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Abstract 
Over the last few years, there has been a significant increase in attention paid 
to fractional differential equations, given their wide array of applications in 
the fields of physics and engineering. The recent development of using frac-
tional telegraph equations as models in some fields (e.g., the thermal diffu-
sion in fractal media) has heightened the importance of examining the me-
thod of solutions for such equations (both approximate and analytic). The 
present work is designed to serve as a valuable contribution to work in this 
field. The key objective of this work is to propose a general framework that 
can be used to guide quadratic spline functions in order to create a numerical 
method for obtaining an approximation solution using the linear space-fractional 
telegraph equation. Additionally, the Von Neumann method was employed 
to measure the stability of the analytical scheme, which showed that the pro-
posed method is conditionally stable. What’s more, the proposal contains a 
numerical example that illustrates how the proposed method can be imple-
mented practically, whilst the error estimates and numerical stability results 
are discussed in depth. The findings indicate that the proposed model is 
highly effective, convenient and accurate for solving the relevant problems 
and is suitable for use with approximate solutions acquired through the 
two-dimensional differential transform method that has been developed for 
linear partial differential equations with space- and time-fractional deriva-
tives. 
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1. Introduction 

Fractional calculus was a hot topic amongst researchers in the 1980s when its 
explicit applications in many different fields started to emerge. Such fields in-
cluded physics, processing, control theory, fluid mechanics quantum evolution 
of complex systems, viscoelastic mechanics and chemical and industrial mathe-
matics [1]. Nowadays, communications systems are vital in the modern world 
and thus it is crucial to examine the fractional telegraph equation. This is a typi-
cal fractional diffusion-wave equation that is applied to signal analysis to facili-
tate transmission, electrical signal propagation, modelling reaction-diffusion and 
examining the random walk of suspension flows [2] [3]. In recent times, many 
researchers have turned their attention towards investigating the telegraph equa-
tions of fractional order. For instance, Odibat and Momani (2008) put forward a 
new generalisation of the two-dimensional differential transform technique, in 
which its use was expanded in order to apply it linear partial differential equa-
tions using space- and time-fractional derivatives [4]. On the other hand, the 
generalised differential transformation method was employed by Garg et al. 
(2011) to solve the space-time fractional telegraph equation [5]. Subsequently, 
the fractional difference method was employed by Zhao et al. (2012) to measure 
the temporal direction, whilst the finite element method was used to measure 
spatial direction. The key purpose of this was to numerically solve the time-space 
fractional-order telegraph equation [6]. Moreover, at a later date, Aguilar and 
Baleanu (2014) examined the fractional differential equation and its function in 
the transmission line without losses regarding the Caputo fractional derivative 
(CFD) [7]. Meanwhile, in order to calculate the approximate solutions for space- 
and time-fractional telegraph equations, Varaki et al. (2005) employed the Homo-
topy Analysis Method (HAM) [8]. Lopushanska and Rapita (2005) also devel-
oped a unique solution for an inverse issue relating to the semi-linear fractional 
telegraph equation using regularised fractional derivatives, in which they care-
fully considered time on a bounded cylindrical domain [9]. Similarly, Khan et al. 
(2018) worked hard to create a new analytical technique for the space-fractional 
telegraph equation (FTE), which proved to be highly efficient. This new analyti-
cal approach involved the use of a fractional Sumudu decomposition method 
(SDM) [10]. Meanwhile, Kamran et al. (2018) also developed a local meshless 
method, which they combined with the Laplace transformation technique to 
solve a time-fractional telegraph equation [11]. In the same year, Wei et al. (2018) 
developed and analysed a flexible numerical technique to solve the time-fractional 
telegraph equation, whereby a new, finite differentiation method in time and a 
local, discontinuous Galerkin method in space were employed [12]. Ru Liu ap-
proximate the solution to time-fractional telegraph equation by two kinds of dif-
ference methods: the Grünwald formula and Caputo fractional difference in 2018 
[13]. The following year, Mohammadian et al. (2019) put forward the Generalised 
Differential Transformational method (GDTM) to develop a semi-analytical so-
lution for fractional partial differential equations. The Riesz space fractional de-
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rivative is a key part of this process [14]. On the other hand, Akram et al. pro-
posed a finite difference scheme which is essentially a combination of the ex-
tended cubic B-spline method and Caputo’s fractional derivative for numerically 
solving time-fractional telegraph equations [15]. Kumar et al. (2019) proposed a 
finite difference technique to solve the Generalised Time-Fractional Telegraph 
Equation (GTFTE), in which the equation was defined using GFD terms [16]. 
Meanwhile, a new, iterative approach was developed by Ali et al. (2019) to ad-
dress the two-dimensional hyperbolic telegraph fractional differential equation 
(2D-HTFDE), and this is critical in the mathematical modelling of transmission 
lines that facilitate a direct, unique relationship between voltage and current waves 
covering a specific time and distance [17]. Hosseininia and Heydari examined a 
new version of the nonlinear 2D telegraph equation, in which variable-order 
(V-O) time-fractional derivatives were applied in the Atangana-Baleanu-Caputo 
sense. In 2019, this was combined with Mittag-Leffler non-singular kernel [18]. 
On the other hand, to demonstrate the existence, uniqueness and stability of the 
integral solution to the nonlocal telegraph equation using the conformable 
time-fractional derivative, Bouaouid et al. (2019) employed the cosine family of 
linear operators. They also presented a key solution based on the classical trigo-
nometric functions [19]. Furthermore, Mohammadian et al. (2020) attempted to 
provide semi-analytical solutions for fractional partial differential equations based 
on Riesz space fractional derivatives using the fractional reduced differential 
transform method (FRDTM) [20]. Nonetheless, to solve time-fractional telegraph 
equations, Wu and Yang (2020) employed pure alternating segment explicit-im-
plicit (PASE-I) and implicit-explicit (PASI-E) parallel difference methods [21]. A 
new model was proposed by Hamada (2020) to solve the time-dependent Boltz-
mann transport equation. In this process, new terms such as the time derivative 
of reactivity and fractional integral of the neutron density were added [22]. In 
recent times, Devi and Jakhar (2021) applied an adapted decomposition method 
called the Sumudu-Adomian Decomposition Method (SADM) to solve fraction-
al-order telegraph equations [23]. Meanwhile, Hamza et al. (2021) employed a 
double Sumudu matching transformation approach to identify and obtain accu-
rate numerical solutions to linear space-time matching telegraph fractional equa-
tions [24], whilst Azhar et al. (2021) turned their attention towards to natural 
transform decomposition approach when they used non-singular kernel deriva-
tives to investigate fractional-order telegraph equations. To solve the problem 
[25], they applied natural transformations to fractional telegraph equations, after 
which an inverse natural transformation was achieved. However, Ibrahim and Bi-
jiga (2021) decided to portray the time-fractional telegraph equation as an optimi-
sation issue [26], which they solved using a neural network approach. The 
Cauchy problem associated with the time-fractional equation of distributed or-
der in Rn R+ was studied carefully by Vieira et al. (2021), who used Fourier, 
Laplace, and Mellin transformations to present the equation solution based on 
the Fox H-Function [27]. Moreover, in order to justify the matching of analytical 
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and approximate solutions, Khater et al. (2021) used five numerical methods to 
examine various numerical solutions to the fractional nonlinear telegraph equa-
tion. These techniques were Adomian decomposition (AD), cubic B-spline (CBS), 
El Kalla (EK), extended cubic B-spline (ECBS), and exponential cubic B-spline 
(ExCBS) [28]. Meanwhile, Nikan et al. (2021) based their numerical solution on 
the nonlinear time-fractional telegraph equation on the Caputo sense. In this 
model, the neutron transport process that occurs inside nuclear reactors is effec-
tively described [29].  

In this context, this paper proposes a quadratic-polynomial spline-based 
method to obtain the numerical solution of the time-space fractional-order tele-
graph equation in the form: 

2

2 , 0, 1 2,u u u u x
tx t

α

α α∂ ∂ ∂
= + + > < ≤

∂∂ ∂
               (1) 

subject to boundary conditions 

( ) ( ) ( ) ( )1 2, , , , 0u a t t u b t t tβ β= = >                 (2) 

and the initial conditions 

( ) ( ) ( ) ( )1 2

,0
,0 , ,

u x
u x f x f x a x b

t
∂

= = ≤ ≤
∂

            (3) 

The space-fractional partial derivative of order α  in Equation (1) is consi-
dered in the Caputo sense, defined by [5] [6], 

( ) ( )
( )

( ) 1,1, d , 1 .
n

x j n
j ng

u s t
u x t x s s n n

nx x

α
α

α α
α

− −∂∂
= − − < ≤
Γ −∂ ∂∫     (4) 

2. Derivation of the Method 
To set up the quadratic polynomial spline method, select an integer 0N >  and 

time-step size 0k > . With b ah
N
−

= , then mesh points ( ),i jx t  are ix a ih= + , 

for each 0,1, ,i N= � , and ,jt jk k t= = ∆  for each 0,1,j = � . 

Let j
iZ  be an approximation to ( ),i ju x t  obtained by the segment ( ),i jP x t  

of the spline function passing through the points ( ), j
i ix Z  and ( )1 1, j

i ix Z+ + . 
Each segment has the form [30] 

( ) ( )( ) ( )( ) ( )2,i j i j i i j i i jP x t a t x x b t x x c t= − + − +            (5) 

for each 0,1, , 1i N= −� . To obtain expressions for the coefficients of (5) in 
terms of 1 2

j
iZ + , j

iD , and 1 2
j

iS + , we first define 

( )1 2 1 2, j
i i j iP x t Z+ +=                        (6) 

( ) ( )1 , j
i i j iP x t D=                         (7) 

( ) ( ) ( )1 2 1 2 1 2 1 2 1, , , 1 2,j
i i j i i j i i i iP x t P x t S x x x

x

α
α

α α+ + + + +
∂

= = < ≤ < ≤
∂

   (8) 

where ( ) ( ) ( ) ( ), , ,i i j i i j i i j i i ja a t b b t c c t d d t≡ ≡ ≡ ≡  and hθ ω= . Equations 
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(5), (6) and (7), give  
2

1 24 2
j

i i i i
h ha b c Z ++ + =                       (9) 

j
i ib D=                             (10) 

Using Equations (4), (5), and (8), we obtain 

( ) ( )
( ) ( )1 2

2
1

1 2 1 2 1 22

,1, d
2

i

i

x i j j
i j i ix

P s t
u x t x s s S

x x

α α

α α
+ −

+ + +

∂∂
= − =
Γ −∂ ∂∫ . 

This equation can be simplified as: 

1 2
j

i ia Sµ +=                           (11) 

where 
( )

22
3 2

h α

µ
α

−
 =  Γ −  

. By solving Equations (9), (10), and (11), we obtain 

the following expressions:  

( ) 2

1 2

3
2 2

j
i i

ha S
αα −

+

Γ −  =  
 

, 

j
i ib D= , 

( ) 1 2 1 2
1 3
2 2 2

j j j
i i i i

h hc S D Z
α

α + +
 = − Γ − − + 
 

             (12) 

Spline Relations 

Using the following continuity conditions at ix x=  

( ) ( ) 2
1 1 1 1, ,i i j i i j i i i iP x t P x t c h a hb c− − − −= ⇒ = + +           (13) 

( ) ( ) ( ) ( )1 1
1 1 1, , 2i i j i i j i i iP x t P x t b ha b− − −= ⇒ = +             (14) 

Using expressions in Equation (12), Equations (13) and (14) become 

( ) ( ) ( )
( )

1 2 1 2 1 2 1 2 1

1 2 1

3
2 2 2

4 3
2 2

j j j j j j
i i i i i i

j j
i i

h hZ Z S S D D

h S hD

α

α

α

α

+ − + − −

− −

Γ −  − − − − − 
 

Γ −  = + 
 

    (15) 

( ) 1

1 1 2

4 3
2 2

j j j
i i i

hD D S
αα −

− −

Γ −  − =  
 

              (16) 

By solving for 1
j

iD −  

( ) ( ) ( )
1 1 2 1 2 1 2 1 2

3 7 3
2 2 2 2

j j j j j
i i i i i

h hhD Z Z S S
α αα α

− + − + −

Γ − Γ −   = − − −   
   

  (17) 

Similarly, 

( ) ( ) ( )
3 2 1 2 3 2 1 2

3 7 3
2 2 2 2

j j j j j
i i i i i

h hhD Z Z S S
α αα α

+ + + +

Γ − Γ −   = − − −   
   

  (18) 

Using expressions in Equations (17) and (18), then Equation (16) becomes  

( )3 2 1 2 1 2 3 2 1 2 1 22 6 , 1,2, , 2j j j j j j
i i i i i iZ Z Z S S S i Nδ+ + − + + −− + = + + = −�   (19) 
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where 
( )3

2 2
h αα

δ
Γ −  =  

 
. As 2α → , system (19) reduces to 

( )
2

3 2 1 2 1 2 3 2 1 2 1 22 6 , 1,2, , 2.
8

j j j j j j
i i i i i i

hZ Z Z S S S i N+ + − + + −− + = + + = −�   (20) 

Remark 
The truncation error for Equation (19), that is,  

( ) ( )* 2 2 2
1 2 3 2 1 2 1 2 3 2 1 22 6j j j j j j j

i i i i x i x i x iT u u u D u D u D uδ δ− + + − + += + − − + −  

can be obtained by expanding this equation in Taylor series in terms of ( )1 2 ,i ju x t+  
and its derivatives as follows 

( )
4 6 4

* 2 2 2 4 6
1 2 1 2 1 28

12 360 12
j j j j
i x i x i x i

h h hT h D u h D u D uδδ δ+ + +

   
= − + − + − +   

   
�  

Since 
( )3

2 2
h αα

δ
Γ −  =  

 
 then the last expression can be simplified as 

( )
2

* 2 2 2 4
1 2 1 2

2
4 6

1 2

8
12

360 12

j j j
i x i x i

j
x i

hT h h D u h D u

hh D u

α
α α α

α
α

θ θ

θ

−
− +

+ +

−
+

+

 
= − + − 

 
 

+ − + 
 

�

 

where 
( )

1

3
2α

α
θ +

Γ −
= . From this expression of the local truncation error, our 

scheme is ( ) ,1 2O hα α< ≤ . 

2

2

j j j
j ji i i

i i
Z Z Z

S Z
tx t

α

α

∂ ∂ ∂
= = + +

∂∂ ∂
                 (21) 

1 1 1 1

2

2
2

j j j j j j
j ji i i i i i

i i
Z Z Z Z Z Z

S Z
kx k

α

α

+ − + −∂ − + −
= ≈ + +

∂
          (22) 

which can be discretised as follows: 
1 1 1 1

1 2 1 2 1 2 1 2 1 2 1 2
1 2 1 22

2
2

j j j j j j
i i i i i ij j

i i

Z Z Z Z Z Z
S Z

kx k

α

α

+ − + −
− − − − − −

− −

∂ − + −
= ≈ + +

∂
 

1 1 1 1
1 2 1 2 1 2 1 2 1 2 1 2

1 2 1 22

2
2

j j j j j j
i i i i i ij j

i i

Z Z Z Z Z Z
S Z

kx k

α

α

+ − + −
+ + + + + +

+ +

∂ − + −
= ≈ + +

∂
     (23) 

1 1 1 1
3 2 3 2 3 2 3 2 3 2 3 2

3 2 3 22

2
2

j j j j j j
i i i i i ij j

i i

Z Z Z Z Z Z
S Z

kx k

α

α

+ − + −
+ + + + + +

+ +

∂ − + −
= ≈ + +
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Using Formulas (23) in (19) gives the following useful systems 
1 1 1

1 2 1 2 3 2

* * * 1 1 1
1 2 1 2 3 2 1 2 1 2 3 2

j j j
i i i

j j j j j j
i i i i i i

AZ BZ AZ

A Z B Z A Z AZ CBZ Z

+ + +
− + +

− − −
− + + − + +

+ +

= + + + + +
� ��        (24) 

where 

*
2 2 2

2, 1 and
2 2

A A A
k kk k k

δ δ δ δ δδ −
= + = + − = +

�
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*
2 2 2

6 3 12 6 3, 2 6 andB B
k kk k k

Bδ δ δ δ δδ −
= + = − + − = +

�
       (25) 

System (24) consists of N − 2 equations in N unknowns. To get a solution to 
this system, we need 2-additional equations. Using the boundary conditions (2), 
that are ( ) ( )0 1 1 2,j j

NZ t Z tβ β+= = , we can obtain the following equations: Sup-
pose that 1 2

jZ  is linearly interpolated between 0
jZ  and 3 2

jZ  

1 2 3 2 0 13 2 2 , 0j j jZ Z Z jβ− + = − = − ≥                (26) 

In a similar manner, 

3 2 1 2 23 2 2 , 0j j j
N N NZ Z Z jβ− −− = − = − ≥              (27) 

Equation (24) implies that the (j + 1)st time step requires values from the (j)st 
and (j − 1)st time steps. This produces a minor starting problem since values for 
j = 0 are given by the first part in Equation (3) 

( ) ( )0
1,0 , 1, ,i i iZ u x f x i N= = = �                (28) 

but values for j = 0, which are needed in Equation (25) to compute 1
iZ , must be 

obtained from the first part in (3)  

( ) ( )
0

2,0 , 1, , .i
t i i

Z
u x f x i N

t
∂

= = =
∂

�  

One approach is to replace 
0
iZ
t

∂
∂

 by a forward-difference approximation 

( ) ( )
0 1 0

2
i i i

i
Z Z Z

f x o k
t k

∂ −
= = +

∂
                 (29) 

which gives us 

( )1 0
2 , 1, , .i i iZ Z kf x i N= + = �                 (30) 

3. Stability Analysis 

The Von Neumann technique will be carried out to investigate the stability of 
systems (23) and (24). The key part of Von Neumann analysis is to assume a so-
lution of the form [31] 

( )e q hj
i jZ φζ=                         (31) 

where φ  is the wave number, 1q = − , h is the element size, and ζ  is the 
amplification factor of the scheme. The use of Equations (31) and (24) gives us 
the characteristic equation in the form  

( )( ) ( ) ( )( ){ }
( )( ) ( ) ( )( ){ }

( )( ) ( ) ( )( ){ }

1 11

1 1* * *

1 11

e e e

e e e

e e e

i q h i q hiq hj

i q h i q hiq hj

i q h i q hiq hj

A B A

A B A

A B A

φ φφ

φ φφ

φ φφ

ζ

ζ

ζ

− ++

− +

− +−

+ +

= + +

+ + +
�� �

            (32) 

Dividing both sides of the last equation by ( )e iq hφ  and canceling the common 
term, which is 1jζ − , Equation (32) becomes: 
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( ) ( ){ } ( ) ( ){ }
( ) ( ){ }

2 * * *e e e e

e e 0

q h q h q h q h

q h q h

A B A A B A

A B A

φ φ φ φ

φ φ

ζ ζ− −

−

+ + − + +

− + + =
�� �         (33) 

where 

2 2
A

kk
δ δ

= + , *
2

21A
k
δ δ= + −  and 2 2

A
kk

δ δ−
= +
�

 

2

6 3B
kk

δ δ
= + , *

2

122 6B
k
δ δ= − + −  and 2

6 3
kk

B δ δ−
= +
�

 

This equation can be rewritten in the simple form 
2 0a b cζ ζ+ + =                         (34) 

where 
( ) ( )( ) ( ) ( )( )* * *e e , e eq h q h q h q ha A B A b A B Aφ φ φ φ− −= + + = − + +  

and 
( ) ( )( )e eq h q hc ABA φ φ−= − + +

���
 

Or 
* *2 cos , 2 cos , 2 cos ,a B A b B A c A hBϕ ϕ ϕ ϕ φ= + = − − = − − =

��
 

Or 

( )

( ) ( )

( )

2

23 cos 1 ,

22 1 cos 2 3 cos 1 ,

23 cos 1

a
k k

b
k

c
k k

δ ϕ

ϕ δ ϕ

δ ϕ

 = + + 
 

 = − − + − 
 

 = + − 
 

 

Equation (34) is a quadratic in ζ  and, hence, will have two roots, that is 
2 4

2
b b ac

a
ς±

− ± −
=  

( )2 1 ,
2

c b
a ac

ς ψ ψ ψ± = − ± − =  

For the stability, we must have 1ζ ± ≤ . So, we have three cases. 
Case 1: The discriminant of the Quadratic equation (34) is zero, that is 

2 1 0ψ − = , in that case 2
2

c k
a k

ς±
−

= ± = ±
+

, 0 1k< <  and the stability con-

dition, 1ζ ± ≤ , is satisfied. 

Case 2: Discriminant is less than zero, that is 2 1 0ψ − < , in this case  

( ) ( )2 221 1
2

c kq q
a k

ς ψ ψ ψ ψ±
−

= − ± − = − ± − ⇒
+

 

the stability condition, 1ζ ± ≤ , is satisfied. 
Case 3: The discriminant is greater than zero. This means that one of ζ +  
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and ζ −  does not satisfy the stability condition.  
Thus, for stability we must have 2 1 0ψ − ≤   

1 1ψ− ≤ ≤                           (35) 

1 1
2

b
ac

− ≤ ≤  

Since 

0 2 2ac ac b ac> ⇒ − ≤ ≤  

( ) ( ) ( )

( )

2
2 2

2
2

2 23 cos 4 2 1 cos 2 3 cos 1

2 3 cos 4

k
k k

k
k

δ ϕ ϕ δ ϕ

δ ϕ

 − + − ≤ − − + − 
 

≤ + −

 

The right above inequality takes the form: 

( ) ( )( )2 2
2

22 1 cos 3 cos 4 2k k
k
δϕ ϕ− ≤ + − + −  

Which is satisfied for k δ� , where h is small enough. 
But the left above inequality takes the form: 

( ) ( )( )2 2
2

22 1 cos 3 cos 4 2k k
k
δϕ ϕ− − ≤ + − − +  

Which is satisfied for k δ� , where h is small enough, and the method is 
then conditionally stable. 

4. Numerical Example 

In this section, a numerical example is included to illustrate the practical imple-
mentation of the proposed method. 

Consider the following linear space-fractional telegraph equation [4]  
1.5 2

1.5 2 , 0u u u u x
tx t

∂ ∂ ∂
= + + >

∂∂ ∂
                  (36) 

Subject to the initial condition 

( ),0 0u x =                          (37) 

and boundary conditions 

( ) ( )( ) ( ) ( )

( ) ( )

1.5 2.5

3 4

0.0125 0.01250.0125, exp 1 0.0125
5 2 7 2

0.0125 0.0125
4 5

u t t≈ − + + +
Γ Γ

+ + +
Γ Γ

�
     (38) 

and 

( ) ( )( ) ( ) ( )

( ) ( )

1.5 2.5

3 4

1.0125 1.01251.0125, exp 1 1.0125
5 2 7 2

1.0125 1.0125
4 5

u t t≈ − + + +
Γ Γ

+ + +
Γ Γ

�
     (39) 

Then the exact solution is 
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( ) ( ) ( ) ( ) ( ) ( )
1.5 2.5 3 4

, exp 1 .
5 2 7 2 4 5

x x x xu x t t x
 

≈ − + + + + + +  Γ Γ Γ Γ 
�    (40) 

Tables 1-3 illustrate the comparison between our method, developed in Sec-
tion 3 and other existing methods [4] and [23] with 0.00005k = , 0.025h = , 

0.05,0.1,0.15t =  and 1.5α = . 
Table 4 and Table 5 illustrate the comparison between our method, devel-

oped in Section 3 and other existing methods [4] and [23] with 0.00005k = , 
0.025h = , 0.05,0.1t =  and 1.75α = .  

Using Tables 1-5 and Figures 1-6, it can be seen that the obtained approx-
imate numerical solutions are in good agreement with the approximate solutions 
obtained using methods [4] and [23] for all values of x and t. 
 

 
Figure 1. The comparison between our method and method [4] and [23] when t = 0.05, k 
= 0.000005, and h = 0.025 and α = 1.5. 
 

 

Figure 2. The comparison between our method and method [4] and [23] when t = 0.1, k 
= 0.000005, and h = 0.025 and α = 1.5. 
 

 

Figure 3. The comparison between our method and methods [4] and [23] when t = 0.15, 
k = 0.000005, and h = 0.025 and α = 1.5. 
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Figure 4. Comparison between our numerical method and methods [4] and [23] when t 
= 0.05, k = 0.00005, and h = 0.025, α = 1.75. 
 
Table 1. Comparison between our numerical method and methods [4] and [23] when t = 
0.05, k = 0.000005, and h = 0.025 and α = 1.5. 

x Our Method Methods [4] and [23] 

0.1 1.0689295078552934 1.0700487208006241 

0.2 1.2105809555003169 1.2119422776213813 

0.3 1.3713891366890514 1.3729692926753612 

0.4 1.5513544745941052 1.5531657691651113 

0.5 1.7514676554067925 1.7535302292267538 

0.6 1.9732140327892282 1.9755523719324375 

0.7 2.2184148686049125 2.2210569535598963 

0.8 2.4891614801652615 2.4921386344095513 

0.9 2.7877830486712691 2.7911317256723061 

1.0 3.1196537361432172 3.1205956925765412 

 
Table 2. Comparison between our numerical method and methods [4] and [23] when t = 
0.1, k = 0.000005, and h = 0.025 and α = 1.5. 

x Our Method Methods [4] and [23] 

0.1 1.0139125288963764 1.0178618288749026 

0.2 1.1480559941970572 1.1528351552698712 

0.3 1.3004476445553682 1.3060087901287358 

0.4 1.4710342588062175 1.4774169807571376 

0.5 1.6607354930479643 1.6680095507919713 

0.6 1.8709521529921287 1.8792035458243128 

0.7 2.1034072173406435 2.1127347277180891 

0.8 2.3600811054248516 2.3705955989853926 

0.9 2.6431880681647740 2.6550066251169517 

1.0 2.9649893224621964 2.9684024447489910 
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Figure 5. The 3-D behavior of the numerical solutions from t = 0.0005 to t = 0.05, k = 
0.0005, and h = 0.025, α = 1.5. 
 
Table 3. Comparison between our numerical method and methods [4] and [23] when t = 
0.15, k = 0.000005, and h = 0.025 and α = 1.5. 

x Our Method Methods [4] and [23] 

0.1 0.9596371905024942 0.9682201217019183 

0.2 1.0862170007301811 1.0966107212915508 

0.3 1.2302168726205736 1.2423139898270312 

0.4 1.3914776194134673 1.4053625043531945 

0.5 1.5708357143835627 1.5866597650615402 

0.6 1.7696035239597443 1.7875537074141623 

0.7 1.9894042815310826 2.0096954391699512 

0.8 2.2321069494266474 2.2549802873468003 

0.9 2.4998194340024652 2.5255204240555812 

1.0 2.8167740246016137 2.8236317492050944 

 
Table 4. Comparison between our numerical method and methods [4] and [23] when t = 
0.05, k = 0.00005, and h = 0.025, α = 1.75. 

x Our Method Methods [4] and [23] 

0.1 0.9591480315753628 1.0572785260392232 

0.2 1.0867445813092063 1.1797304399209085 

0.3 1.2307489176630863 1.3176660343983828 

0.4 1.3920372585030207 1.4716641084951654 

0.5 1.5714366396546564 1.6428130928171421 

0.6 1.7702550524339082 1.8325254529378252 

0.7 1.9901139102638157 2.0424754500651385 

0.8 2.2328814918984262 2.2745763567746264 

0.9 2.5005404809568174 2.5309742073637795 

1.0 2.8087858338014686 2.8140496901826731 
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Figure 6. The 3-D behavior of the numerical solutions from t = 0.0005 to t = 0.05, k = 
0.0005, and h = 0.025, α = 1.75. 
 
Table 5. Comparison between our numerical method and methods [4] and [23] when t = 
0.1, k = 0.00005, and h = 0.025, α = 1.75. 

x Our Method Methods [4] and [23] 

0.1 0.9597673920033094 1.0057144438612532 

0.2 1.0867461330050554 1.1221943074319412 

0.3 1.2307489144320851 1.2534027035849116 

0.4 1.3920372584910621 1.3998902029822125 

0.5 1.5714366396549502 1.5626921528426882 

0.6 1.7702550524472353 1.7431521319809578 

0.7 1.9901139126215512 1.9428627469222985 

0.8 2.2328811392604192 2.1636439588376586 

0.9 2.4997581380145126 2.4075371386967985 

1.0 2.6931301646725034 2.6768068673088763 

5. Conclusion 

In the present work, a numerical approach to solving the linear space-fractional 
telegraph equation has been proposed based on the quadratic polynomial spline. 
Von-Neumann stability analysis was performed, with the findings revealing that 
the model has high conditional stability. The numerical example is effective and 
supports the theoretical analysis that the numerical approach is accurate and ef-
fective in solving the time-space fractional-order telegraph equation. For the 
values of x and t, the approximate numerical solutions identified in this work are 
in line with approximate solutions acquired using the [4] and [23] methods. Ad-
ditionally, it is important to note that the local truncation error of our proposed 
model is ( ) ,1 2O hα α< ≤ . It is reasonable to conclude that the proposed method 
is efficient and effective in identifying approximate solutions for many different 
linear partial differential equations of fractional order.  
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