
Open Journal of Modelling and Simulation, 2021, 9, 172-197
https://www.scirp.org/journal/ojmsi

ISSN Online: 2327-4026
ISSN Print: 2327-4018

DOI: 10.4236/ojmsi.2021.92012 Apr. 29, 2021 172 Open Journal of Modelling and Simulation

DecPDEVS: New Simulation Algorithms to
Improve Message Handling in PDEVS

Paul-Antoine Bisgambiglia, Paul Bisgambiglia

University of Corsica, CNRS UMR SPE, Campus Grimaldi 20250 Corti, Corsica, France

Abstract
This work proposes a new simulation algorithm to improve message handling
in discrete event formalism. We present an approach to minimize simulation
execution time. To do this, we propose to reduce the number of exchanged
messages between Parallel DEVS (PDEVS) components (simulators and co-
ordinators). We propose three changes from PDEVS: direct coupling, flat
structure and local schedule. The goal is the decentralisation of a number of
tasks to make the simulators more autonomous and simplify the coordinators
to achieve a greater speedup. We propose to compare the simulation results
of several models to demonstrate the benefits of our approach.

Keywords
Simulation, PDEVS Formalism, Direct Coupling, Decentralised Schedule,
Flat Structure

1. Introduction

Discrete event systems (DES) represent many technological and engineering sys-
tems [1]. They are driven by events, and these events have to be scheduled and
sorted by their timestamps. The crucial benefit of simulation with discrete events
is speed of execution owing to development dictated by events, avoiding proc-
essing in time stages. However, simulating a large number of models can be
time-consuming because there are many events to handle. The DEVS formalism
for Discrete Event system Specification [2] is a formalism based on the evolution
of time according to events. DEVS and PDEVS [3] allow the composition of
models from components stored in libraries, thus avoiding the redevelopment of
existing models. It is an open, flexible formalism with a great capacity for exten-
sion. Recent studies [2] [4] [5] [6] [7] have shown that the DEVS formalism may
be called multi-formalism because, due to its open nature, it allows the encapsu-

How to cite this paper: Bisgambiglia, P.-A.
and Bisgambiglia, P. (2021) DecPDEVS:
New Simulation Algorithms to Improve
Message Handling in PDEVS. Open Journal
of Modelling and Simulation, 9, 172-197.
https://doi.org/10.4236/ojmsi.2021.92012

Received: March 13, 2021
Accepted: April 26, 2021
Published: April 29, 2021

Copyright © 2021 by author(s) and
Scientific Research Publishing Inc.
This work is licensed under the Creative
Commons Attribution-NonCommercial
International License (CC BY-NC 4.0).
http://creativecommons.org/licenses/by-nc/4.0/

Open Access

https://www.scirp.org/journal/ojmsi
https://doi.org/10.4236/ojmsi.2021.92012
https://www.scirp.org/
https://doi.org/10.4236/ojmsi.2021.92012
http://creativecommons.org/licenses/by-nc/4.0/

P.-A. Bisgambiglia, P. Bisgambiglia

DOI: 10.4236/ojmsi.2021.92012 173 Open Journal of Modelling and Simulation

lation of other modelling formalisms. PDEVS [3] is a DEVS extension that elimi-
nates serialisation constraints, provides a way of dealing with simultaneous events,
allowing execution of models in parallel and distributed environments. Our con-
tribution is based on PDEVS and simulation mechanisms will be presented in
the next section.

Although faster than a continuous interval simulation method (Real-Time simu-
lation excepted), the DEVS and PDEVS approaches are costlier in terms of time
when the number of models increases. As the models’ size and complexity in
terms of links (couplings) increase, the longer calculation times become. In the
PDEVS formalism, the hierarchy between models suggests that any model state
modifications involve a message being sent, which goes up to the top-level model.
Therefore, the number of messages is proportional to the number of modifica-
tions of the system, to the number of models, to the number of state changes and
to the depth of the hierarchy. In certain cases, such as with highly intercon-
nected models, this increases the number of messages and a slow-down of the
simulation process. Many works also deal with accelerating simulations. At the
hardware level, it is possible to exploit the power or the number of processors,
GPU or computers, although the cost may be very high. At software level, it is
possible to improve the simulation algorithms by reducing their complexity. The
third way consists in combining the first two methods: it is aimed at imple-
menting the simulation algorithms to develop in order to parallelize the calcula-
tions.

The question addressed in this work is: how to speed up the simulation. Many
methods have been proposed to accelerate simulations. The main means used in
the DEVS community to increase the speed or the number of models has been to
exploit architectures with several processors or computer networks. The works
cited above demonstrate that in the majority of studies for accelerating algo-
rithms, the global model is divided into sub-model and each one is executed on
distinct processor by an individual simulation process called logical process
(LP). Based on PDEVS formalism, several tools [5] [8] [9] [10] support conser-
vative [11] and optimistic [12] [13] methods of synchronization in parallel or
distributed simulation environment. In all cases, considerable speedups are ob-
tained with large-scale simulations applied to many application areas and the
results generally depend on the number of logical processors. We propose to
classify these approaches into four groups. 1) Software modifications, proposing
more efficient simulation algorithms running on a single processor [14]. 2) Paral-
lelization techniques, taking advantage of multi-processors CPUs provides simu-
lation algorithms that are executed simultaneously on several processing units
[10] [15]-[21]. 3) Distribution techniques, taking advantage of multi-computer
architectures aim to propose simulation algorithms that are executed simulta-
neously on several computers through a network protocol [9] [22] [23] [24]. 4)
Hybrids modifications, proposing parallel and distributed algorithms [12]. Our
work belongs to the first of these groups.

To simulate the real system, it must be first partitioned into a maximum of

https://doi.org/10.4236/ojmsi.2021.92012

P.-A. Bisgambiglia, P. Bisgambiglia

DOI: 10.4236/ojmsi.2021.92012 174 Open Journal of Modelling and Simulation

sub-systems, as independent from each other as possible. When there is a strong
causal dependency between the components in a sub-system or when the execu-
tion is sequential for a set of components, one logical process is enough. There-
fore, components that interact frequently should be placed in the same logical
processor to reduce communication overhead in contrast to seldom interacting
components, which should be split into different logical processes that are exe-
cuted in a parallel or distributed way [25]. Hence, in many real-world applications,
logical processes would host more than one component. Since the efficiency of
parallel and distributed algorithms is largely limited not only by the inter-logical
process protocols but also by the intra-process messaging for the components
that reside on the same logical processor, we propose a technique to reduce this
local communication. Message handling influences the execution time of the
simulation.

The main proposition of this work is the implementation of a new simulation
mechanism to reduce the number of exchanged messages within a logical proc-
ess, in order to accelerate the local execution. A first proposal is made in [26].
This is achieved by simplifying the underlying simulation algorithms. The hier-
archical architecture of the simulator is replaced with a flattened one to reduce
communication among the components, associated with a technique (direct cou-
pling) for managing the couplings between models and ensure that the outputs
of the model are directly sent to the influenced. This technique allows reducing
the overall number of propagated messages within a logical process. As the PDEVS
formalism, components receive all simultaneous events scheduled for the same
time. This approach (called DecPDEVS for Decentralised PDEVS) is comple-
mentary and can be exploited at the same time with the inter-logical processors’
protocols to increase speed up (Figure 1).

In Section 2, we discuss the PDEVS formalism. This description introduces
basic ideas about event-driven modelling and simulation techniques as proposed
[2]. The third section is devoted to our proposal. Section 4 describes simulation
algorithms by presenting the behaviour of all introduced classes in the abstract
simulators. In Section 5, several examples had been tested to compare perform-
ances of our modifications with the original simulators and demonstrate that it

Figure 1. Decentralised architecture.

Inter process communication

Distributed / Parallel
component

Decentralised
component

component

componentcomponent

Distributed / Parallel
component

Decentralised
component

component

componentcomponent

Distributed / Parallel
component

Decentralised
component

component

componentcomponent

Logical process 1 Logical process i Logical process n

Intra process communication

https://doi.org/10.4236/ojmsi.2021.92012

P.-A. Bisgambiglia, P. Bisgambiglia

DOI: 10.4236/ojmsi.2021.92012 175 Open Journal of Modelling and Simulation

is possible to improve simulation performance. Section 6 concludes with a dis-
cussion on future research.

2. PDEVS Formalism

This formalism is based on the systems theory and the notion of the component.
It allows the specification of complex discrete-event systems in a modular and
hierarchical way. Major efforts have been made to adapt this formalism to vari-
ous domains and situations [19] [27] [28] [29] [30] [31]. Within this vast sector,
we are interested to improve the simulator.

2.1. Models

PDEVS is a modular formalism that permits the modelling of causal and deter-
ministic systems. A PDEVS atomic model is based on continuous time, inputs,
outputs, states and functions (output, transitions and states lifetime). More com-
plex models are constructed by coupling several atomic models in a hierarchical
way.

The atomic model may be considered as a time-based state machine. It makes
it possible to describe systems’ functional or behavioural aspects. The atomic
model provides an independent description of the behaviour of a system, de-
fined by its states and its functions. An atomic model is described by the follow-
ing formula:

AM: <X; Y; S; ta; δext; δint; δcon; λ> (1)

with
 X = {(pin, v)|pin ∈ Input ports, v ∈ Xpin}: the list of inputs events, each input

being characterised by a tuple (port/value number);
 Y = {(pout, v)|pout ∈ Output ports, v ∈ Ypout}: the list of outputs events, each

output being characterised by a tuple (port/value number);
 S: the set of the system states or state variables;
 ta: S⟶R+: the time advance function marking states’ lifetimes;
 δext: QxXb⟶S: the external transition function, where Xb is a set of bags over

elements in X and:
 () (){ }, | ,0 aQ s e s S e t s= ∈ ≤ ≤ ;
 e: is the time elapsed since the last transition.

 δint: S⟶S: the internal transition function.
 δcon: SxXb⟶S: the confluent transition to control the collision behaviour

when an atomic model receives external event at the time of the internal
transition ta(S);

 λ: S⟶Y: the output function.
At any given time, AM is in a state s for a lifetime period given by ta(s). When

an external event occurs before ta(s) expires, a new state is given by the external
transition function δext(s, e, xb). If the elapsed time e expires, the model outputs
the value through λ(s) and then evolves to a new state given by the internal tran-
sition function δint(s). When the atomic model receives events at the time of its

https://doi.org/10.4236/ojmsi.2021.92012

P.-A. Bisgambiglia, P. Bisgambiglia

DOI: 10.4236/ojmsi.2021.92012 176 Open Journal of Modelling and Simulation

internal transition function e = 0 the confluent function s' = δcon(s, 0, xb) is exe-
cuted instead of the internal or external function to determine the new state.

The DEVS formalism uses the notion of a description hierarchy, which per-
mits the construction of models called “couplings”, based on a collection of atomic
models and/or couplings, and on three coupling relations. A PDEVS coupled
model is modular and displays a hierarchical structure, which permits the crea-
tion of complex models based on atomic and/or coupled models. It is described
by the formula:

CM: <X; Y; D; {Md}; {Id}; {Zd,i}> (2)

with: X: the set of input ports; Y: the set of output ports; D is the set of compo-
nent references, Md: the list of models that the coupled model CM is composed
of; Id is the set of influences of a model d for each d ∈ D, formed by a subset of D
∪ {CM} – {d}.
 Zd,i is the translation function from d to i where Zd,i: X⟶Xi if d = CM, Zd,i:

Yd⟶Y if i = CM and Zd,i: Yd⟶Xi otherwise.
A coupled model describes the system structure and how the models are in-

terconnected.

2.2. Simulation

In order to define the simulation semantics of DEVS components, Zeigler put
forward the abstract simulator notion. The main benefit of this concept is the
difference between the models and the simulator. At the level of this simulator
(abstract), each simulation component corresponds to a modelling component.
DEVS is one of the rare “formal” formalisms, which propose an implementation
algorithm. In DEVS and PDEVS [2], a coupled model is composed of atomic
and/or coupled models. The abstract simulator is composed of a root coordina-
tor, coordinators and simulators. In fact, to achieve a simulation, a hierarchy of
processors (root coordinator, coordinators and simulators) is constructed, equiva-
lent to the hierarchy of models. A processor is associated with each model. Each
processor carries out the simulation by performing the functions, which express
the model’s dynamics. The components are described as follows: the Root Coor-
dinator, which represents the simulator, undertakes the general management of
the simulation. It regulates the start and the end of the simulation process and
manages the global clock; the Coordinators undertake the routing of events be-
tween the coupled models according to their couplings; the Simulators under-
take the simulation of the atomic models by orchestrating the activation of its
functions.

In an object-oriented based implementation of the formalism, the modelling
part is based on the Model class, which contains a parent attribute to define the
link in the description hierarchy and a processor attribute to form the link with
the abstract simulator. On the simulation side, the abstract simulator classes
inherit from the Processor class and possess all the time-of-last-event (tl) and
time-of-next-event (tn) attributes, which allow synchronization of the events.

https://doi.org/10.4236/ojmsi.2021.92012

P.-A. Bisgambiglia, P. Bisgambiglia

DOI: 10.4236/ojmsi.2021.92012 177 Open Journal of Modelling and Simulation

The coordinator class possesses also a tl and a tn attributes. The root-coordinator
class has a clock attribute, which corresponds to the current time of the simula-
tion.

2.3. Messages

Simulation is performed by sending specific messages between the various proc-
essors, as described in Figure 2. Each message contains information to identify
the event type, the sender, the timestamp and the category. Two categories of
messages are exchanged between processors. Content messages including exter-
nal (x) and output (y) messages, used to transport data during the simulation,
and synchronization messages including initialisation (i), collect (@), internal (*)
and done (d) messages. The initialisation message marks the beginning of the
simulation, the collect message triggers the output of the models, the internal
message coordinates all models transitions and the done message is used for
synchronization purposes, mainly for signalling the end of a task. Several ab-
stracts simulators are proposed in [3] [8] [11].

i-messages are forwarded to all the processors at the beginning of a simula-
tion run. When a simulator receives an i-message, it initializes the first state S of
the atomic model, it computes ta(S) and initializes its times of next and last event.
These values are sent to the parent coordinator. When a coordinator receives an
i-message it initializes all the components in the Md list and performs tn =
Min{tnd|d ∈ D} and tl = Max{tld|d ∈ D}.

A coordinator always keeps different references to models. Several are parti-
tioned into an imminent set (IMM) of models’ candidates for the next internal
transition function, and into an influenced set (INF) of models influenced by an
IMM model.

When the coordinator receives an external x-message, it uses the ZCM,d (ex-
ternal input coupling) to determine the model and the destination. All these
messages are stored in a bag for later use, when the *-message is received. When
the coordinator receives outputs messages (y-message) from imminent compo-
nents, it consults the translation function Zi,d to obtain the influenced and their

Figure 2. Simulation protocol.

Root

Coordinator

Coordinator Simulator

i
*

@

i
*

@

yy

dd

x x

y

i
x

@
*

https://doi.org/10.4236/ojmsi.2021.92012

P.-A. Bisgambiglia, P. Bisgambiglia

DOI: 10.4236/ojmsi.2021.92012 178 Open Journal of Modelling and Simulation

respective input ports if d ≠ CM or the output ports if d = CM. In the first case,
the output message is converted into input message (xd = Zi,d(yi)), and a new
x-message is sent to the influenced. In the second case, the output message yCM
is carrying to the parent coordinator (yCM = Zi,CM(yi)). For the simulator, an
x-message is simply stored in the bag and the simulator sends back a done mes-
sage.

When the coordinator receives a collect @-message, it uses the imminent list
(IMM) to propagate to the imminent processors a collect message, and waits for
the receipt of all done messages before continuing. For a simulator, a collect
message causes the execution of an output function (y = λ(s)), and the result is
sent back to the parent coordinator. Both coordinators and simulators return a
done message to their parent to signal the end of their collecting phase.

For the simulator, if an internal *-message occurs before the expiration of the
current state lifetime of its associated atomic model and if the bag is not empty,
the simulator triggers the external transition function, and the atomic model
evolve to the resulting state of δext(s, e, xb). Note that all simultaneous events are
passed to the model through the bag xb. In case of collision between external and
internal events, which occurs when the elapsed time is expired and the bag is not
empty, the confluent function s = δcon(s, xb) is executed. If the elapsed time is ex-
pired and the bag is empty, an *-message causes the execution of the internal
transition function s = δint(s). Finally, tl and tn are set to the current time and the
next event (tl + ta(s)), and tn is sent back to the coordinator to report when the
next internal transition should be executed. Finally, a d-message is returned to
the parent.

When the coordinator receives an internal message *-message, it sends the
external messages stored in the bag to the corresponding processors. All these
receivers are added in a synchronize set and an internal message is sent to them.
After all done messages are received back, the time of the next event and the
time of the last event are calculated and a done message is sent to the parent.
Another implementation might choose to route directly the events to the final
influences during the (@, t) phase, the bag implementation of the coupled model
can thus be omitted. The next section presents our proposal to improve simula-
tors.

3. DecPDEVS: Decentralised PDEVS

We propose three new contributions from PDEVS: flat structure, direct coupling
and local schedule to optimizing synchronization and output messages for intra
logical processors communications. The aim of these modifications is to simplify
the PDEVS simulator protocol, in order to make it more effective and faster, by
eliminating some coordinators, output and internal synchronization messages.
Although we proposed modifications of simulation algorithms, compatibility is
still possible between PDEVS models and DecPDEVS models. In addition, the
universal properties of DEVS are fully met, such as closure under coupling. The

https://doi.org/10.4236/ojmsi.2021.92012

P.-A. Bisgambiglia, P. Bisgambiglia

DOI: 10.4236/ojmsi.2021.92012 179 Open Journal of Modelling and Simulation

three proposed changes are detailed in this section.

3.1. Flattening Architecture

Due to the hierarchical architecture of the DEVS formalism, the number of
messages exchanged by the processors increase proportionally with the number
of coordinators, and has a major impact on the elapsed time of a simulation. To
reduce the number of these exchanges, all the coordinators, the top-most one
excepted, are removed from the simulation tree and the couplings are reorgan-
ized between parent and children to preserve the same behaviour as that of the
original. Other works already offer this mechanism, known as hierarchy flatten-
ing, [19] [22], usually in order to parallelize and distribute simulations. The flat-
tened architecture that will be presented here is inspired from the various works,
presented in Section 2.2, which are the attempts to improve the simulator to
adopt a flattened structure. But we have not added any other type of coordinator
as in [18] [32], we have one flat coordinator, called “decentralised coordinator”,
just positioned below the parallel/distributed coordinator (or the root for a sin-
gle simulation). As shown in Figure 1, on each processor, one logical process
encapsulates a decentralised coordinator. This coordinator assumes the intra
processors communication.

Algorithm 1 describe the recursive “flatten()” procedure. First all the coupled
models are scanned (lines 2 - 3), this execution replaces the original model by a
flattened one. Next the information about atomic models are added to the local
variables D, {Md} and {Id} (line 5 - 6) and in the sets of influences {Id} all the ref-
erences to the child coupled models, except for the current model (self) are de-
leted (lines 7 - 8). Internals translations between two atomics models in the chil-
dren are copied into the local Z function (lines 9 - 10). For the other translations,

Algorithm 1. Flattening algorithm.

1. procedure flattening()
2. foreach cm in D when mcm is a coupled model
3. mcm.flattening()
4. foreach cm in D when mcm is a coupled model
5. D = D ∪ mcm.D – cm and {Md} = {Md} ∪ {mcm.Md} – mcm
6. {Id} = ({Id}– Icm) ∪ ({mcm.Id} – mcm.Icm)
7. foreach d in D
8. remove cm in Id
9. foreach transition zd,i in {cm.Zd,i} when (d ≠ cm and i ≠ cm)
10. add transition (zd to zi) to {Zd,i}
11. foreach transition td to ti in {Zd,i} when (d or i are coupled model) //t∈{x, y}
12. if (Mi is a coupled model) and (Mi ≠ self)
13. xj = mi.Zi,j(Zd,i(td))
14. replace (Zd,i (td) = ti) by a translation (Zd,j (td) = xj) into {Zd,i}
15. if (d is not a coupled model) add j to {Id}
16. if (Md is a coupled model) and (Md ≠ self)
17. yj is a output as Md.Zj,d(yj) = td
18. replace (Zd,i (td) = ti) by a translation (Zj,j (yj) = ti) into {Zd,i}
19. add i to {Ij}
20. end flattening

https://doi.org/10.4236/ojmsi.2021.92012

P.-A. Bisgambiglia, P. Bisgambiglia

DOI: 10.4236/ojmsi.2021.92012 180 Open Journal of Modelling and Simulation

we use the transitive property of the Z function, to compute the new route to the
final receiver (lines 12 - 15) and the real sender (lines 16 - 19).

3.2. Direct Coupling for Message Routing

The simulators are the child processors of the logical processor, which represent
the atomic components of the PDEVS models. Two kinds of messages are proc-
essed in the logical process; internal messages which have an impact to the states
of all atomic models dd D

S S
∈

=∪ of the decentralised coordinator (in the local
logical process) and external messages which have an impact to states of atomic
models assigned to others LPs. When an internal event occurs, the simulators
are not able to communicate directly their outputs to their receivers; all the
messages must be forwarded up to the decentralised coordinator. Consequently,
internal messages increase communication among participating processors. For
better understanding, recall that when a simulator wants to send a message to
another simulator in the same LP, it first sends an output y-message to the coor-
dinator and a d-message for synchronization. Then, the coordinator consults the
Z translation function to find the destination and the input port, translates the
y-message into an external x-message and sends it upward to the influenced. The
simulator stores events in a bag and returns a d-message to notify that the mes-
sage is processed.

To reduce this communication overhead, we propose to add a list of couplings
to the atomic models. The atomic model (am) will have knowledge of its influ-
encees (I = Ima), and the translation function (Ci = Zma,i) from the sender to the
receiver (i ∈ I). These additional variables are added through inheritance, and
initialised during the initialization phase. This structure is one of the benefits of
our approach, because it is associated to the direct coupling notion, as vaguely
proposed in [14] and called “implicit link”, to directly connect two atomic mod-
els and allow them to communicate without travel through the parent coordina-
tor. In addition, this concept eliminates unnecessary internal synchronization
messages (i.e., d-messages), and avoiding unnecessary event routing messages
(i.e., y-messages and x-messages). As specified in [Chow, 1994] routing the events
directly from the topmost coordinator to the final simulator is equivalent as a
classic implementation and yields the same simulation results, for the internal
event the result is similar.

3.3. Sending Message

During the collect phase, i.e. when the coordinator spreads a @-message among
its children, each simulator propagates the outputs of its associated model to their
recipients and in turn, may receive inputs from other simulators. In the original
simulation protocol, a simulator collects the outputs and propagates y-messages
to its parent and signal the end of its collect phase by propagating a d-message
for synchronization purposes. For each y-message, the coordinator has to con-
sult the couplings to dispatch those messages to the proper recipients using

https://doi.org/10.4236/ojmsi.2021.92012

P.-A. Bisgambiglia, P. Bisgambiglia

DOI: 10.4236/ojmsi.2021.92012 181 Open Journal of Modelling and Simulation

x-messages, or again y-messages for those intended to simulators located in
other LPs. All messages intended for simulators in the same LP are passing un-
necessarily by the top-most coordinator. Using the direct coupling notion pre-
sented in Section 3.2, the output events are directly sent by the simulator by
propagating x-messages to recipient simulators using the local translation func-
tion Ci. At the end of the overall collecting phase, all simultaneous messages
properly are in the bags of the simulators, ready to be processed during the in-
ternal phase (*-message).

The post function for the simulator is presented in Algorithm 2. If the output
of the result is intended to its parent, the result (values in the output bag yb) is
stored in the output bag of the decentralised coordinator (line 4). In the other
case, the result is inserted in the input bag of the atomic model (line 6). For the
coordinator (Algorithm 3) input events are directly inserted in the correspond-
ing bag.

3.4. New Classes

We present our structure modifications in Figure 3 which reflects the decentral-
ised organisation. The modelling and simulation approach follows the definition
of the PDEVS abstract simulator [Zeigler, 2000]. The decentralised abstract
simulator is separated in two class hierarchies, one for the model and the other
for the simulator. There is a one-to-one correspondence between class models
and class simulators for the decentralised components, where the D-Coordinator
and the D-Simulator represent the behaviour of the models. The simulation and
the advancement of time are managed by the inter-process in parallel or distrib-
uted situation or by a root simulator in case of a mono-processor architecture.
For a logical process a network processor (parallel, distributed or root) running
on different machines determines when the intra processor simulation phase has
to be started and the final execution time, corresponding to the “lookahead” in
the PDEVS conservative algorithms [Jafer, 2010, Wainer, 2002, Zacharewicz,
2008 and 2010]. The D-coordinator class is responsible for routing the messages

Algorithm 2. Post algorithm for a simulator.

1. function post(yb)
2. foreach y in yb
3. if i destination of Ci(y) is a parent
4. add y = Ci(y) to the bag b

i im .y
5. else
6. add x = Ci(y) to the bag of b

i im .x
7. end post

Algorithm 3. Post algorithm for a coordinator.

1. function post(xb)
2. foreach x in xb
3. add x = Zcm,i(x) to the bag of b

i im .x
4. end post

https://doi.org/10.4236/ojmsi.2021.92012

P.-A. Bisgambiglia, P. Bisgambiglia

DOI: 10.4236/ojmsi.2021.92012 182 Open Journal of Modelling and Simulation

Figure 3. Decentralised abstract simulator.

among inter and intra processors parts. The intra-simulation start with the in-
ternal messages sent from the network processor to the D-coordinator and con-
tinues until the timestamps of the events reaches the final execution time or until
there are no more events with a timestamp less than or equal to the final execu-
tion time. All output messages are sent out by the D-coordinator at the end of
the simulation.

In the D-Coordinator class modifications consisted in overloading the tn()
function, in order to handle the time of next event directly without using the tn
value of the done simulators. We propose using the time-of-last-event (tl) and
especially time-of-next-event (tn) attributes in the coordinator, thus the tn
computation that involves a comparison of processor parameters is fast efficient.

To conduct this decentralised message management, it is essential that the
atomic model output ports and the input ports of the main coordinator are able
to identify the addressees without using the translation function Z. A link notion
is added to all those ports, thus making it possible directly to identify the “re-
cipient” (model and port). It will then be possible to file the messages directly in
the model bags. This modification is applied in the atomic model class by the
state I and the function {Ci}. This notion is called direct coupling or implicit
link. In the simulation part every processor input and output messages are
treated as basics event and inserted directly into the corresponding bag by the
function “post”.

We are now going to present the behaviour of the various simulation func-
tions, which make up the core of the proposed abstract simulator. The simula-
tion is message driven and managed by three specifics functions “send”, “post”
and “receive” implemented by each simulator. These functions translate content

Entity

Model

Coupled
-Md : list of model
-{Id} : table of list of models

- Processor
- X, Y : (Port, value)

+Zi,j : Yj (port, model)

Atomic
-S : list of states
+δext(s,e,x) : state
+δint(s) : state
+δcon(s,x) : state
+λ() : output y
+ta(s) : real

Modelling Part

Processor
- Model
- tn, tl : real

Coordinator
11

Simulator

1

1

D-Simulator
+receive(message)
+post(Y)

D-Coordinator
+receive(message)
+post(Y)
+tn()

D-Atomic
-I : list of models

D-Coupled
-Yb : bag of Y

Simulation Part

+ send(message)

+Ci : Yi (port, model)

https://doi.org/10.4236/ojmsi.2021.92012

P.-A. Bisgambiglia, P. Bisgambiglia

DOI: 10.4236/ojmsi.2021.92012 183 Open Journal of Modelling and Simulation

and synchronization messages between models using direct couplings and exe-
cute the behaviour of the atomic models. Direct coupling represents a major
modification in the modelling part, the translation function Z is used by the co-
ordinator only for routing the input events (Zcm,i|cm is a coupled model).

We proposed algorithms for purely conservative simulation. The simulator
only executes events when it can guarantee that other simulators will not send
events with a smaller timestamp than that of the current event.

4. Decentralised Algorithms

In this section, we describe decentralised algorithms discussed. To obtain a
comparative study between PDEVS, flat and decentralised simulators for in-
tra-processors simulation, we use only one logical processor and a root coordi-
nator directly connected to the decentralised component. The root coordinator
is a special processor, which is responsible to read/write the input/output events
to the environment and starting the simulation. The root is driven by a special
function called “global simulation” which synchronizes the global time simula-
tion, routes down the input events, the collect and the internal messages
(Algorithm 4).

4.1. Root Processor

Initialization message start the global simulation (line 2) to every processor in
the simulation tree. The Root processor defines the new current time of the
simulation according to the data from the inputData (input data is a list of input
events) and to the tn of the topmost coordinator in each simulation cycle (lines 5
and 11).

All the messages to be handled at current time are extracted from the input
data and sent to the topmost coordinator via the send() function (lines 5 - 7).
Notice that a version of this function with a list of messages is used to reduce the
number of x-messages sent. The collect message can be sent to compute the
output for the current time of the simulation (line 8). Finally, the smallest time-
stamp (lookahead) of the next event the root can schedule in the future is com-
puted (line 9), and send to the topmost coordinator with the internal message

Algorithm 4. Global simulation.

1. function global_simulation()
2. send (“i”, 0, Ø) to the topmost coordinator
3. t = min(tn of the topmost coordinator, time of first event in inputData or ∞;)
4. while (t ≠∞)
5. foreach event ev in inputData with time = t
6. extract ev from inputData
7. send(“x”, t, ev) to the topmost coordinator
8. send(“@”, t, Ø) to the topmost coordinator
9. lookahead = time of first event in inputData or ∞;
10. send(“*”, t, lookahead) to the topmost coordinator
11. t = Min(tn of the topmost coordinator, time of first event in inputData)
12. end global_simulation

https://doi.org/10.4236/ojmsi.2021.92012

P.-A. Bisgambiglia, P. Bisgambiglia

DOI: 10.4236/ojmsi.2021.92012 184 Open Journal of Modelling and Simulation

(line 10) to finish the current simulation cycle. This value guarantees that no
other events containing a smaller timestamp will be generated. When the inter-
nal message is received the coordinator can safety executes all transitions and
outputs functions from the current time t to the time of the next external event
schedule in the inputData.

A receive function (Algorithm 5) is activated when a message is sent by a de-
centralised coordinator. If the time of the message is smaller than the time of the
last event a causality error is detected (line 2). When an output message is re-
ceived, the event of the message is stored in timestamp order in the output data
base (line 4) and the time of last event is update (line 5).

4.2. Decentralised Coordinator

A decentralised coordinator contains simulators running the atomic models. To
perform the simulation in the decentralised coordinator the sets of IMM and
INF are determined to know which models are candidates for a collect @-message
and which models are candidates for an internal *-message (Algorithm 6). INF
is updated when an event is stored in the input bag of the atomic model, and
IMM is computed using the tn attributes of the processors.
 { }{ }INF |b

d d dm x m M= ⋅ ≠ ∅
 { }{ }IMM current time |d d dm tn m M= ⋅ =

When an initialization message is received the time of last event is set to zero
(line 3 Algorithm 6) and the message is forwarded to all its children to perform
the initialization phase (lines 4 - 5). Upon receiving a collect message with a
timestamp equal to the tn value (line 6), the coordinator sends a collect message
to the imminent processors (lines 8 - 9) for output execution. Notice that the re-
sults are directly assigned to the output bag of the coordinator and done-messages
are not expected to be received from the children. When an internal message is
received (line 10), the decentralised coordinator is in charge of processing intra
processor simulation from the current time to the value (corresponding to the
lookahead) received from the parent coordinator. All the events scheduled dur-
ing this period (present it the IMM or INF sets) are executed, and the local time
of the intra-processor is advanced.

Upon the first step, input messages stored in the local bag are distributed to
the recipients (line 11). During simulation cycles (line 12), the decentralised co-
ordinator sends internal messages to all its children ready for a transition (lines
13 - 14). After processing the collect messages output events are routed to the

Algorithm 5. Receive function of the root processor.

1. function receive(message msg)
2. if (msg.time < tl) return causality error
3. if msg is a y-message
4. save the event of the msg in the outputData
5. tl = time of the message msg
6. end receive

https://doi.org/10.4236/ojmsi.2021.92012

P.-A. Bisgambiglia, P. Bisgambiglia

DOI: 10.4236/ojmsi.2021.92012 185 Open Journal of Modelling and Simulation

Algorithm 6. Receive function of the coordinator.

1. function receive(message msg)
2. when receive an initialization i-message with t = 0
3. tl = 0
4. foreach d in D
5. send (“i”, t, Ø) to md

6. when receive a collect @-message with t = tn
7. tl = t
8. foreach m in IMM
9. send (“@”, t, Ø) to the child m
10. when receive an internal *-message with tl <= t <= tn
11. post (xb)
12. while (IMM ∪ INF ≠ Ø)
13. foreach m in IMM ∪ INF
14. send (“*”, t, Ø) to the child m
15. send (“y”, t, yb) to the parent
16. tl = t
17. tn = Minimum {md.tn|md ∈ {Md}
18. if (tn < msg.value)
19. t = tn
20. foreach m in IMM
21. send (“@”, t, Ø) to the child m
22. else if tn < t < tl return causality error
23. end receive

root coordinator to be stored in the environment (line 15), and the next sched-
uled transition time are computed (lines 16 - 17). In case of one or more proc-
essors are ready to process output function before the lookahead time expiration
(line 18), the local time of the intra process time is updated (line 19), and a new
collect message is sent to all processors with minimum tn (lines 20 - 21). If the
time of the message is not within the range of tl and tn an causality error occurs
(line 22).

4.3. Simulator Processors

Decentralised simulation handles all messages at the current time, executes the
transition functions and generates the outputs without having to give back con-
trol to the parent coordinator. When an initialization message is received (line
2), the states of the model and the time of the last event are assigned (lines 3 - 5).
Using the time advance function, the time of the next scheduled output event is
obtained (line 5). A collect message (line 6) executes the output function (line 7)
and deposits the result in the influenced bag (line 8). This event will be executed
later, when an internal message will be sent to the model. An internal message
(line 9) triggers one of the three transition functions based on the time (t) of the
event, the time of the next transition event and the events stored in the bag. If
the message arrives before the time of the next event (line 10), the external func-
tion is executed (line 12) with a new value for the elapsed time (line 11). If the
timestamp of the message is equal to tn and the bag is empty (line 13) the inter-
nal transition function is executed (line 14). However (line 15) a conflict arises
when the timestamp is equal to tn and the bag is not empty and the confluent

https://doi.org/10.4236/ojmsi.2021.92012

P.-A. Bisgambiglia, P. Bisgambiglia

DOI: 10.4236/ojmsi.2021.92012 186 Open Journal of Modelling and Simulation

function is executed (line 16). At the end of the transition, the last and the next
transition times are updated (line 17 - 18). If the time of the message is not
within the range of tl and tn a causality error occurs (line 19) (Algorithm 7).

4.4. Example: CPU Models

To prove in concrete terms the value of these modifications and our algorithms,
we have chosen to compare the three types of simulations:
 The PDEVS simulation in which the coupled models can be inserted inside

other coupled models and create a hierarchical simulation tree, within which
the messages are distributed

 A “flat” simulation in which the intermediary coupled models are deleted,
which has the effect of placing all the atomic models at the same level under a
root coupled model. Our flat version resulting from the literature [Jafer, and
Wainer, 2009; Zacharewicz, 2010].

 A decentralised simulation in which the structure is “flat” and the messages
are handled directly inside the atomic models

To illustrate the differences between PDEVS, flat-PDEVS and DecPDEVS
simulation, a simple coupled model example (Figure 4) based on a queue and a
processor used for the DEVS formalism modelling and simulation [Zeigler, 2000].
Queue is a buffer that stored incoming jobs and sends one of them to the proc-
essor when it is free. The processor simulates the job’s execution delay or quan-
tum, and remains busy until the processing is finished. If the execution delay is
reach, the job is placed to the “out” port and the new status free is sent on the
“done” port, otherwise the job is sent through the “done” port to the queue. The
environment using a random function to generate: Jobs, arrival time and delay.

Figure 5 shows the result set from simulations based on PDEVS algorithms,

Algorithm 7. Receive function of the simulator.

1. function receive(message msg)
2. when receive an initialization i-message with t = 0
3. initialize system’s states S
4. tl = 0
5. tn = ta(s)
6. when receive a collect @-message with t = tn
7. y = λ(s)
8. post (y)
9. when receive an internal *-message with tl <= t <= tn
10. if (t ≠ tn)
11. e = t - tl
12. s = δext(s, e, xb)
13. else if (t = tn) and (xb = Ø)
14. s = δint(s)
15. else if (t = tn) and (xb ≠ Ø)
16. s = δcon(s, xb)
17. tl = t
18. tn = tl + ta(s)
19. else if tn < t < tl return causality error
20. end receive

https://doi.org/10.4236/ojmsi.2021.92012

P.-A. Bisgambiglia, P. Bisgambiglia

DOI: 10.4236/ojmsi.2021.92012 187 Open Journal of Modelling and Simulation

Figure 4. PC (Personal Computer) coupled model.

Figure 5. message counting according to PDEVS and decentralised approaches.

flat approach and on decentralised approach. As there is no intermediate cou-
pled models in the hierarchy, PDEVS using the hierarchical and flattened archi-
tecture give the same results. Compared to the decentralised approach, the num-
ber of exchanged messages is significantly lowered, even for such a simple model.
In this simulation, the gain is around 50% compared to a standard PDEVS simu-
lation. In the beginning of the simulation, the improvement is about 15%. Then,
in the middle of the simulation, we observe a 40% and 50% improvement. We
can see that even for a very simple system without hierarchy, there is much less
messages to process, which conducts to a better use of hardware resources.

In the next section, we will propose other examples to prove that the time
saving is important regardless of the application type.

5. Applications

There are two ways to prove the efficiency of algorithms: 1) use a benchmark; 2)
or, use known models. In [26], we demonstrated the interest of our approach
from a DEVStone benchmark [33] and we propose a first set of test obtained
with this benchmark. These preliminary results show an improvement in terms
of exchanged messages. The improvement is around 70% compared to the clas-
sical approach and 40% compared to the flattened approach. In this section, we
propose to realize new tests using real case models. Here we offer an in-depth
study from real models. We will present two examples based on more complex
models. We will compare the performance of three approaches (PDEVS, flat-
PDEVS, and DecPDEVS) applied to two different systems. The first corresponds
to a more complex model developed by Cemagref1, which allows to represent a
hydrological process and, in particular, to establish the link between the large

PC

Queue
read

in
out in

done

out
Processor

in out

0
100
200
300
400
500

0 20 40 60 80 100 120 140 160 180 200

M
es

sa
ge

s

Time

Flat/PDEVS

Decentralized

1https://www.enseignementsup-recherche.gouv.fr/cid49674/irstea.html

https://doi.org/10.4236/ojmsi.2021.92012
https://www.enseignementsup-recherche.gouv.fr/cid49674/irstea.html

P.-A. Bisgambiglia, P. Bisgambiglia

DOI: 10.4236/ojmsi.2021.92012 188 Open Journal of Modelling and Simulation

volume of water hurled into a catchment reservoir and its flow at the outlet
(GR4J model) [34] [35] [36]. The second example corresponds to the Acceptable
Safety Distance (ASD) model [37]. ASD is a model that allows the determination
of safety distances for wild land fires. This analytical model is based on radiative
heating and on fire spreading model [38]. In this section, we will present our test
platform, and the method used to count the messages and evaluate the simula-
tion time. Then, we describe the results obtained for the GR model, and finally
those of the ASD model.

5.1. Materials and Methods

The presented results were obtained from models implemented with the DEVS-
Ruby API [39]. It is a library (API) that allows formal specifications of DEVS
and PDEVS (Parallel DEVS) models. It provides an internal Domain-Specific
Language (DSL), which can be extended to meet domain specific vocabulary of
modellers. We added other simulation algorithms in our code, and have included
a message counter in the various simulation components.

The test environment is based on an Intel(R) Core (TM) i5-3360M CPU @
2.80 GHz (3MB L2 cache), 16 GB (2 x DDR3 - 1600 MHz) of RAM, a Toshiba
MK5061GS hard drive, running on Ubuntu 14.04 (64 bit). The software used for
the benchmarking are: DEVS-Ruby 0.6 using the official Ruby VM (version
2.1.2).

To count the messages, we have added a counter in the code of the simulator.
This counter is incremented by the simulators and the coordinators whenever
the send() function is executed. It returns the total number of messages sent to
each step of the simulation. In our simulation results, we distinguish two notions
of time. The simulation time: the simulated time that is configured before to
running the simulation (time), and its duration real or effective, given in CPU
time (ticks).

5.2. First Application: GR4J Model

The rural engineering models called GR models [34] [35] [36] are reliable, ro-
bust empirical models designed for annual, monthly and daily intervals, making
it possible to achieve continuous simulations.

They have numerous engineering and water resource management applica-
tions such as the proportioning and management of works, forecasting of wa-
ter-level rises and low water levels, impact detection, etc.

In order to function, those models only need continuous rain and potential
evapotranspiration data, being capable of forming an average interannual curve.
We are going to use the daily GR4J model with four parameters (Figure 6). The
GR4J comprises four parameters to correspond to the catchment reservoir:
 X1: capacity of the production tank (in mm) in the percolation model;
 X2: coefficient of underground exchanges (mm) in the exchange model;
 X3: daily capacity of the routing tank (mm) in the routing model;

https://doi.org/10.4236/ojmsi.2021.92012

P.-A. Bisgambiglia, P. Bisgambiglia

DOI: 10.4236/ojmsi.2021.92012 189 Open Journal of Modelling and Simulation

Figure 6. PDEVS structure of GR4J models.

 X4: basic time of the unitary hydrograph in the SH1 and SH2 models.

We have studied the models:
 One model based on the PDEVS formalism; its structure is identical to the

figure showing the GR4J model. It is composed of 11 atomic models and three
coupled models.

 A “flat” model composed of 11 atomic models and only one coupled model.
 A “decentralised” model, itself identical to the preceding model but composed

of atomic models capable of managing the messages internally and links to
the successors in the ports.

Over a period of a year, we obtain the following for the three types of simula-
tion (Figure 7):
 “PDEVS”: 17,545 messages.
 “flat”: 15,543 messages.
 “decentralised”: 7116 messages.

The difference in messages exchanged between flat simulation and standard
(PDEVS) simulation is approximately 2000 messages. This increase was predict-
able. In reality, it corresponds to a message cascade in the coupled sub-models,
which have been deleted. In the first case, we have two models coupled inside the
GR4J model—there is, therefore, an extra level of communication (an extra send).
In the coupled Production and Run-off model, we have three input ports and
four output ports, making a maximum total of 7 messages on each loop, which is
a maximum of 400 × 7 = 2800 messages.

It is easy to predict that, in the case of flattening; the increase in the number of
messages is restricted by: Total Ports IN and OUT of the Coupled Model multi-
plied by the number of loops.

In the case of a decentralised simulation, the increase is initially obtained by
deleting *-messages from the architecture. As an initial approximation, it may be

https://doi.org/10.4236/ojmsi.2021.92012

P.-A. Bisgambiglia, P. Bisgambiglia

DOI: 10.4236/ojmsi.2021.92012 190 Open Journal of Modelling and Simulation

Figure 7. Message counting according to the simulation approaches.

said that each time an *-message is sent, a y-message is produced, which pro-
duces an upper limit of around 50%.

What’s more, an atomic model which retrieves control can handle all the
messages at current time, i.e. all the x-messages without returning control to the
parent coordinator. We are also able to imagine increases above 40% in most
cases of figures on a flat model.

Although those results are less significant, since they depend on the machine
on which we have carried out the tests in the chosen language and the implemen-
tation of the simulation algorithms, we provide the following empirical results.

We obtain simulation times (measured in ticks) proportional to the number
of messages exchanged in the various approaches (Figure 8):
 “PDEVS”: 4,970,322 ticks = 497.0322 ms
 “flat”: 4,540,248 ticks.
 “decentralised”: 1,910,157 ticks.

In this example, we can see that if the model is more complex, with more cou-
pling, our method allows obtaining even better results. The resource in time is
improved by about 50% compared to the flat approach.

5.3. ASD Model

In [37], an application to calculate a safety distance is presented; it is called ASD
for Acceptable Safety Distance. The role of this system is to calculate a safety
distance for the prevention of forest fires. This distance is used to realise a fire-
wall by vegetation clearing. We have represented this model in the PDEVS for-
malism for application that needs to allow fire fighters to calculate a safe dis-
tance on the ground from a touch pad. This model is very complex because it
must solve nonlinear differential equations using the fixed-point method. This
method requires setting up an iterative scheme that induces the creation of the
loop and causes a lot of data exchange. The model is based on the following
characteristics; all equations are given in [40]:
 ASD is the Acceptable Safety Distance (m), it represents the safety distance

facing the fire;
 γ flame tilt angle, the inclination angle between the flame and the ground

normal;

0

5000

10000

15000

20000

1 31 61 91 12
1

15
1

18
1

21
1

24
1

27
1

30
1

33
1

36
1

39
1

M
es

sa
ge

s

Day

PDEVS

flat

decentralised

https://doi.org/10.4236/ojmsi.2021.92012

P.-A. Bisgambiglia, P. Bisgambiglia

DOI: 10.4236/ojmsi.2021.92012 191 Open Journal of Modelling and Simulation

Figure 8. Simulation times (measured in ticks).

 R is the speed of the flame front;
 Lf is the length of the flame to the ground;
 R0 is the flat velocity without wind;
 u0 is the rate of climb of gas
 A is the ratio energy radiated/necessary
 Hf is the flame height

Modelling this system using the PDEVS formalism gives a coupled model
composed of 21 models, there are eight models of first level: 4 atomic models
and four coupled models, and 13 models of second level. DEVS models are de-
scribed in [29] [37].

The four models coupled are CM_SD, CM_GV, CM_HR and CM_CF.
 CM_SD gives the ASD;
 CM_GV gives the rate of climb of gas, and the energy ratio;
 CM_HR gives the flame height;
 CM_CF gives the flame temperature and the flat velocity.

These four models are composed of 13 atomic models, model of second level.
The four first-level atomic models are generator, parameter r0, AM_LF, and
AM_S.
 generator initializes all components by reading the input data from a file or

from a web service;
 parameter r0 calculates a ratio surface/volume (depending on ground);
 AM_LF gives the length of the flame;
 AM_S calculates the flame inclination and the flame front velocity.

Figure 9 shows the link between parameters or equations and their inclusion
in DEVS models. This figure allows us to see the couplings and dependence or
interdependence of a parameter with the others. These models have been im-
plemented using our API (DEVS-Ruby [39]). The given results do not show the
model output but shows the comparative study between the three different
simulation algorithms. To do this study, we counted messages and measured
simulations times.

Figure 10 shows the evolution curves in terms of number of exchanged mes-
sages. We can see that for the decentralised approach, the number of exchanged
messages is much lower than for the other approaches. The gain is approxi-
mately 60% to 70%. This reduction allows a great saving of time, we can see in

0 200 400 600

PDEVS

flat

decentralised

ms

ap
pr

oa
ch

PDEVS

flat

decentralised

https://doi.org/10.4236/ojmsi.2021.92012

P.-A. Bisgambiglia, P. Bisgambiglia

DOI: 10.4236/ojmsi.2021.92012 192 Open Journal of Modelling and Simulation

Figure 9. Link between the ASD model parameters.

Figure 10. Message counting according to the simulation approaches.

Figure 11, which shows the CPU time (ticks) allocated for each simulation. We
obtain simulation times, measured in ticks, based on the various approaches:
 “PDEVS”: 30,550,550 ticks = 3055.0550 ms
 “flat”: 11,030,118 ticks.
 “decentralised”: 10,001 ticks.

In this last example, our previous observations are confirmed. More the sys-
tem is coupled more the approach is effective. We improved message handling.
Consequently, we decreased the number of sent messages consistently.

5.4. Discussion

For each simulation, we calculated the average gain in number of messages ex-
changed by approach (PDEVS, flat, decentralised). We find that for a simple

ASD

AM_MP
AM_Lf

CM_SD

CM_HR
CM_CF

HfU0 , A

Tf , R0 CM_GV

Lfγ , R

0
10000
20000
30000
40000
50000
60000
70000

0 10 20 30 40 50 60 70 80 90

M
es

sa
ge

s

Time

PDEVS

Flat

Decentalised

https://doi.org/10.4236/ojmsi.2021.92012

P.-A. Bisgambiglia, P. Bisgambiglia

DOI: 10.4236/ojmsi.2021.92012 193 Open Journal of Modelling and Simulation

Figure 11. Simulation times (measured in ticks).

model, that is to say, composed of few models, the gain is of the order of forty
percent (40%). As more models are present, the results are more and more en-
couraging. For the ASD model, which is composed of many models, the gain is
approximately of 70% compared to the standard algorithm, and 60% compared
to the flattened approach.

As shown in our results, this reduction in the number of exchanged messages
leads to an acceleration of simulation time. For the CPU model, there are 72
outputs. For the GR4J model, there are 398 outputs. For the ASD model, there
are 95 outputs. Our results are therefore fairly significant because they are veri-
fied for three model types and a DEVS benchmark (DEVStone [26]). We also
note, and it is important, that the most significant improvement is seen with the
ASD model, which is a discrete time model. We wish to confirm on other mod-
els of the same type, but we believe that our approach is optimal for discrete time
systems.

Our approach has a major advantage when the modelled systems are compli-
cated. For example, models with many ports and receiving many messages at the
same time. More the number of (in/out)-ports is important, and therefore the
number of messages sent or received also, more the benefit is important. Our
approach provides an improvement for all models tested, we will accelerate the
simulation time by about 50%. This acceleration will be cascaded on all models.
For relatively simple models with few couplings, our approach is unattractive.
Another limitation is that it is not yet possible to couple in a logical process a
classic DEVS model with a decentralised model.

6. Conclusions

In this article, we propose the implementation of new simulation algorithms to
reduce the number of exchanged messages in PDEVS to accelerate its execution.
Our algorithms aim to reduce the number of messages exchanged between
components during intra process communication. If there are fewer exchanged
messages, we save processing time and thus accelerate the simulations. This ap-
proach is based on three changes from PDEVS. Although we proposed simula-

0 1000 2000 3000 4000

PDEVS

flat

decentralised

ms

ap
pr

oa
ch

PDEVS

flat

decentralised

https://doi.org/10.4236/ojmsi.2021.92012

P.-A. Bisgambiglia, P. Bisgambiglia

DOI: 10.4236/ojmsi.2021.92012 194 Open Journal of Modelling and Simulation

tion algorithm modifications, compatibility between PDEVS and DecPDEVS
models is preserved (closure under coupling).

Our acceleration process in computer science is fairly traditional. It is mainly
based on the relocalisation of information: blending list and local schedule in
order to reduce the sizes of the data structures and to accelerate the search func-
tions. On the modelling side, we added a list of couplings in the atomic model
and the latter knows the models to which it is connected and thus, can send
them a message directly (direct coupling), without the intermediary of the par-
ent coordinator. We are able to transform an y-message directly into an x-message
or another y-message in case of output from the local process to the remote
process. On the simulation side, we used a local schedule (bag) to manage all the
messages locally, without having to communicate with the parent coordinator.
All these modifications are considered using the mechanisms of object-oriented
programming and overloading of some PDEVS functions.

In terms of messages exchanged, both for simple or more complex models,
our results are highly satisfactory, as we have halved the number of messages.
Depending on the complexity of the model, we can earn between 50% and 70%.

It would now be interesting to implement our approach in another modelling
environment than [39] [41] [42] in order to confirm our results and to prove the
genericity of our approach.

Acknowledgements

The present work was supported in part by the French Ministry of Research, the
Corsican Region and the CNRS.

The authors are very grateful to the anonymous referees and area editor for
their comments and suggestions that greatly help to improve the quality of the
manuscript.

Conflicts of Interest

The authors declare no conflicts of interest regarding the publication of this pa-
per.

References
[1] Cassandrass, C.G. and Lafortune, S. (1999) Introduction to Discrete Event Systems.

Springer, Berlin. https://doi.org/10.1007/978-1-4757-4070-7

[2] Zeigler, B.P., Muzy, A. and Kofman, E. (2018) Theory of Modelling and Simulation:
Discrete Event & Iterative System Computational Foundations. Academic Press,
Cambridge.

[3] Chow, A.C. and Zeigler, B.P. (2003) Revised DEVS : A Parallel Hierarchical Modu-
lar Modeling Formalism.

[4] Barros, F.J. (2003) Dynamic Structure Multiparadigm Modeling and Simulation.
ACM Transactions on Modeling and Computer Simulation, 13, 259-275.
https://doi.org/10.1145/937332.937335

[5] Quesnel, G., Duboz, R. and Ramat, É. (2009) The Virtual Laboratory Environ-

https://doi.org/10.4236/ojmsi.2021.92012
https://doi.org/10.1007/978-1-4757-4070-7
https://doi.org/10.1145/937332.937335

P.-A. Bisgambiglia, P. Bisgambiglia

DOI: 10.4236/ojmsi.2021.92012 195 Open Journal of Modelling and Simulation

ment—An Operational Framework for Multi-Modelling, Simulation and Analysis
of Complex Dynamical Systems. Simulation Modelling Practice and Theory, 17,
641-653. https://doi.org/10.1016/j.simpat.2008.11.003

[6] Zeigler, B.P. (2003) DEVS Today—Recent Advances in Discrete Event-Based In-
formation Technology. The Modeling, Analysis and Simulation of Computer Tele-
communications Systems 2003, MASCOTS 2003, Orlando, 12-15 October 2003,
148-161.

[7] Bisgambiglia, P.-A., Innocenti, E. and Bisgambiglia, P. (2018) Fuzz-iDEVS: An Ap-
proach to Model Imprecisions in Discrete Event Simulation. Journal of Intelligent &
Fuzzy Systems, 34, 2143-2157. https://doi.org/10.3233/JIFS-171020

[8] Himmelspach, J., Ewald, R., Leye, S. and Uhrmacher, A.M. (2007) Parallel and Dis-
tributed Simulation of Parallel DEVS Models. Proceedings of the 2007 Spring
Simulation Multiconference, Volume 2, San Diego, 249-256.
http://dl.acm.org/citation.cfm?id=1404680.1404720

[9] Kim, K., Kang, W., Sagong, B. and Seo, H. (2000) Efficient Distributed Simulation
of Hierarchical DEVS Models: Transforming Model Structure into a Non-Hierarchical
One. 33rd Annual Simulation Symposium, Washington DC, 16-20 April 2000,
227-233.

[10] Wainer, G., Liu, Q. and Jafer, S. (2011) Parallel Simulation of DEVS and Cell-DEVS
Models in PCD++. In: Wainer, G. and Mosterman, P., Eds., Discrete-Event Model-
ing and Simulation, CRC Press, Boca Raton, 223-270.
https://doi.org/10.1201/b10412-12

[11] Jafer, S., Liu, Q. and Wainer, G.A. (2013) Synchronization Methods in Parallel and
Distributed Discrete-Event Simulation. Simulation Modelling Practice and Theory,
30, 54-73. https://doi.org/10.1016/j.simpat.2012.08.003

[12] Kim, K.H., Seong, Y.R., Kim, T.G. and Park, K.H. (1995) Distributed Optimistic
Simulation of Hierarchical DEVS Models. Proceedings of the 1995 Summer Simula-
tion Conference, Ottawa, 24-26 July 1995, 32-37.

[13] Lee, H., Zeigler, B.P. and Kim, D. (2008) A DEVS-Based Framework for Simulation
Optimization: Case Study of Link-11 Gateway Parameter Tuning. IEEE Military
Communications Conference, San Diego, 16-19 November 2008, 1-7.

[14] Muzy, A. and Nutaro, J.J. (2005) Algorithms for Efficient Implementations of the
DEVS & DSDEVS Abstract Simulators. Proceedings of the 1st Open International
Conference on Modeling & Simulation, 273-279.

[15] Chow, A.C., Zeigler, B.P. and Kim, D.H. (1994) Abstract Simulator for the Parallel
DEVS Formalism. Fifth Annual Conference on AI, and Planning in High Auton-
omy Systems, Gainesville, FL, USA, 7-9 December 1994, 157-163.

[16] Balakrishnan, V., Frey, P., Abu-Ghazaleh, N.B. and Wilsey, P.A. (1997) A Frame-
work for Performance Analysis of Parallel Discrete Event Simulators. Proceedings
of the 29th Conference on Winter Simulation, Atlanta, USA, December 1997, 429-436.
https://doi.org/10.1145/268437.268520

[17] Himmelspach, J. and Uhrmacher, A.M. (2006) Sequential Processing of PDVES
Models. Proceedings of 2nd European Modelling and Simulation Symposium
(EMSS 2006), Barcelona, 4-6 October 2006, 239-244.

[18] Glinsky, E. and Wainer, G. (2006) New Parallel Simulation Techniques of DEVS
and Cell-DEVS in CD++. 39th Annual Simulation Symposium, Huntsville, AL,
USA, 2-6 April 2006, 244-251.

[19] Jafer, S. and Wainer, G. (2009) Flattened Conservative Parallel Simulator for DEVS
and CELL-DEVS. Proceedings of the 2009 International Conference on Computa-

https://doi.org/10.4236/ojmsi.2021.92012
https://doi.org/10.1016/j.simpat.2008.11.003
https://doi.org/10.3233/JIFS-171020
http://dl.acm.org/citation.cfm?id=1404680.1404720
https://doi.org/10.1201/b10412-12
https://doi.org/10.1016/j.simpat.2012.08.003
https://doi.org/10.1145/268437.268520

P.-A. Bisgambiglia, P. Bisgambiglia

DOI: 10.4236/ojmsi.2021.92012 196 Open Journal of Modelling and Simulation

tional Science and Engineering, Volume 1, 443-448.
https://doi.org/10.1109/CSE.2009.52

[20] Jafer, S. and Wainer, G.A. (2011) A Performance Evaluation of the Conservative
DEVS Protocol in Parallel Simulation of DEVS-Based Models. Proceedings of the
2011 Symposium on Theory of Modeling and Simulation: DEVS Integrative M&S
Symposium, Boston, Massachusetts, April 2011, 103-110.

[21] Liu, Q. and Wainer, G.A. (2012) Multicore Acceleration of Discrete Event System
Specification Systems. Simulation, 88, 801-831.
https://doi.org/10.1177/0037549711412237

[22] Zacharewicz, G. and Hamri, M.E.-A. (2007) Flattening G-DEVS/HLA Structure for
Distributed Simulation of Workflows. Proceedings of AIS-CMS International Mod-
eling and Simulation Multiconference, Buenos Aires, 8-12 February 2007, 11-16.
http://hal.archives-ouvertes.fr/hal-00173659

[23] Al-Zoubi, K. and Wainer, G.A. (2010) Managing Simulation Workflow Patterns
Using Dynamic Service-Oriented Compositions. Winter Simulation Conference,
Baltimore, 5-8 December 2010, 765-777. https://doi.org/10.1109/WSC.2010.5679111

[24] Jafer, S. and Wainer, G. (2010) Global Lookahead Management (GLM) Protocol for
Conservative DEVS Simulation. 2010 IEEE/ACM 14th International Symposium on
Distributed Simulation and Real Time Applications (DS-RT), Fairfax, 17-20 Octo-
ber 2010, 141-148. https://doi.org/10.1109/DS-RT.2010.37

[25] Rao, D.M., Thondugulam, N.V., Radhakrishnan, R. and Wilsey, P.A. (1998) Un-
synchronized Parallel Discrete Event Simulation. Proceedings of the 30th Confer-
ence on Winter Simulation, Washington DC, December 1998, 1563-1570.
https://dl.acm.org/doi/10.5555/293172.293536

[26] Franceschini, R., Bisgambiglia, P.-A. and Bisgambiglia, P. (2014) Decentralized Ap-
proach for Efficient Simulation of DEVS Models. Proceedings in Advances in Pro-
duction Management Systems. Innovative and Knowledge-Based Production Man-
agement in a Global-Local World, Ajaccio, January 2014, 336-343.
https://link.springer.com/chapter/10.1007/978-3-662-44733-8_42
https://doi.org/10.1007/978-3-662-44733-8_42

[27] Bisgambiglia, P.-A., de Gentili, E., Bisgambiglia, P.A. and Santucci, J.-F. (2009)
Fuzz-iDEVS: Towards a Fuzzy Toolbox for Discrete Event Systems. Proceedings of
the SIMUTools’09, Rome, 3-5 March 2009, 10 p.
https://doi.org/10.4108/ICST.SIMUTOOLS2009.5691

[28] Barros, F.J. (1997) Modeling Formalisms for Dynamic Structure Systems. ACM
Transactions on Modeling and Computer Simulation, 7, 501-515.
https://doi.org/10.1145/268403.268423

[29] Bisgambiglia, P.-A., Franceschini, R., Chatel, F.-J., Rossi, J.-L. and Bisgambiglia, P.
(2013) Discrete Event Formalism to Calculate Acceptable Safety Distance. Proceed-
ings of the 2013 Winter Simulation Conference, Washington DC, 8-11 December
2013, 217-228. https://doi.org/10.1109/WSC.2013.6721421

[30] Garredu, S., Bisgambiglia, P.A., Vittori, E. and Santucci, J.F. (2009) A New Ap-
proach to Describe DEVS Models Using Both UML State Machine Diagrams and
Fuzzy Logic. Proceedings of HSC, Huntsville, 27-29 October 2009, 156-162.

[31] Kofman, E., Giambiasi, N. and Junco, S. (2000) FDEVS: A General DEVS-Based
Formalism for Fault Modeling and Simulation. Proceedings of the European Simu-
lation Symposium, Ghent, Belgium, May 23-26 2000, 77-82.

[32] Zacharewicz, G., Hamri, M.E.-A., Frydman, C.S. and Giambiasi, N. (2010) A Gen-
eralized Discrete Event System (G-DEVS) Flattened Simulation Structure: Applica-

https://doi.org/10.4236/ojmsi.2021.92012
https://doi.org/10.1109/CSE.2009.52
https://doi.org/10.1177/0037549711412237
http://hal.archives-ouvertes.fr/hal-00173659
https://doi.org/10.1109/WSC.2010.5679111
https://doi.org/10.1109/DS-RT.2010.37
https://dl.acm.org/doi/10.5555/293172.293536
https://link.springer.com/chapter/10.1007/978-3-662-44733-8_42
https://doi.org/10.1007/978-3-662-44733-8_42
https://doi.org/10.4108/ICST.SIMUTOOLS2009.5691
https://doi.org/10.1145/268403.268423
https://doi.org/10.1109/WSC.2013.6721421

P.-A. Bisgambiglia, P. Bisgambiglia

DOI: 10.4236/ojmsi.2021.92012 197 Open Journal of Modelling and Simulation

tion to High-Level Architecture (HLA) Compliant Simulation of Workflow. Simu-
lation, 86, 181-197. https://doi.org/10.1177/0037549709359357

[33] Wainer, G., Glinsky, E. and Gutierrez-Alcaraz, M. (2011) Studying Performance of
DEVS Modeling and Simulation Environments Using the DEVStone Benchmark.
Simulation, 87, 555-580. https://doi.org/10.1177/0037549710395649

[34] Edijatno, De Oliveira Nascimento, N., Yang, X., Makhlouf, Z. and Michel, C. (1999)
GR3J: A Daily Watershed Model with Three Free Parameters. Hydrological Sciences
Journal, 44, 263-277. https://doi.org/10.1080/02626669909492221

[35] Perrin, C., Michel, C. and Andréassian, V. (2003) Improvement of a Parsimonious
Model for Streamflow Simulation. Journal of Hydrology, 279, 275-289.
https://doi.org/10.1016/S0022-1694(03)00225-7

[36] Andréassian, V., Perrin, C. and Michel, C. (2004) Impact of Imperfect Potential
Evapotranspiration Knowledge on the Efficiency and Parameters of Watershed
Models. Journal of Hydrology, 286, 19-35.
https://doi.org/10.1016/j.jhydrol.2003.09.030

[37] Bisgambiglia, P.-A., et al. (2017) DIMZAL: A Software Tool to Compute Acceptable
Safety Distance. Open Journal of Forestry, 7, 11-33.
https://doi.org/10.4236/ojf.2017.71002

[38] Rothermel, R.C. (1972) A Mathematical Model for Predicting Fire Spread in Wild-
land Fuels. Res. Pap. INT-115, U.S. Department of Agriculture, Forest Service, In-
termountain Forest and Range Experiment Station, Ogden, 40 p.

[39] Franceschini, R., Bisgambiglia, P.-A., Bisgambiglia, P.A. and Hill, D.R.C. (2014)
DEVS-Ruby: A Domain Specific Language for DEVS Modeling and Simulation
(WIP). Proceedings of the Symposium on Theory of Modeling & Simulation-DEVS
Integrative, 1-6.

[40] Rossi, J.L., Simeoni, A., Moretti, B. and Leroy-Cancellieri, V. (2011) An Analytical
Model Based on Radiative Heating for the Determination of Safety Distances for
Wildland Fires. Fire Safety Journal, 46, 520-527.
https://doi.org/10.1016/j.firesaf.2011.07.007

[41] Foures, D., Franceschini, R., Bisgambiglia, P.-A. and Zeigler, B.P. (2018) multiP-
DEVS: A Parallel Multicomponent System Specification Formalism. Complexity,
2018, Article ID: 3751917. https://doi.org/10.1155/2018/3751917
https://www.hindawi.com/journals/complexity/2018/3751917/abs

[42] Franceschini, R., Bisgambiglia, P.-A., Bisgambiglia, P. and Hill, D.R.C. (2018) An
Overview of the Quartz Modelling and Simulation Framework. Proceedings of 8th
International Conference on Simulation and Modeling Methodologies, Technolo-
gies and Applications, Porto, 29-31 July 2018, 120-127.
https://doi.org/10.5220/0006864201200127

https://doi.org/10.4236/ojmsi.2021.92012
https://doi.org/10.1177/0037549709359357
https://doi.org/10.1177/0037549710395649
https://doi.org/10.1080/02626669909492221
https://doi.org/10.1016/S0022-1694(03)00225-7
https://doi.org/10.1016/j.jhydrol.2003.09.030
https://doi.org/10.4236/ojf.2017.71002
https://doi.org/10.1016/j.firesaf.2011.07.007
https://doi.org/10.1155/2018/3751917
https://www.hindawi.com/journals/complexity/2018/3751917/abs
https://doi.org/10.5220/0006864201200127

	DecPDEVS: New Simulation Algorithms to Improve Message Handling in PDEVS
	Abstract
	Keywords
	1. Introduction
	2. PDEVS Formalism
	2.1. Models
	2.2. Simulation
	2.3. Messages

	3. DecPDEVS: Decentralised PDEVS
	3.1. Flattening Architecture
	3.2. Direct Coupling for Message Routing
	3.3. Sending Message
	3.4. New Classes

	4. Decentralised Algorithms
	4.1. Root Processor
	4.2. Decentralised Coordinator
	4.3. Simulator Processors
	4.4. Example: CPU Models

	5. Applications
	5.1. Materials and Methods
	5.2. First Application: GR4J Model
	5.3. ASD Model
	5.4. Discussion

	6. Conclusions
	Acknowledgements
	Conflicts of Interest
	References

