slightly 
dispersed. A possible remedy could be to use fewer origins during the simula-
tion. Users are encouraged to refer to the package manual for a deeper under-
standing of how varying parameters can impact the simulation. On a more de-
tailed scale, such as street-level units, there are discernible variances between the 
source and synthetic datasets. The correlation between the original and synthetic 
data stands at 0.07, suggesting that pinpoint event locations in the original data 
don’t typically correspond with those in the synthetic set. 
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Figure 2. Spatial and temporal pattern of residential burglary of South-west Detroits (Michigan, US, 2009-2010). 
 

In the long term, the most striking resemblance between the two datasets lies 
in their overarching trend. Both sets, for instance, display a consistent upward 
trajectory. While the synthetic data showcases more pronounced seasonal spikes 
compared to the original, their general patterns remain analogous. When ob-
served at a finer temporal resolution, like daily aggregates, the datasets seem 
more disparate. This distinctiveness in both spatial and temporal detail is essen-
tial, ensuring that the precise spatiotemporal locations of individual events in the 
source datasets remain confidential. 

4.2. Simulating Space-Time (ST) Interactions 

Utilizing the “psim_real” and “psim_artif” functions, users can respectively  
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Figure 3. Spatial and temporal pattern of synthetic data. 
 

replicate the space-time interactions found in source dataset and create new 
synthetic data sets with specified space-time interactions. 

1) Emulating Patterns from the Original Dataset 
Drawing from the repeat victimization study on residential burglary, a maxi-

mum spatial boundary of 600 metres (i.e., s_range = 600) is established. This 
range is then divided into three equal spatial ranges: (0 - 200 m), (201 - 400 m), 
and (401 - 600 m), which are labeled as “small”, “medium”, and “large” spatial 
bandwidths, respectively. By setting a time span of 30 days with a daily incre-
mental range, Table 3 juxtaposes the outcomes derived from the sample source 
data (780 records), the full source data (1960 records), and the synthesized data 
for each bandwidth (1960 records each). The table presents the Knox ratios as 
per the NearRepeat Calculator, with asterisks denoting statistically significant 
point interactions for the given space-time bandwidths. 

When contrasting the outcomes of the synthetic datasets with both the sample 
and the full source datasets, it’s evident that the package often yields results 
more akin to the sample datasets than the entire data collection. For instance, 
within the initial time span (i.e., days 1 - 15), there exist seven overlapping spa-
tiotemporal bandwidths with significant interactions, such as (0 - 200 m) at 6 
days, between the synthetic and sample source datasets. In comparison, there are 
only five shared bandwidths displaying significant interactions, like (201 - 400 
m) at 12 days, when matching the synthetic data with the full source datasets. 

Transitioning to the latter segment of the time frame (i.e., days 16 - 30), the 
sample source data shows six concurrent spatiotemporal bandwidths with sig-
nificant interactions, while the full source data only offers one. Furthermore, the 
data suggests that interactions within the proximate temporal span (days 1 - 15) 
are pinpointed with greater precision than those in the extended temporal range 
(i.e., days 16 - 30). Overall, the outcomes demonstrate the proficiency of stppSim  
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Table 3. Comparing space-time interactions of source and synthetic datasets. 

Dataset 
τ (days) 

∂ (m) 
[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] 

Sa
m

pl
e 

so
ur

ce
 d

at
a 

(7
80

) 

(0, 200] 0.73 0.93 1.91* 1.48 1.37 1.54* 1.66* 0.92 1.64* 1.57 1.72 0.92 1.15 1.53 0.4 

(200, 400] 0.79 1.04 1.12 1.28 1.26 1.14 0.97 0.49 0.87 0.89 0.76 1.55* 1.5* 1.5* 1.13 

(400, 600) 0.86 1.14 1.17 1.14 0.84 1.25 0.92 0.77 0.68 0.95 1.38 1.12 0.96 1.31 0.98 

Fu
ll 

so
ur

ce
 

da
ta

 (1
96

0)
 

(0, 200] 1.25 1.09 1.54* 1.35* 1.24 0.82 1.39* 1.06 1.36* 1.21 1.03 0.94 1.27 1.18 1.08 

(200, 400] 1.15 1.17 0.95 1.06 1.07 1.15 1.05 1.17 0.97 1.02 1.13 1.09 1.43* 1.23* 1 

(400, 600) 1 1.14 1.12 1.09 1.05 1.07 1.09 0.93 1.03 1.11 1.13 1.05 1.08 0.95 1.17* 

Sy
nt

he
tic

 
da

ta
 (1

96
0)

 

(0, 200] 1.03 0.99 2.11* 0.93 0.73 1.24* 1.66* 0.77 1.96* 0.74 0.9 1.04 1.13 1.22 0.97 

(200, 400] 0.81 0.99 0.95 1 1.05 1 1 1.09 1.02 0.94 0.82 1.17* 1.84* 1.27* 0.99 

(400, 600) 0.99 0.97 1 0.96 1.01 1.01 0.98 0.83 0.9 1.09 1.19* 0.99 1.04 0.98 0.95 

 
τ (days) 

∂ (m) 
[16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] 

Sa
m

pl
e 

so
ur

ce
 d

at
a 

(7
80

) 

(0, 200] 1.36 1.37 0.2 1.34 1.16 1.9* 0.59 1.4 0.61 1.73 1.17 0.76 1.38 0.99 1 

(200, 400] 0.99 1.27 1.45 0.64 1.01 0.74 1.42 1.57* 1.34 1.55* 1.27 0.42 1.02 1.23 0.95 

(400, 600) 1.3 0.93 0.67 0.98 1.15 1.02 1.1 1.13 1.01 0.66 1.51* 1.42* 1.49* 1.26 1.69* 

Fu
ll 

so
ur

ce
 

da
ta

 (1
96

0)
 

(0, 200] 1.2 1.26 1.32* 1.16 0.87 1.23 1.34* 1.34* 0.85 1.32* 1.11 1.1 1.47* 1.11 1.21 

(200, 400] 0.98 1.16 1.08 1 0.94 1.01 1.32* 1.18 1.28* 1.04 0.91 0.73 1.05 1.1 0.93 

(400, 600) 0.93 1.14 1.02 0.93 1.03 1.09 0.94 1.07 0.88 0.92 1.12 1.11 1 1.09 0.95 

Sy
nt

he
tic

 
da

ta
 (1

96
0)

 

(0, 200] 1.17 0.96 1.19* 1.09 0.85 2.07* 1.09 1.06 1.47* 1 0.8 0.8 0.66 1.11 0.69 

(200, 400] 0.96 1 1.05 0.95 1.03 0.98 0.85 1.45* 1 1.18* 1.05 0.98 0.96 0.92 0.95 

(400, 600) 0.97 0.94 1.03 0.97 0.97 0.98 1.09 0.89 1.05 0.94 1.45* 1.03 1.13* 0.88 1.92* 

Signif. codes: p < 0.001 “*”. 
 

in mirroring spatiotemporal interactions present in source datasets. 
2) Simulation of Pre-defined ST Interaction 
In the same study region (a segment of Detroit’s Southwest side), we generat-

ed a synthetic dataset featuring simulated spatiotemporal interactions. Here, 
three distinct spatial bandwidths were defined: [0 - 100 m], [100 - 200 m], and 
[200 - 300 m]. Concurrently, four 2-day interval temporal bandwidths were spe-
cified: 4 - 5, 13 - 14, 21 - 22, and 28 - 29 days. As a result, twelve individual syn-
thetic datasets were formulated. Each dataset encapsulates point interactions as 
characterized by a distinct combination of spatiotemporal bandwidths that mir-
ror the actual bandwidths. 

For every synthetic dataset, the NearRepeat calculator is utilized to evaluate all 
potential combinations of spatiotemporal bandwidths (hereafter referred to as 
test bandwidths) juxtaposed against the actual bandwidths. Table 4 showcases 
these findings. It’s worth noting that the diagonally aligned cells with statistical 
significance denote that the spatiotemporal interactions at the pertinent real spatial  
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Table 4. Detection of space-time interactions in synthetic data. 

Test bandwidths Real bandwidths 

τ (days) [4, 5] [13, 14] [21, 22] [27, 28] 

 ∂ (m) 
(0, 

100] 
(100, 
200] 

(200, 
300) 

(0, 
100] 

(100, 
200] 

(200, 
300) 

(0, 
100] 

(100, 
200] 

(200, 
300) 

(0, 
100] 

(100, 
200] 

(200, 
300) 

[4, 5] 

(0, 100] 3.72* 1.08 0.33 0.93 0.89 0.58 0.68 0.94 0.97 0.58 0.39 0.55 

(100, 200] 2.05* 2.05* 0.73 1.03 0.86 0.58 0.85 0.78 0.25 0.56 0.8 0.88 

(200, 300) 0.85 1.67* 1.52* 1 0.93 0.64 1.27* 0.74 0.14 0.65 0.91 1.2* 

[13, 14] 

(0, 100] 0.97 0.76 0.76 2.82* 1.1 0.48 0.26 0.71 1.09 0.54 0.75 0.75 

(100, 200] 0.13 0.94 0.72 1.66* 1.82* 0.82 0.44 0.73 0.71 0.64 0.76 1.14* 

(200, 300) 0.99 1.01 0.81 0.77 1.79* 1.77* 0.58 0.83 1.05 0.22 0.74 0.93 

[21, 22] 

(0, 100] 0.69 0.8 0.28 0.73 0.71 0.49 3.59* 0.7 0.92 0.85 0.23 0.92 

(100, 200] 0.81 0.8 1.2* 0.89 1.02 0.86 1.76* 1.82* 0.88 0.78 1.18* 1.01 

(200, 300) 1.12* 1.13* 1.26* 0.93 0.93 1.05 0.9 1.3* 1.36* 1.02 0.36 0.86 

[27, 28] 

(0, 100] 0.55 0.81 0.37 3.59* 0.81 2.37* 0.83 0.69 0.65 3.41* 1.11 0.93 

(100, 200] 0.64 0.93 1 2.55* 1.95* 1.9* 1.03 1.02 0.86 2.02* 2.24* 0.97 

(200, 300) 0.95 0.93 0.17 1.29* 1.88* 1.54* 0.65 1.02 0.92 0.71 1.84* 1.76* 

Signif. codes: p < 0.001 “*”. 
 

and temporal bandwidths were simulated with accuracy. 
Each of the twelve synthetic datasets effectively mirrored the intended point 

interactions, as evidenced by the significant findings in the diagonal cells. This 
reaffirms the tool’s prowess in precisely emulating spatiotemporal interactions. 

It’s also noteworthy to mention the presence of significant results in 
off-diagonal cells. Such findings can be credited to the compounded effects of 
the bandwidths specified. Essentially, a set spatial or temporal bandwidth can 
inadvertently catalyze the manifestation of point interactions across broader 
spatial or temporal bandwidths, especially if these larger bandwidths are direct 
multiples of the original ones. A clear illustration of this phenomenon can be 
observed in cells adjacent to the diagonal with significant results. For instance, 
the 0 - 100 m spatial bandwidth could be perceived as an inherent component of 
its larger counterparts, namely; 100 - 200 m and 200 - 300 m. Furthermore, 
beyond just the spatial dimensions, the notable groupings of statistically signifi-
cant cells within the temporal bandwidths of 21 - 22 days and 27 - 28 days can be 
traced back to the cumulative influences of the 4 - 5 days and 13 - 14 days tem-
poral bandwidths, respectively. 

5. Discussion and Conclusions 

Given the limited availability of detailed crime records, the “stppSim” package 
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serves as a valuable data resource for both research and educational purposes. It 
provides an alternative data source that can facilitates in-depth examination of 
crime dynamics in space and time, leading to potential policy and operational 
implications. The package is conveniently accessible on the CRAN platform, al-
lowing users to freely download, reuse, redistribute, and explore its applications 
in various domains. 

The field of criminology recognizes the significant value of examining the 
space-time interaction of crime events in various contexts. In the analysis of re-
curring residential burglaries, such analysis can aid in identifying individuals 
and locations that face a disproportionate risk of victimization [29] [48]. Re-
searchers are often interested not only in the “same repeat” victims, referring to 
individuals or locations that experience multiple crimes within a short period 
after the initial incident, but also in the concept of “near repeat” victims. These 
near repeat victims are nearby individuals or locations that become victimized 
shortly after the initial crime occurs. The stppSim package provides opportuni-
ties for simulating or exploring different scenarios of repeat and near-repeat vic-
timization within a specific geographical area. As demonstrated in this paper 
using a section of South-west Detroit as an example, it becomes possible to iden-
tify the spatial and/or temporal signatures associated with a particular area [47] 
[61] [62]. 

The analysis of spatio-temporal point interaction extends beyond criminology 
and finds applications in various research domains, such as earthquakes, ecolo-
gy, epidemiology, and more. In these fields, the identification of relationships 
between events and their evolution over space and time holds significant impor-
tance. Researchers seek to understand the underlying phenomenon by studying 
spatio-temporal event interactions, clustering or regularity patterns, and dis-
tances that provide insights into these interactions. For instance, in ecological 
studies at the community level, the analysis focuses on examining interactions of 
competition and facilitation among trees as a primary objective. 

There are several important considerations for potential users of the stppSim 
package. Firstly, it should be noted that the synthetic point events generated by 
the package are inherently geomasked at a fine-grained level. This is done to 
preserve the sensitivity of any source data used. Secondly, the simulation func-
tions in the package incorporate specific random elements, which means that 
two synthetic datasets generated with the same simulation parameters may not 
be identical. However, an “interactive” argument embedded in the functions can 
be used to preview the spatio-temporal models before continuing the actual si-
mulation. Thirdly, it’s important to recognize that the properties of the synthetic 
data may be biased towards the characteristics of the sample dataset provided, 
rather than accurately representing the entire population of the actual data. 
Therefore, synthetic data should not be considered a replacement for real or 
source data. Any modeling or inference conducted on synthetic data carries ad-
ditional risks. The author of the package suggests that synthetic data, when used 
in a research context, can help expedite the research process, but it is crucial that 
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any final data intended for real-world applications be evaluated and fine-tuned 
using the actual data if necessary. Lastly, it should be noted that the current ver-
sion of the stppSim package is computationally intensive, particularly when us-
ing the “psim_real” function. On a standard office PC with an Intel Core 
i7-7500CPU and 16.0 GB RAM, it takes approximately 30 minutes to complete. 
However, the “psim_artif” function allows for the generation of synthetic data 
within a relatively short period, such as around 5 minutes. Future work on the 
package will prioritize improving computational efficiency by incorporating pa-
rallel processing functions. Additionally, upcoming versions of the package will 
include the ability to simulate other relevant nominal information, such as age, 
gender, occupation, and so on, of the objects under study. The author of the 
package encourages users to provide suggestions, feedback, bug reports, and ex-
plore opportunities for collaborations to further enhance its capabilities. 

In summary, while stppSim offers valuable synthetic data generation capabili-
ties, users should be aware of the geomasking, inherent randomness, and poten-
tial biases of the synthetic data. It is essential to exercise caution and verify re-
sults with real data when applying the findings to real-world scenarios. 
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