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Abstract 
This paper is concerned with the computational results of two-dimensional 
axisymmetric rigid and elastic wall formulation. In this paper, steady flow in a 
stenotic vessel is simulated and compared to available numerical data with 
COMSOL Multiphysics software. Numerical results for a 2D axisymmetric 
vessel of 45% area reduction indicate that as the area is reduced with the de-
creasing of cross-section, the maximum axial velocity at post stenotic de-
creases until the end of the artery but the radial velocity increases upto 4 mm 
from the stenosis throat and then decreases. Overall, comparison is carried 
out on hemodynamics for elastic and rigid wall of steady flow. Our investi-
gated findings may enable risk factor for patients with attacked cardiovascu-
lar diseases and can play an important role to detect a solution to such kinds 
of diseases. 
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1. Introduction 

One of the major goals summarized in the United Nations 2030 work plan for 
sustainable development is to minimize one-third of the ill-timed departures from 
non-communicable diseases [1]. The globe’s most general non-communicable 
diseases are cardio-vascular-diseases (CVDs), with over 50% of such kinds of 
deaths happening in low and intermediate-income countries in 2017, with the 
deaths of 17.8 million in 2017 [2]. Arterial blockage conducts to an important 
change in the parameters of blood flow. In most cases, blood flows are assumed 
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as laminar [3]. Due to maximum velocity of blood flow at the stenosis throat, 
there may grow high shear stress that leads to dangerous damage to the walls of 
artery. This affects the blood flow behaviors [4]. The disease happened by arteri-
al blockage is known as atherosclerosis [5] which is one of the most worldwide 
diseases of the cardiovascular system all over the world. The leading reasons for 
death in the global are owing to the diseases of heart such as atherosclerosis [6]. 
Vessels of blood carry high cholesterols in the form of low-density lipoprotein 
[LDL] molecules for a long time [7]. Zingaro et al. [8] detected the endocardium 
motion and established the electromechanics-fluid dynamics model with one-way 
coupled in the left ventricle using Resistive Immersed Implicit Surface method. 
Ibrahim [9] explains that seminal fluid velocity is reduced with a growth in vis-
cosity-dependent parameter. This contribution can be implemented in regulating 
spermatozoa transport into the cervical canal. Kim et al. [10] studied steady la-
minar and turbulent flow in a 2D model for the complete artificial heart. 

The investigation and research analysis executed is a comparative one. The 
comparison has been conducted for the steady nature of assumed blood flow 
between the rigid and elastic walls to confirm a more accurate result. The com-
putational results of blood flow speed, pressure drop and wall shear stress are all 
investigated. Our studied findings can enable risk factor for patients with at-
tacked cardiovascular diseases and may play a crucial role to provide a solution 
to such kinds of diseases. The perfection and inferences would be laid down 
from the validity of computational results.  

2. Computational Methodology 

In this study, steady, isothermal, incompressible and Newtonian blood flows in 
two-dimensional axisymmetric vessel have been assumed. The artery walls have 
been considered to be smooth, rigid and flexible. This simulation is aimed to 
comprehend the flow in the stenotic vessel, and therefore, the radius of the ar-
tery is considered 2.5 mm (Figure 1) and total artery length is 65 mm. The den-
sity and viscosity of the fluid are 755 kg/m3 and 0.00143 Pa∙s, respectively. The 
effect of gravity is negligible. The mass and momentum conservation equations 
can be given as follows. 

Continuity equation: 
 

 

Figure 1. Computational diagram. 
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0u∇⋅ =                            (1) 

Momentum conservation equation: 

( ) ( ){ }Tu u p u uρ µ ⋅∇ = −∇ +∇ ⋅ ∇ + ∇  
              (2) 

where ( ){ }Tu uµτ ∇ + ∇= , u is identified by the velocity vector, pressure is p, 
ρ  and µ  are the density and dynamic viscosity respectively. 

At the inlet section of the vessel, a constant velocity of 0.22 m/s ( Re 575= ) 
having a parabolic profile corresponding to Poiseuille flow is imputed. At the 
outlet of the artery, constant pressure of 4140 Pa is fixed. No-slip boundary con-
dition is marked on the artery wall. Another wall is considered to be isotropic 
and linearly flexible with Young’s modulus ( 55 10 PaE = × ), Poisson’s ratio 
( 0.499υ = ) and wall density ( 3 310 kg msρ = ). The relative tolerance is set to 
0.001. The direct solver is used for the solution. The solver method has chosen 
the Implicit Backward Differentiation Formula (BDF) for the computational re-
sults.  

3. Results and Discussion 

A computational grid consisting of triangular elements has been used for the 
simulation. A grid independence test has been conducted for constructing the 
accuracy of the solution. It is observed that the result becomes independent of 
the mesh size having 92,400 elements because maximum wall shear stress (WSS) 
remains constant between 92,400 and 193,883 elements (Figure 2). So the con-
clusive grid constitutes 92,400 elements.  

The current numerical simulations model is validated with the computational 
investigations of Kang et al. [11] with taking identical properties. Here the com-
parison matches very well and as displayed in Figure 3(a) and Figure 3(b). 

Figure 4 indicates the change in axial velocity in rigid and elastic walls at 45% 
area reduction. The axial velocity is almost similar (0.44 m/s) at upstream of the 
stenosis due to fully developed flow. However, the values drastically vary and 
distinctive axial velocities with rapid change in magnitudes are also noticed at  
 

 

Figure 2. Grid test. 
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(a) 

 
(b) 

Figure 3. Numerical validation of (a) axial velocity distribution in the radial direction at x 
= 0.0216 m and (b) wall pressure distribution in the axial direction at the center for steady 
flow with Kang et al. 
 
the stenotic of the lumen as well. It is mentionable that axial velocity varies be-
tween rigid and flexible walls of stenotic artery. The velocity finally generates a 
three-dimensional twisting impact on the steady blood flow. The severity of the 
twisting impact rises in downstream. Maximum axial velocity decreases as the 
axial distance increases from stenosis middle (Figure 5). The recirculation zone 
is noticeable upto 8 mm from the stenosis throat and it is negligible at 10 mm 
(Figure 4 and Figure 6).  

The effect on the radial velocity in the stenotic artery is displayed in Figure 7. 
The maximum radial velocity is almost stable and zero at the upstream site of 
the constriction (Figure 7(a) and Figure 7(b)). However, in the artery, there is a 
little peak in the radial velocity at the area of reduced lumen (Figure 7(c)). The 
radial velocity increases downstream of the stenosis at a distance of 4 mm from 
the stenosis middle (Figure 7(d) and Figure 7(e)) and then decreases until the 
end of the lumen (Figure 7(f) and Figure 7(g) and Figure 7(h)) and it is also  
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Figure 4. Axial velocity on upstream as a distance of 4 mm, 2 mm and 0 mm ((a), (b), 
(c)) and post stenotic zone as a distance of 2 mm, 4 mm, 6 mm, 8 mm and 10 mm ((d), 
(e), (f), (g), (h)) from stenosis throat of rigid and flexible walls. 
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Figure 5. Maximum axial velocity at post stenotic area for rigid and elastic walls. 
 

 

Figure 6. Axial velocity of rigid (a) and elastic walls (b) through the surface plot. 
 
visible in Figure 8. The radial velocity in the vessel shows similar patterns com-
pared to rigid and elastic walls of the artery but difference in magnitude. The 
maximum radial velocity of rigid and elastic wall arteries is 0.0113 m/s and 
0.0108 m/s. It is significant to notify that the radial velocity is positively linked to 
the cross-sectional area reduction of the vessel (Figure 7 and Figure 9). A posi-
tive connection of radial velocity with the narrowed lumen was found by Kanai 
et al. [12].  

The effect on overall pressure in the stenotic modeled vessels is shown in Fig-
ure 10 and Figure 11 for both walls. The distribution of pressure in the consi-
dered blood vessel wall is rambling and segmental. Moreover, the pressure at the 
entry section is overall higher than the outlet. Pressure drop is observed at the 
stenosis location. A maximum pressure drop of 54 Pa is found in rigid wall while 
the less pressure drop of 44 Pa is found in the case of elastic wall of steady flow. 
The variation in pressure before and after the blockage is also lighted in the 
contour plot of pressure (Figure 11).  
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Figure 7. Radial velocity on upstream as a distance of 4 mm, 2 mm and 0 mm ((a), (b), 
(c)) and post stenotic zone as a distance of 2 mm, 4 mm, 6 mm, 8 mm and 10 mm ((d), 
(e), (f), (g), (h)) from stenosis throat of rigid and flexible walls. 
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Figure 8. Maximum radial velocity at post stenotic area for rigid and elastic walls. 
 

 

Figure 9. Radial velocity of rigid (a) and elastic walls (b) through the surface plot. 
 

 

Figure 10. Surface plot of pressure for (a) rigid and (b) flexible wall. 
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In the current research, the effects of rigid and elastic walls on centerline ve-
locity are investigated (Figure 12(a)). Findings show that there are similar types 
of flow pattern for both walls. The maximum axial velocity for rigid and flexible 
walls is 0.56 m/s and 0.54 m/s, respectively (Figure 12(a)). The velocity profile 
at the post stenosis changes greatly. This great change in velocity profile after the 
blockage has also been revealed in the velocity surface plot (Figure 6). The 
strength of velocity is high near constriction and softly declines to the down-
stream for all walls assumed. 
 

 

Figure 11. Pressure contour of (a) rigid and (b) flexible wall. 
 

 
(a) 

 
(b) 

Figure 12. Velocity (a) and pressure (b) along the centerline for rigid and elastic walls. 
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Figure 13. Shear stress along the wall through rigid and flexible walls. 
 

The effect of the flow on the pressure at the centre of stenotic vessel has been 
presented in Figure 12(b). A significant pressure drop happens at the stenosis 
positon. Notwithstanding, pressure remains almost unaltered at the end of the 
artery. While there is a little rise in pressure in the post stenotic zone for all con-
sidered walls.  

The impact of flow on the wall shear stress (WSS) at the stated artery is pre-
sented in Figure 13. Wall shear stress (WSS) plays an important role in the 
atherosclerotic analysis in arteries [13]. Nevertheless, the rupture of plaque may 
happen owing to maximum values of WSS. In addition, minimum and negative 
wall shear stress is recognized to be responsible for the plaque formation. Max-
imum WSS of 13.77 Pa is noticed in rigid wall while the other is 11.02 Pa in 
flexible wall. The larger recirculation zone is 9.8 for flexible wall while the other 
is 9.14 mm for rigid wall. 

4. Conclusion 

This research work indicates mathematical modeling of the CFD study of steady 
blood flow in a stenotic vessel with elastic and rigid walls whereas blood is con-
sidered to be a Newtonian fluid. The insufficient information on the variation in 
fluid parameters in a stenotic vessel had generated many problems to realize the 
heart disease trouble associated with the deposition of plaque. Comparison of 
the flow parameters, i.e., velocity, pressure and wall shear stress are presented. 
Simulations are also executed to compare the variation of radial and axial veloc-
ity at upstream and downstream of the stenosis for providing a mathematical 
model due to the wall of rigid and elastic. The speed pattern i.e., axial and radial 
downstream the stenosis is not the same. The maximum pressure drops for rigid 
and elastic wall are 54 Pa and 44 Pa respectively. It is not demanded that this re-
search and the outcome will replace the modern approaches to the medical and 
surgical provision of the diseases but they can attach some additional factors as 
input in their detections and elementary treatment. In the future, we will study 
unsteady flow to detect cardiovascular diseases and its solution. 
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Nomenclature 

τ : Stress tensor  
u: Velocity vector  
p: Pressure  
ρ : Density  
µ : Dynamic viscosity 
CFD: Computational fluid dynamics 
FSI: Fluid structure interaction 
WSS: Wall shear stress  
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