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Abstract 
The aim of the present study is to contribute to the knowledge about the 
functioning of the neuronal circuits. We built a mathematical-computational 
model using graph theory for a complex neurophysiological circuit consisting 
of a reverberating neuronal circuit and a parallel neuronal circuit, which could 
be coupled. Implementing our model in C++ and applying neurophysiological 
values found in the literature, we studied the discharge pattern of the rever-
berant circuit and the parallel circuit separately for the same input signal pat-
tern, examining the influence of the refractory period and the synaptic delay 
on the respective output signal patterns. Then, the same study was performed 
for the complete circuit, in which the two circuits were coupled, and the pa-
rallel circuit could then influence the functioning of the reverberant. The re-
sults showed that the refractory period played an important role in forming 
the pattern of the output spectrum of a reverberating circuit. The inhibitory 
action of the parallel circuit was able to regulate the reverberation frequency, 
suggesting that parallel circuits may be involved in the control of reverbera-
tion circuits related to motive activities underlying precision tasks and per-
haps underlying neural work processes and immediate memories. 
 

Keywords 
Mathematical-Computational Modelling, Neurophysiological Circuit,  
Reverberating Circuit, Parallel Circuit 

 

1. Introduction 

Mathematical modelling has been increasingly present in the fields of Biology 
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and Medicine, in the various types of studies [1] [2], and among many examples, 
we can cite the study of dynamics for the initiation of immune responses, dy-
namics of the viral transmission between human groups and the evaluation of 
the efficacy of therapies addressed to cancer [3] [4] [5]. When it comes to the 
nervous system, mathematical and computational modelling enables data inte-
gration from observations and experiments into a theoretical framework, facili-
tating the exploitation of the functional role of nervous structures, and neuronal 
circuits [6] [7] [8] [9].  

The use of mathematical and computational modelling to analyze circuits and 
neuronal networks offers a new way to quantitatively characterize morphofunc-
tional patterns [8] [9] [10]-[16]. 

Currently, detailed maps of connections within human and other animal 
brains are being generated with the new technologies available, and graph me-
trics have been used to understand the general organizational characteristics of 
these structures. Clusters with short distance integrating characteristics formed 
by groups of circuits have been found in neuronal networks [17] [18] [19] [20]. 
Much knowledge has been obtained by modelling neurophysiological circuits 
using experimental data in the simulations to observe the behavior and limita-
tions of the models [9] [11] [14] [15] [16].  

The aim of the present study is to contribute to the knowledge about the func-
tioning of the neuronal circuits. Here we present the results from the implemen-
tation of a mathematical-computational model based on a complex neurophysi-
ological model consisting of a reverberating neuronal circuit coupled to a paral-
lel neuronal circuit, using graph theory. The signal processing was investigated 
in each one of the circuits, as well as the mutual influence of the parallel-rever- 
berant coupling. For this, a program was developed in C language and neuro-
physiological data obtained in the literature were applied in the computational 
simulation. 

Graph theory is a computational structure used for analyzing network data, 
and this can be applied to neuronal circuits at different spatial levels [19] [21] 
[22]. According to graph theory, structural brain networks can be described as 
graphs that are composed of nodes (vertices) denoting neural elements (neurons 
or brain regions), which are connected by edges representing physical connec-
tions (axonal projections at synapses) [23].   

Reverberant and parallel circuits are built so that the output neuron fires re-
peatedly for each input signal. The reverberating circuit present feedback loop(s) 
and form the basis for several rhythmic activities of the central nervous system, 
as it is capable of making a single input signal reverberate for seconds, minutes 
or even hours [24] [25]. 

In a parallel circuit, neurons are organized forming a series and each of these 
neurons supplies branch to a single final neuron. The parallel circuit seems suit-
able for the control of neural activities related to precision tasks, such as mathe-
matical calculations, while the reverberating circuit would be related to the 
maintenance of rhythmic activities, such as breathing movement and natural 
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walking [25]. Studies using a decerebrate cat suggested the involvement of re-
verberating neuronal activity in the conditioning of the soleus muscle [26], such 
kind of circuit has been found in other central nervous system areas, including 
the cerebellum-pontine connections [27], and corticothalamic pathways [28].  

Ress et al. (2016) [20] identified in the rodent hippocampal formation a highly 
specialized neuronal topology able to minimize communication cost, which in-
cluded the prominence of a reverberating circuit with trisynaptic loop. Accord-
ing to Wang [29], the stimulus-specific persistent neural activity would be the 
neural process subjacent to active (working) memory, i.e., the mnemonic activity 
would result from synaptic reverberation in a recurrent circuit. More recently, 
this hypothesis has been tested by some authors [30] [31].   

Like reverberating circuits, parallel circuits have been found in brain areas. 
Hosoya (2019) [32] identified neurons in certain cortical layer organizes into a 
structure of functional microcolumns, suggesting that parallel processing can be 
associated with cortical functions, such as sensory perception, motor control, and 
language processing. Giardino et al. [33] found parallel circuits in the brain con-
necting the bed nuclei of stria terminalis to the lateral hypothalamus, and they 
suggested that the circuits would drive opposing emotional states. 

2. Adopted Model 

A neuron can be seen as a digital processor, since it modulates the various in-
formation that it receives in the form of action potentials, before conducting any 
data to other neurons, inside or outside the circuit where it is inserted. Under-
standing the mechanisms involved in the associative, motor and sensory func-
tions of the brain basically depends on understanding the biodynamics of cortic-
al and subcortical circuits.  

It is known that the time of repetitive discharge time in parallel and reverbe-
rating circuits depends on the number of neurons compounding these circuits, 
since each synapse represents a delay time in the information path. Depending 
on the characteristics of the neurons and their connections (trigger threshold, 
refractory period and synaptic delay), the circuit can amplify or reduce the input 
signal power, maintaining the information, or it can change the input signal, 
modifying completely the information.  

The neurophysiological model of a complex neuronal circuit of repetitive dis-
charges built for our study is shown in Figure 1. This consists of two coupled 
neuronal circuits: 1) a reverberating circuit and 2) a parallel circuit. We can see 
in this figure that the nervous impulse entering through E can simultaneously 
propagate through circuit 1 and circuit 2. 

In circuit 1, reverberating circuit, a signal entering via A1 is processed by the 
neuron N1, and the N1-output passes to N2. Then, N2-output signals leave the 
circuit by S1 and also return to N1 through the A2-1. The synapses between these 
two neurons are also excitatory. Thus, a reverberating process is formed. For 
each signal reaching neuron N2, one signal can return to neuron N1, which after  
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Figure 1. Adopted model for repetitive discharge neuronal circuit. 
 
being processed, N1-output pass to neuron N2, and so on, making the circuit 
reverberates for some time. 

Circuit 2 is a parallel circuit and generates repetitive discharges because sig-
nals entering through A2 and A3 pass from one neuron to another neuron, being 
processed in each one, and each neuron supplies signals to the neuron N4. All 
synapses in the circuit are excitatory, and output signs generated in neuron N4, 
by the processing of inputs from neurons N3, N4, N5, ..., N10, leave the circuit 
through S2. 

The axon A4-2 connects circuit 2 to circuit 1, and neuron N2 receives signals 
coming from neuron N4, being the synapse between them inhibitory. Thus, 
neuron N2 processes excitatory inputs coming from neuron N1 and inhibitory 
inputs from neuron N4. The signals from the processing in neuron N2 leaves the 
circuit by S2 and also return to neuron N1. S1-outputs result from the coupled 
processing of reverberant and parallel circuits. 

In Figure 2, we can see the adopted neurophysiological model (Figure 1) un-
der the graph form. The edges represent the axons and the nodes being the 
points of contact at the neuronal bodies. Synaptic transmission occurs through 
the nodes. Each node connects at least two edges, input and output edges. The 
edge between circuits 2 and 1 (corresponding to axon A4-2) has a switch to open 
and close the connection between the two circuits. We considered the circuit 
occupying a cortical area equivalent to 10 mm2.  

For the graph model was considered that: (a) the train of nervous impulse was 
represented as (1, 0)-matrix, being 1 = signal, 0 = no signal; (b) rhythm and fre-
quency of signal propagation could vary, depending on the distribution of 0 and 
1 in matrix; (c) duration of each nervous impulse was 1 ms; (d) in each node,  
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Figure 2. Adopted physiological model (Figure 1) in the Graph form, showing the prop-
agation time of the nerve signals, ti-j, in each part of the circuit, where i refers the origin 
node and j represents destination node. L = distances traveled by the signal from a node 
to other node. 
 
between each input signal and subsequent output signal there was an interval of 
2 ms, corresponding the synaptic delay; (e) time of signal propagation from a 
node to other depended on the distance between nodes and propagation velocity 
in edge (axon); (f) propagation speed adopted was 20 m/s; (g) edge-to-node 
contacts could be positive or negative; the positive contact representing the ex-
citatory synapse, and negative contact representing inhibitory synapse; (h) at 
each node, the simultaneous inputs were algebraically added, until the summa-
tion reached the threshold value (20 positive pulses), when a nervous impulse 
would then be triggered by the neuron (or node), and output signal followed by 
its exit edge. 

It was also considered that an input signal could be computed in algebraic 
summation only if the time interval between its arrival and the last sum did not 
exceed 40 ms. When the time interval between two signals exceeded this value 
and the algebraic sum of the signals had not reached the triggering threshold, the 
sum would start again, being then neglected all those had been added up. 

3. Results  

Implementing our model in C++ and applying neurophysiological values found 
in the literature, we seek to study the discharge pattern of the reverberant circuit 
and the parallel circuit separately for the same input signal pattern, examining 
the influence of the refractory period and the synaptic delay on the respective 
patterns about to leave. Then, the same study was performed for the complete 
circuit, that is, in which the two circuits were coupled, and the parallel circuit 
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could then influence the functioning of the reverberant. 
Figure 3 shows the spectra corresponding to S1-output, being open switch G, 

for 5 pulses in a total of 100 pulses (1 pulse every 5 ms) entering by E, consider-
ing two different values of refractory period (RP): (a) 5 ms and (b) 2 ms. The 
synaptic delay (SD) used was 2 ms in all nodes. Output frequencies were 97 Hz, 
for RP = 5 ms, and 354 Hz, for RP = 2 ms, and the first pulse arose at 212 ms and 
77 ms after the first input signal for RP values of 5 ms and 2 ms, respectively. 

Figure 4 presents spectra of S2-output, being open switch G, for the same 
E-input frequency, RP and SD values used in Figure 3. The output frequencies 
were 105 Hz, for RP = 5 ms (Figure 4(a)), and 338 Hz, for RP = 2 ms (Figure 
4(b)), and the first pulse arose at 152 ms and 78 ms after the first input signal for 
RP values of 5 ms and 2 ms, respectively. 

Figure 5 illustrates the S1-output spectrum corresponding to the signal 
processing of the complex neuronal circuit, i.e., when the switch G was closed, 
for same E-input frequency, RP and SD values. Thus, in this figure, the output of  
 

 
Figure 3. Spectra corresponding to S1-outputs, being open switch G, in response of 5 
pulses in a total of 100 pulses (1 pulse every 5 ms) entering by E, for (a) 5 ms and (b) 2 
ms. SD = 2 ms. 
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Figure 4. Spectra corresponding to S2-outputs, being open switch G, in response of 5 
pulses in a total of 100 pulses (1 pulse every 5 ms) entering by E, for (a) 5 ms and (b) 2 
ms. SD = 2 ms. 
 
reverberating circuit was under the direct influence of the processing parallel 
circuit. For RP = 5 ms (Figure 5(a)), the output frequency at S1 was 57 Hz and 
the first peak arose at 216 ms after the first E-input. For RP = 2 ms (Figure 
5(b)), the output frequency was 328 Hz and the first peak arose 106 ms after the 
first input pulse.  

4. Discussion 

The program developed using graph theory to represent the adopted physiolog-
ical model was able to simulate the behavior of a complex neuronal circuit for 
the specified conditions. The model was tested for two different RP values, 5 and 
2 ms, and SD = 2 ms, which are in the scale of values found in experimental stu-
dies, as shown by the literature. Refractory period is the period of time after 
triggering a nervous impulse, during which the neuron is incapable to generate 
another impulse [25] [34]. 
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Figure 5. The spectrum generated at S1-output of the complex neuronal circuit, i.e., two 
circuits connected via A4-2, for 5 input peaks, for two RP-values: 5 ms (a) and 2 ms (b). SD 
= 2 ms. 
 

For a stimulation of one pulse every 5 ms, important change was observed in 
the reverberating activity free of the influence of the parallel circuit with the re-
duction in RP (Figure 3). For RP = 5 ms (Figure 3(b)), the S1-output frequency 
(97 Hz) was about 3.6 times lower (354 Hz) than the value observed for PR = 2 
ms (Figure 3(a)). It means that a 2.5-fold increase in the RP value caused a re-
duction of more than 260% in the output frequency. The change observed in the 
S1-output frequency was due, in part, to the change in the time required for 
arising the first pulse, which initiated the reverberating process. Increasing RP, 
the time required to trigger the first pulse decreased 2.7 times.  

These results of computational modelling using the graph theory were differ-
ent from those observed in a previous study [9]. In that study, we implement a 
mathematical model of synaptic transmission connecting neurons in a circuit of 
reverberating discharges, which was treat as a neural network. The postsynaptic 
dynamics was represented by an exponential equation, and for a single input 
signal, the circuit reverberated at least 1 second. Despite the similarity between 
the two circuits and of magnitude order of used values in simulations, such 
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phenomenon was not observed in the present modelling. 
The comparison of spectra in Figure 3 with those in Figure 5 shows the in-

fluence of the inhibitory effect of circuit 2 on circuit 1. For the same E-input (1 
pulse every 5 ms), the S1-output frequency decreased for both RP values. For RP 
= 5 ms, Figure 5(a), the S1-output frequency fell from 97 Hz to 57 Hz, which 
means a reduction of about 41%. For RP = 2 ms, Figure 5(b), the output fre-
quency reduction was 7%. As for the first output pulse, for RP = 5, this occurred 
2% faster than observed in Figure 3(a), and for RP = 2 ms, it was 27% faster 
than observed in Figure 3(b). The 2.5-fold reduction in the RP value in the 
complex circuit model caused an increase of 5.8 in the S1-output frequency and 
the first output pulse was 2-fold faster. 

The reverberating periods observed in the present study were in the order of 
magnitude of those found by in reverberating activity in lateral amygdala (a 
brain basal nucleus) in awake rats, which may reach 240 ms [35]. 

In the previous study mentioned above, we tested the ability of a reverberating 
neuronal circuit, similar that included in the complex circuit shown in Figure 1, 
to keep the triggering rate fixed, i.e., we tested the capacity to preserve the input 
information. That model followed the dynamics of neural networks, in which 
the synaptic weight is an important parameter. In the biological view, the synap-
tic weight represents the strength of each synapse within the set of synapses act-
ing on a neuron [36]. In that mathematical model, the prolonged reverberation 
of at least 1 second was controlled by varying the synaptic weight over time at 
the feedback loop synapse. Thus, when the input frequency in the loop synapse 
reached a certain value, the synaptic weight began to decrease exponentially, ad-
justing the output rate of the circuit and preserving the information. Thus, we 
cited some examples of biological synaptic mechanisms that could be being 
represented by what we called synaptic weight. 

In the current model, we try to reproduce the synaptic characteristics (refrac-
tory period, synaptic delay, threshold response, spatial and temporal summa-
tion), but within the graphs modelling, neglecting the typical analog dynamics of 
the variation in the amplitudes of postsynaptic potential in the synapses (node). 

Adopted conditions obtained from the literature (nervous impulse duration of 
1 ms; synaptic delay of 2 ms, propagation speed of 20 m/s, 20 pulses for trigger 
threshold, etc.) were appropriate. It is important to note that the inhibitory pa-
rallel-reverberant coupling was efficient in controlling the reverberation. The 
parallel circuit activity was able to reduce the discharge rate of the reverberating 
circuit from 41% to RP = 5 ms.  

The model brings a new view of the parallel circuit, as a mechanism capable of 
controlling the reverberation. There is a set of variable parameters in the parallel 
circuit (in special the number of neurons in series) that can be adjusted, making 
the circuit able to function as a controller of reverberating circuits in its various 
functions in the central nervous system, including rhythmic motor activities 
[25].  

In addition to the function that has been attributed in literature, the parallel 
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circuit can also be involved in the control of the reverberation for motor activi-
ties subjacent the precision tasks, as well as neural process subjacent to working 
and immediate memories, which would result from synaptic reverberation in a 
recurrent circuit [29] [30] [31] [35] [37] [38]. 

5. Conclusions 

Our computational model using graph theory proved to be able to simulate the 
dynamics of a complex neuronal circuit composed of a parallel circuit coupled to 
the reverberant circuit. 

The results showed that the refractory period played an important role in 
forming the pattern of the output spectrum of a reverberating circuit. For un-
coupled reverberating and parallel circuits, an increase of 2.5 times in value of 
this parameter caused a reduction of more than 260% in the reverberation fre-
quency (S1-output) and 60% the parallel circuit output frequency (S2-output), in 
addition, there was a delay longer than 100 ms of the first output signal in both 
circuits. 

As for the complex circuit output, being both circuits, reverberating and pa-
rallel, coupled and powered by the same input signal, we observed that the inhi-
bitory action of the parallel circuit was able to regulate the reverberation fre-
quency, suggesting that parallel circuits may be controlling reverberation circuits 
related to motor activities subjacent the precision tasks, and maybe in neural 
process subjacent to working and immediate memories. 
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