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Abstract 
In this paper, a new two-parameter distribution called generalized power Ak-
shaya distribution extended from Akshaya distribution is introduced. This 
distribution is proposed to model lifetime data. Statistical properties like den-
sity, hazard, survival and moments are derived. Two parameters estimation is 
introduced using maximum likelihood and Bayesian techniques. Finally, an 
application of real data and a simulation study are introduced to illustrate the 
usefulness of the proposed distribution. 
 

Keywords 
Akshaya Distribution, Generalized Distributions, Moments, Estimation 

 

1. Introduction 

The statistical analysis and modeling of lifetime data are necessary for many ap-
plied sciences like insurance, finance, bio-medical and engineering sciences. So, 
many lifetime distributions are introduced in the last era. Al-Kutubi et al. [1] pre-
sented the Properties and estimation methods of a new extended two-parameter 
distribution and its applications in medicine and geology. Also, Brooks and Ste-
ven [2] provided a comprehensive tutorial review about Markov chain Monte 
Carlo (MCMC) algorithms and discussed some implementation issues associated 
with MCMC methods. Eliwa et al. [3] proposed a new generator of distributions 
and some of its fundamental properties. Epstein et al. [4] discussed statistical prob-
lems which arise when the observations become available in an ordered manner. 
Also in 2013 Ghitany et al. [5] introduced the statistical properties of new two- 
parameter distribution called power Lindley mixed of Weibull and generalized 
gamma distributions. In addition, Ghitany et al. [6] showed that Lindley distri-
bution is a better model than the exponential distribution. In 1980, Glaser [7] 
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studied the sufficient conditions that ensure that a lifetime density has an in-
creasing, decreasing or a bathtub-shaped failure rate. Measuring skewness and a 
quantile alternative for kurtosis are studied in [8] and [9] respectively. In 2011, 
Nadarajah et al. [10] introduced the generalized Lindley distribution and proved 
that it is better than gamma, lognormal, Weibull and exponential distributions 
with bathtub hazard rate. Okasha and Mustafa [11] used the E-Bayesian estima-
tion for the Weibull distribution based on adaptive progressive hybrid censored 
competing risks. Rama Shanker [12] introduced a new one parameter Akash 
distribution which is a mixture of exponential (θ) and gamma (3, θ) distribu-
tions. Also, he introduced Akshaya distribution with one parameter [13] for 
modeling lifetime data which gave a better fit than the classical exponential and 
Lindley distributions. Shanker et al. [14] presented the relationships and com-
parative studies of Akash, Shanker, Lindley and exponential distributions and 
estimated their parameters. Besides that the previous articles talked about some 
lifetime distributions, other articles talked about parameters estimation me-
thods. Finally, Smith et al. [15] developed and compared the maximum likelih-
ood and Bayesian estimators for the three-parameter Weibull distribution. 

According to Shanker [13], the probability density function (pdf) of Akshaya 
distribution is given by 

( ) ( )
4

3
3 2; 1 e , , 0,

3 6 6
xf x x xθθθ θ

θ θ θ
−= + >

+ + +
           (1) 

the cumulative distribution function (CDF) is given by 

( )
( ) ( )3 3 2 2 2

3 2

3 1 3 2 2
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x x x
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θ θ θ θ θ θ
θ θ

θ θ θ
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and the hazard rate function is given by 

( ) ( )
( ) ( ) ( )

34

3 3 2 2 2 3 2

1
; , , 0.

3 1 3 2 2 3 6 6
x

h x x
x x x

θ
θ θ
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+
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The hazard rate function given in Equation (3) is increasing function of x and 
θ . However, Akshaya distribution is not suitable for many situations from a 
theoretical point of view. So, a more flexible extension of Akshaya distribution is 
introduced in this paper. 

Ghitany et al. [5] used the transformation 
1

X Y α=  to generate a new distri-
bution called power Lindley distribution. By using this transformation, a new 
generalized power Akshaya distribution can be introduced. 

Let 
1 1 11d dy x x y x y yα α α

α
−

= → = → =  

( ) ( ) ( ) ( )1
0 0, .F y F x f y x f xα α αα −= =                (4) 

The aim of this paper is to study some properties of the generalized power 
Akshaya distribution including the density and hazard functions as in Section 2. 
Section 3 studied some statistical properties like moments of the distribution, 
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incomplete moments, mean residual lifetime and mean time to failure. Two me-
thods of parameter estimation are given in Section 4. Application of two types of 
data, real data and simulation study are presented in Section 5 to show the 
flexleibility of the distribution. 

2. Generalized Power Akshaya Distribution 
Some Basic Functions 

According to Equations (1), (2) and (4), the cumulative distribution function 
(CDF) and the probability density function (pdf) of power Akshaya distribution 
are given respectively as 

( )
( ) ( )3 3 2 2 2

3 2

3 1 3 2 2
; , 1 1 e , , , 0,

3 6 6
x

x x x
F x x

α
α α α

θ
θ θ θ θ θ θ

θ α θ α
θ θ θ

−
 + + + + + = − + > 

+ + +  
(5) 

( ) ( )
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θ θ θ

−
−= + >

+ + +
         (6) 

Akshaya distribution function is obtained from Equation (5) when 1α = . 
From Equation (6), we can notice the behavior of ( ); ,f x θ α  at 0x =  and 

x = ∞  as the following 

( ) ( )
4

3 2

, 1,

0 , 1, 0.
3 6 6

0, 1,

f f

α

θ α
θ θ θ

α

∞ <

= = ∞ =

+ + +
 >  

The following theorem shows that there are three shapes for the density func-
tion of the generalized power Akshaya distribution according to the values of the 
parameters θ  and α . 

Theorem 1. The density function of the generalized power Akshaya distribu-
tion given in Equation (6) is 

(a) decreasing if 10 1,α θ η< ≤ ≥ , 
(b) uni-modal if 1α ≥ , 
(c) decreasing-increasing-decreasing if 10 1, 0α θ η< ≤ < < , 

Where 
( )

1

1 2 2 3 1α α α
η

α
+ − −

= . 

Proof. The first derivative of ( ); ,f x θ α  of generalized power Akshaya dis-
tribution is 

( ) ( ) ( )
4 22

13 2 1 e , 0,
3 6 6

xf x x x x x
αα α θ ααθ

θ θ θ
− −′ = + Ψ >

+ + +  
where ( ) 2

1 1 1 1, 0y a y b y c y xαΨ = + + = > ,  
and 1 1 1, 4 1 , 1a b cθα α θα α= − = − − = − . 

It is obvious that ( )f x′  and ( )1 yΨ  have the same sign. The function 
( )1 yΨ  is: 

(a) decreasing if 1Ψ  has one or no real roots, 
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2
1 1 14 0b a c− ≤ , then ( ) ( )24 1 4 1 0α θα θα α− − + − ≤  

which implies to 
( )1 2 2 3 1

0 1,
α α α

α θ
α

+ − −
< ≤ ≥ , 

with ( ) ( )1 1 10 ,cΨ = Ψ ∞ = −∞ . 

(b) uni-modal with maximum value at the point 1
1

12
by
a
−

=  if 1 0c > , i.e. 1α > . 

(c) combining stated conditions in (a) and (b) we note that the function 
( )1 yΨ  changes its sign from negative to positive to negative and this completes 

the proof.  
Figure 1 and Figure 2 show the CDF and pdf functions of generalized power 

Akshaya distribution for different values of ,θ α . 
The survival function, ( )S x  and the hazard function, ( )H x  of generalized 

power Akshaya distribution, are given respectively as 

( ) ( )
( ) ( )3 3 2 2 2

3 2

; , 1 ; ,

3 1 3 2 2
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+ + +  

   (7) 

 

 
Figure 1. CDF of generalized power Akshaya distribution. 

 

 
Figure 2. Pdf of generalized power Akshaya Distribution. 


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From Equation (8), we can notice that the behavior of ( ); ,H x θ α  at 0x =  
is the same as the behavior of ( ); ,f x θ α  at 0x = , so that 
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and 
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The analytic analysis of the hazard function shape is very complicated, so ac-
cording to [7], Glaser’s theorem is applied here. Now, 
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Consequently, the hazard function, ( )H x , and the function ( )2 xΨ  have 
the same sign and the function ( )2 xΨ  is: 

(a) increasing if 1, 0α θ≥ > , 
(b) decreasing if 0 0.25, 0α θ< ≤ > , 
(c) decreasing-increasing-decreasing if 0.25 1, 0α θ< < > . 
Figure 3 and Figure 4 show the survival and hazard functions of generalized 

power Akshaya distribution for different values of ,θ α . 

3. Statistical Properties 
3.1. Moments 

In this subsection, the first four moments about zero and about mean and the 
incomplete moments of generalized power Akshaya distribution are derived. The 
general form of the rth moment about zero is given by 

( ) ( )
0

; , d .r r
r E x x f x xµ θ α

∞
′ = = ∫                  (9) 
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Figure 3. Survival function of generalized power Akshaya distribution. 

 

 
Figure 4. Hazard function of generalized power Akshaya distribution. 

 
According to Equation (9) and using Equation (6), the rth moment about zero 

of generalized power Akshaya distribution is given by 
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Finally, the rth moment about zero of generalized power Akshaya distribution 
is given by  

( ) ( )( ) ( )( )( )( )
( )( )( )

3 2 2 3
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3 2 11 3 3 6 6 3
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(10) 
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Substituting in Equation (10) with 1,2,3r =  and 4 we get 
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Also, the first four moments about mean can be deduced from moments about 
zero as follows 

1 0,µ =  
( )2

2 2 1 ,µ µ µ′ ′= −  
( )3

3 3 2 1 13 2µ µ µ µ µ′ ′ ′ ′= − +  and 

( ) ( )2 4
4 4 3 1 2 1 14 6 3µ µ µ µ µ µ µ′ ′ ′ ′ ′ ′= − + − . 

3.2. Incomplete Moments and Related Measures 

In this subsection, we introduce the rth incomplete moment, ( )rm y  and some 
related measures like mean deviation about mean and median and Bonferroni 
and Lorenz curves. 

3.2.1. Incomplete Moments 
The rth incomplete moments is given by 

( ) ( )
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∫

   (11) 

3.2.2. Mean Deviation about Mean and Median 
Mean deviation about mean of a parameter X~ power Akshaya distribution, 

( )1 xδ  can be given as follows 
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∫

∫                 (12) 

where ( )1 .m  is the incomplete moment given in Equation (11) when 1r = . 
The mean deviation about median (M) of a parameter X~ power Akshaya dis-

tribution, ( )2 xδ  can be given as follows 

( ) ( )

( )
( )

2 0

1 0

1 1

d

2 d

2 .

M

x x M f x x

xf x x

m M

δ

µ

µ

∞
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′= −

∫

∫                    (13) 

3.2.3. Bonferroni and Lorenz Curves 
The Bonferroni and Lorenz curves have large applications in economy to study 
income and poverty and other fields. Bonferroni and Lorenz curves are defined 
as 

( ) ( )

( )
0

1

1 d

,

q
B p xf x x

p
m q

p

µ

µ

=

=

∫
                    (14) 

( ) ( )
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0

1

1 d

.

q
L p xf x x

m q
µ

µ

=

=

∫
                     (15) 

3.3. Quantile Function, Bowley Skewness and Moors Kurtosis 

For any ( )0,1q∈ , the qth quantile function (Q(q)) is the solution of 
( )( ) ( ); 0F Q q q Q q= > , in other words, ( )1 ; ,q F x θ α−= . 

It’s obvious if we set 0.5q =  we get the median (M). Bowley skewness [8] 
and Moors kurtosis [9] can be obtained as 

3 1 12
4 4 2Bowley skewness ,

3 1
4 4

Q Q Q

Q Q

     + −     
     =

   −   
     

and 

3 1 7 5
8 8 8 8Moors kurtosis .

6 2
8 8

Q Q Q Q

Q Q
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       =

   −   
     

3.4. Mean Residual Lifetime 

Mean residual lifetime (m) is a reliability term based on lifetime of the product. 
It is a way to give a numeric value based on the residual lifetime of the product. 
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Mean residual lifetime (m) can be given as follows 
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  (16) 

3.5. Mean Time to Failure 

Mean time to failure (MTTF) is also a reliability term based on lifetime of the 
product. It gives a numeric value based on a compilation of data to quantify a 
failure rate of the product. MTTF can be given as follows 

( ) ( ) ( )( )( )( )( )( )

( )

1 11 3 2 11 3 3 6 6 3

4 2 3
MTTF .

6 6 3
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 

=
+ + +

         (17) 

4. Parameters Estimation 

In this section, two techniques including maximum likelihood estimation (MLE) 
method and Bayesian estimation method are used to estimate the parameters of 
generalized power Akshaya distribution. 

4.1. Maximum Likelihood Estimation Method 

Let ( )1 2, , , nx x x�  be a random sample from generalized power Akshaya dis-
tribution, then the likelihood estimation function, L can be given as follows 

( )
( )

( )1
4 31

3 21 1
; , e 1 ,

3 6 6
i
n

i
n nn n

x
i in

i i
L f x x x

αθ α αα θθ α
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=− −

= =

∑= = +
+ + +

∏ ∏    (18) 

and the natural log likelihood function is given by 

( ) ( ) ( ) ( ){ }
( ) ( ) ( ){ }

3 2

1 1

ln ln 4ln ln 3 6 6

1 ln 3ln 1 .
n n

i i i
i i
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x x xα α

α θ θ θ θ
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− + − + +∑ ∑
         (19) 

The first derivatives of the natural log likelihood function with respect to 
,θ α  are given by 
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2

3 2
1

4 3 6 6ln ,
3 6 6

n

i
i

nL xαθ θ
θ θ θ θ θ =

∂ + +
= − −
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( ) ( ) ( )
1 1

3
ln ln ln 1 .

1

n n
i

i i i
i i i

xnL x x x
x

α
α

αθ
α α = =

  ∂  = − + +  
∂ +   

∑ ∑        (21) 

Equations (20) and (21) have no analytic closed form when equating by zero, 
so numerical methods are used to give solutions. The second derivatives of the 
natural log likelihood function with respect to ,θ α  can be given by 

( )
( )( ) ( )

( )

23 2 22

2 2 23 2

6 1 3 6 6 3 6 64ln ,
3 6 6

nL
θ θ θ θ θ θ

θ θ θ θ θ

+ + + + − + +∂ −
= −

∂ + + +
   (22) 

( ) ( )
2

1
ln ln ,

n

i
i

L x xα

θ α =

∂
=

∂ ∂ ∑                    (23) 

( ) ( )
2

1
ln ln ,

n

i
i

L x xα

α θ =

∂
=

∂ ∂ ∑                   (24) 

( ) ( )( ) ( ) ( )
( )

2
2

2 2 2
1 1

3 ln
ln ln ln 1 .

1

n n
i i

i i i
i i

i

x xnL x x x
x

α
α

α
θ

α α = =

  
∂ −   = − + +  ∂  +   

∑ ∑    (25) 

The ( )1 100%ζ−  confidence interval for the parameters θ  and α  can be 
written as 

( ) ( ) ( ) ( )
1 1

2 2

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ, var , , var ,L U L Uz zζ ζθ θ θ θ α α α α
− −

= =∓ ∓
 

where θ̂  and α̂  are the maximum likelihood estimates of θ  and α , 
1

2

z ζ
−

 

is the percentile of the standard normal distribution and ( ) ( )ˆ ˆvar , varθ α  are  

the asymptotic variances of maximum likelihood estimates calculated using the 
inverse of the information matrix as follows 

( ) ( )
( ) ( )

12 2
1

2
1

2 2

2

ˆ ˆln ln ˆvar cov ,
.

ˆˆ ˆcov , varln ln

L L
F

L L

θ θ αθ αθ
α θ α

α θα

−
−

−

 −∂ −∂
  ∂ ∂∂   = =   −∂ −∂    ∂ ∂∂ 

     (26) 

4.2. Bayesian Estimation Method 

In this subsection, Bayesian estimation (BE) approach is used to estimate the 
parameters θ  and α  which are assumed to be independent and follow gam-
ma prior distribution with parameters a and b. 

The gamma prior density function has the form 

( ) ( )
1; , e , , , 0.

a
a ubbg u a b u u a b

a
− −= >

Γ
              (27) 

Then, the joint prior density of θ  and α  is given by 

( ) ( ) ( ) ( ) ( )1

1
, e .

n
a b

i
g g g θ αθ α θ α θα − − +

=

= ∝∏             (28) 

The joint posterior distribution function according to Bayesian procedure is 
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given by 

( ) ( ) ( )
( ) ( )

( ) ( )
,

, | , .
,

g L x
g x g L x

g L x
θ α

θ α θ α
θ α

= ∝
∫

            (29) 

Substituting from Equations (28) and (18) into Equation (29) we get 

( ) ( ) ( )( ) ( )1 31 1

1
, | e 1 .

n
ii

nx b ba
i i

i
g x x x

αθ α α αθ α θα =− + +− −

=

∑
∝ +∏         (30) 

Markov Chain Monte Carlo method (MCMC) [2] is used to summarize the 
posterior distribution numerically without calculating the normalized constant. 

5. Applications and Goodness of Fit 

In this section, the goodness of fit of generalized power Akshaya distribution to 
real lifetime data is proposed and compared with some one parameter and two 
parameters distributions. 

The data set represents the waiting times (in minutes) before service of 100 
bank customers and analyzed and examined by Ghitany et al. [6] for fitting the 
lindley distribution. The data set is given as follows 

Some statistics like, ( )2ln L− , Akaike Information Criterion (AIC), Kolmo-
gorov-Samirnov Statistics (K-S) and Bayesian estimate (BE) for this data are 
computed to compare between various lifetime distributions. These statistics are 
shown in Table 1. 

The best distribution fitting the data is the distribution with least ( )2ln L− , 
AIC, and least K-S statistics and Table 1 showed that power Akshaya distribu-
tion is better than others. The inverse of the information matrix of power Ak-
shaya distribution using the estimated parameters, θ̂  and α̂  according to the 
MLE method can be given by 

( ) ( )
( ) ( )

1
1

1
ˆ ˆ ˆvar cov , 0.004

,
0.002ˆˆ ˆcov , var

ve
F

ve

θ θ α

α θ α

−
−

−
  −  = =    −   

        (31) 

and the 95% confidence interval for the parameters θ  and α  can be given as 
 

Table 1. The MLE, BE estimates, ( )2ln L− , AIC, K-S and P-value statistics. 

Distributions 
MLE BE 

( )2ln L−  AIC K-S P-value 
θ̂  α̂  θ̂  α̂  

power Akshaya 0.556 0.814 0.559 0.813 635.73 639.73 0.04 0.9876 

power Lindley 0.153 1.083 0.160 1.072 636.64 640.64 0.50 2.2e−16 

Akshaya 0.368 - 0.368 - 649.72 651.72 0.13 0.074 

Akash 0.295 - 0.296 - 641.93 643.91 0.10 2.2e−16 

Lindley 0.187 - 0.187 - 638.07 640.07 0.058 2.2e−16 

Exponential 0.101 - 0.102 - 658.04 660.04 0.163 2.2e−16 
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( ) ( ) ( ) ( )ˆ ˆ ˆ ˆ, 0.431,0.680 , , 0.719,0.908 .L U L Uθ θ α α= =
 

6. Simulation Study 

In this section, random data of generalized power Akshaya is generated using 
the inverse of cumulative distribution function numerically. Mathematica pro-
gram is used to generate different samples of the distribution when the size is n 
= 20, 50, 70, 100, and 150. The experiment is repeated 5000 times with initial 
values 1.5θ =  and 0.5α = . Five quantities are examined in this study 

(a) Mean of the estimated values (ME) of ν̂ , ˆˆ ˆ,ν θ α=  which equals 
5000

1

1 ˆ
5000 ii ν

=∑ . 

(b) Average bias of the MLE (AB) of ν̂  which equals ( )5000
1

1 ˆ
5000 ii ν ν

=
−∑ . 

(c) The mean squared error (MSE) of the MLE of ν̂  which equals 

( )25000
1

1 ˆ
5000 ii ν ν

=
−∑ . 

(d) Average width (AW) of 95% confidence intervals of parameter ,ν θ α=  
which equals ( ) ( )ˆ ˆ1.96 1.96ν ν ν ν+ − − . 

(e) Coverage probability (CP) of 95% confidence intervals of parameter 
,ν θ α= , i.e. the percentage of intervals that contain true values of the parameter 

ν . 
Table 2 shows that 

• The absolute value of the average bias AB  for the parameters ,θ α  de-
creases as the sample size (n) increases. 

• The mean squared error (MSE) for the parameters θ  and α  decreases as 
the sample size (n) increases. 

• The average width (AW) for the parameters θ  and α  decreases as the 
sample size (n) increases. 

Figure 5 shows the scaled TTT-transform, and it found increasing, and the 
empirical pdf for the simulated data. Figure 6 shows the Q-Q plots for the si-
mulated data and distributions mentioned in Table 1 and it shows that the ge-
neralized power Akshaya distribution is the best fit for the data. Figure 7 shows 
the Kaplan Meier curve for the simulated data and the survival functions of the  

 
Table 2. Some measures of the simulated data for various sample sizes. 

n 
θ  α  

ME AB MSE AW CP ME AB MSE AW CP 

20 1.478 −0.022 0.053 0.881 0.943 0.532 0.032 0.009 0.320 0.946 

50 1.478 −0.022 0.020 0.556 0.941 0.514 0.014 0.003 0.195 0.953 

70 1.487 −0.013 0.014 0.471 0.951 0.511 0.011 0.002 0.165 0.955 

100 1.487 −0.013 0.009 0.394 0.955 0.510 0.010 0.001 0.137 0.958 

150 1.488 −0.012 0.007 0.322 0.951 0.508 0.008 0.001 0.112 0.946 
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Figure 5. Scaled TTT-transform (a) and histogram (b) plots. 
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Figure 6. Q-Q plots for the simulated data. 

 

 
Figure 7. Kaplan Meier curve for the simulated data and the survival functions of some distributions. 

 
Table 3. Posterior summaries for the simulated data. 

Prior Parameters Mean SD MC Error 2.5% Median 97.5% 

Gamma α  0.8129 0.05851 0.002007 0.7201 0.8103 0.9091 

Gamma θ  0.559 0.06751 0.001758 0.4408 0.5589 0.6887 

 
distributions mentioned in Table 1 and also shows that the generalized power 
Akshaya distribution is the best fit for the data. 

Table 3 shows a summary of some measures for the joint posterior distribu-
tion for the simulated data. Figure 8 and Figure 9 show the density and trace 
plot of parameters θ  and α  to assess the convergence visually. 

https://doi.org/10.4236/ojmsi.2021.94021


A. T. Ramadan et al. 
 

 

DOI: 10.4236/ojmsi.2021.94021 337 Open Journal of Modelling and Simulation 
 

 
Figure 8. Marginal posterior density plots for the simulated data. 

 

 
Figure 9. Trace plots for the simulated data. 

7. Conclusion 

A new two parameters lifetime distribution named generalized power Akshaya 
distribution has been introduced for modeling lifetime data. Some statistical 
properties such as cumulative distribution, density, survival, hazard and moments 
functions. Also, maximum likelihood and Bayesian techniques are used to esti-
mate distribution parameters. The goodness of fit using ( )2ln L− , Akaike Infor-
mation Criterion (AIC), Kolmogorov-Samirnov Statistics (K-S) and P-value for 
real lifetime data have been presented to show its applicability overpower Lind-
ley, Akshaya, Akash, Lindley and exponential distributions. Finally, a simulation 
study is carried out to show the mean of the estimated values. The average bias 
and mean square error of the maximum likelihood estimators of the model pa-
rameters are discussed. In addition, the coverage probability and average width of 
the confidence intervals for the parameters are calculated. 
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