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Abstract 
This paper presents a new modified SIR model which incorporates appropri-
ate delay parameters leading to a more precise prediction of COVID-19 real 
time data. The efficacy of the newly developed SIR model is proven by com-
paring its predictions to real data obtained from four counties namely Ger-
many, Italy, Kuwait, and Oman. Two included delay periods for incubation 
and recovery within the SIR model produce a sensible and more accurate re-
presentation of the real time data. In the absence of the two-delay period 
( 1 2 0τ τ= = ) the dynamical behavior of the model will not correspond to to-
day’s picture and lag the detection of the epidemic peak. The reproductive 
number R0 is defined for the model for values of recovery time delay 2τ  of 
the infective case. The effect of recovery time 2τ  may produce second wave, 
and/or an oscillation which could destabilize the behavior of the system and a 
periodic oscillation can arise due to Hopf bifurcation phenomenon. 
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1. Introduction 

The announcement of the global pandemic outbreak of coronavirus COVID-19 
by the world health organization has become one of human’s most concern due 
to its enormous infectious diseases, both in terms of medical, and economics. 
The outbreak of the coronavirus COVID-19 has stimulated search for drugs and 
intensified scientists to search and understand the dynamics of spreading such 
pandemic. Mathematical modelling is an essential tool to understand the me-
chanism of spread of a disease such as COVID-19 in the human population. 
These models generate insights into the transmission dynamics of infectious 
diseases and assist health officials and policymakers to control its extensive 
spread. Mathematical models of infectious disease dynamics have been exten-
sively analyzed for the past century [1] [2] [3] [4]. These models are based on 
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SIR model. The controlling of the spread of a virus is based on dimensionless 
constant known as the reproduction value “R0” which measures the transmission 
potentials of a virus. The value for R0 differs from one virus to another (ex., R0 
value for influenza spread ≈ 3 [5]. When R0 < 1, an infectious infects less than 
one individual and the speed of the disease is expected to stop. However, R0 
alone provides limited information about the transmission potential of infec-
tious diseases [6] [7] [8], further theoretical work is needed to connect the pat-
terns of an epidemic. Recent studies on COVID-19 [9] [10] [11] [12] [13] have 
been helpful to gain insights into the transmission dynamics and potential role 
of different intervention strategies such as mitigation and suppression to slow 
down the epidemic spread, reduce the peak health care to protect those who are 
most at risk from infections, and reducing the number of infective cases to the 
low level, as well as enforcing lockdown to region of highly infective cases, home 
isolation of suspect cases, home quarantine of those living in the same household, 
and implementing social distancing among individuals. COVID-19 is a newly 
emergent virus, and much remains to be understood about its transmission. 
Therefore, understanding the incubation and recovery period are very important 
for health authorities as it allows introducing more effective quarantine systems 
for individual suspected of carrying the virus. 

The epidemic model presented in this document is not novel, perhaps similar 
to models presented for different diseases. To develop an exact dynamical model 
is extremely difficult if not impossible to COVID-19 specification because of the 
different prevention measures taken by different countries (forced isolation, 
lock-down, social distancing ...) to control and contain the spread of the disease. 
In the present study, an investigation is presented which shows that a modified 
SIR model that includes latency time constants resulted in a closely accurate es-
timate of the real time data for several countries. The accuracy of the suggested 
modified SIR model is shown to better forecast the number of invectives and re-
coveries of COVID-19, as well as provides more accurate indicators of how fast 
the infection is propagating. The benefit of accurately estimating the recov-
ery/infectious rates is to predict a possible slowdown or growth of the infection 
numbers and allow public health policymakers to determine which containment 
measures are more effective decisions to take by the Government in combating 
the spread of the COVID-19 pandemic. 

2. Construction the Model: The SIR Framework 

In this section, we describe the mechanistic transmission model that enables us 
to understand and forecast the spread of an epidemic. The model is based on di-
viding the population into three distinct compartments. Each compartment is 
based on the infectious status of individuals in the population [1] [2] [3] [4]. 
Therefore, population is divided into three classes termed as: Susceptible “S”, 
Infected “I”, and Recovered “R”. 

Susceptible individuals are assumed to never have been infected before; how-
ever, they can become infected through contacts with infectious individuals at 
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rate proportional to constant β. Meanwhile, some infectious individuals recover 
and become immune at rate proportional to constant γ. Finally, the rest of the 
infected individuals migrate due to epidemic at rate proportional to constant α 
as shown in the schematic diagram Figure 1. 

The model assumes that the population size is fixed (no birth), the recovered 
individuals receive total immunity, and the death rate is very small compared to 
the total invectives. 

The infectious process is modeled by a set of ODE’s: 

 
( ) ( )d

d
S t I tS

t N
β−

=                         (1) 

 
( ) ( ) ( ) ( )d

d
S t I tI I t I t

t N
β

γ α= − −                   (2) 

 ( )d
d
R I t
t

γ=                           (3) 

The total population size is assumed to remains constant over the period of 
the epidemic such that N S I R= + +  is constant ( R N S I= − − ). Therefore, 

d d d d 0
d d d d
N S I R
t t t t
= + + =  

2.1. The Reproductive Ratio R0, and Equilibrium Points 

The reproductive number, R0, is the most important quantity in epidemiology. It 
is the number of invectives produced by a primary infective in a fully susceptible 
population “virgin population”. It tells us about the initial rate of increase of the 
disease over a generation. In other words, Ro depends on the transmission dy-
namics of the disease and measures the growth potential of an infectious disease 
[14] [15]. The value of R0 remains invariant during the early epidemic growth 
dynamics. Hence, if R0 > 1, the disease will increase and become eventually epi-
demic, and if R0 < 1, the disease will die out and tend to zero, and if R0 = 1, the 
disease is self-sustaining and the number of infected will remain constant. In the 
model we assume the population at time t = 0 has one infected individual and 
correspond to ( ) ( ) ( )0 1, 0 1, 0 0S N I R= − = = . If one infected individual appears  

in the population, there will be an epidemic if and only if d 0
d
I
t
> , otherwise, the 

rate of infective is decreasing d 0
d
I
t
< . Using the initial values for S with 1N − ,  

and I set to 1 in the SIR model represented by Equation (2) at t = 0 yields 
 

 
Figure 1. Schematic diagram of the basic SIR model. Boxes represent compartment, and 
arrows indicates the rate of transfer between compartments. 
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( )1 0N
N

β γ α−
− + < . 

Rearrange the inequality and shift the threshold to 1 as for the reproductive 
number gives  

1 1N
N

β
γ α

−
<

+
. 

For huge populations, the term 1N
N
−  approaches 1 which implies the dis-

ease will dissipate. On the other hand, when 1β
γ α

>
+

 the disease is expected 

to become a pandemic, the quantity 
β

γ α+
 is defined as the reproductive  

number “R0”. To obtain the equilibrium points of the SIR model (1 - 3) are set to 
zero.  

The equilibrium points are where the variables do not change with time. i.e. 
d d d 0
d d d
S I R
t t t
= = = ; such that  

d 0
d
S SI
t N

β−
= =  

d 0
d
I SI I I
t N

β γ α= = − −  

This gives two equilibria: ( , 0S S N I−∞= = = ) and ( 0, 0S I= = ), meaning 
that there are no infected humans. Shifting the variables so that the origin is at 
equilibrium ( ) ( ),0 0,0N → : 

* *S N S S N S= − ⇒ = −  
* *0I I I I= − ⇒ =  

( )
* *

*d d d
d d d
S N S I N S
t t t N

β= − = −  

( ) ( )
* *

* *d d
d d
I I I N S I
t t N

β γ α= = − − +  

Considering small deviations from equilibrium, so that *S  and *I  are small, 
and higher powers of *S  and *I  are neglected. 

*
*d

d
S I
t

β⇒  

( )
*

* *d
d
I I I
t

β γ α⇒ − −  

The autonomous linear differential equations have solution of the form e tA λ . 
Substituting into the above equation reduces it to a standard exponential form as 

*

0 0
d e e
d

t tS S I
t

λ λλ β= = . 
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( )
*

0 0
d e e
d

t tI I I
t

λ λλ β γ α= = − −  

Transforming the above exponential equations into a standard matrix form as 
follows 

0 0 0

0 0 0

0
0

0 0
S S S
I I I

β λ β
λ

β γ α λ β γ α
−        

= ⇒ =        − − − + +        
. 

Setting the determinant of the matrix to zero, yields two eigenvalues 0λ = ,  
and λ β γ α= − − . If 0λ β γ α= − − > , the solutions grow away from equili-

brium. The equilibrium is unstable, and there is an epidemic ( 0 1R β
γ α

= >
−

).  

If 0λ β γ α= − − < , the solution contract back toward equilibrium. The 

equilibrium is stable, and there is no epidemic ( 0 1R β
γ α

= <
−

).      

Define ( )0 ,0E N=  as the disease-free equilibrium points of system (1 - 3) 
[16]. The disease-free equilibrium of the system is locally asymptotically stable if 
the eigen values of the characteristic equation are negative. Hence, the equili-
brium point is locally stable if 0 1R < , and unstable if 0 1R > .  

2.2. Incubation and Recovery Time 

A novel human coronavirus spread in December 2019 in Wuhan, China. It is an 
enigmatic and confusing illness, wrapped with uncertainty because there have 
not been enough scientific studies on how long an individual might have the 
symptoms or be contagious or totally immune. Despite the uncertainty, ranges 
have been identified and were found to vary from one individual to another. The 
current understanding of the incubation and recovery periods are limited. The 
mean incubation period observed to be 3 days (0 - 24 days) conducted on 1324 
cases [17]. The recovery period tends to be 1 - 3 weeks depending on how mild 
or severe the disease is. However, these are rough guidelines. For example, the 
symptoms of mild illness could extend to 3 weeks [18]. 

3. Delayed SIR Model 

This part of the paper is devoted to construct the dynamical model for our pro-
posed problem, the disease is assumed to have an incubation period of the virus 

1 0τ > , and recovery period 2 0τ > . The incubation period represents the delay 
time from exposure to the development of symptoms of the virus. The bilinear 
transmission incidence will be a function of ( 1t τ− ). The recovery period 
represents the delay time from being infected to getting totally immune and move 
to the susceptible compartment and will be a function of ( 2t τ− ). The process 
model dynamics can be described as  

( ) ( )1 1
d
d
S S t I t
t

β τ τ= − − −                        (4) 

 ( ) ( ) ( ) ( )1 1 2
d
d
I S t I t I t I t
t

β τ τ γ τ α= − − − − −                (5) 
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 ( )2
d
d
R I t
t

γ τ= −                             (6) 

In the system of equation, a susceptible individual is assumed to interact with 
an infective individual and does not move to the infected compartment until af-
ter certain time “incubation period” as of the case of COVID-19. The incubation 
period “ 1τ ” is only when moving from the susceptible compartment to the in-
fected compartment. Similarly, “ 2τ ” is the period for an infected individual 
moving from infected compartment to the recovery compartment. Our modifi-
cation of the SIR model considers the delay constants, while a detailed descrip-
tion can be obtained by using a system of cities connected by traffic streams. 

If the pandemic duration is long enough (over a year), the structure behavior 
of the modified SIR proposed model presented in (4 - 6) reduces to the classic 
SIR model presented in (1 - 3). That is the incubation and recovery periods “τ ” 
are very small compared to the long duration time scale. It can be proven using 
tailor series expansion for small τ  around the parameter t and ignoring the 
terms ( )2,O Oτ τ . 

4. Numerical Simulation and Discussion 

Simulations for dynamical system the classical SIR model (1 - 3) and the pro-
posed time delayed SIR model (4 - 6) are compared to real data collected by the 
official site of World Health Organization (WHO) [19]. The data were collected 
for up to July 7th, 2020 for four countries (Germany, Italy, Kuwait, and Oman) 
that have tried different strategies toward controlling, mitigation and suppress-
ing the disease. The data used are the original time series data which shows sig-
nificant daily fluctuations. There are three stages for the spreading of the disease; 
the early stage of the spread, where the transmission of the disease is slow among 
the individuals, the middle stage, where the infection propagates very aggres-
sively toward its maximum daily infective numbers, and the last stage, the epi-
demic starts to slow down and decay until eventually dies out. In what follows 
we compare both theoretical models using simulations including incubation and 
recovery durations with the obtained daily data for the infectives and cumulative 
recovery from WHO [19]. In the simulations performed, it is assumed that S(0) 
and I(0) are initial susceptible and infective individuals, respectively. Noting that  

( )0 2S S N≥ = − , and ( ) 20I
N

= , are two infected individuals, and N is the  

population of the country. With initial conditions appropriately set, the model 
demonstrates self-similarities with the real time data. The parameters β, γ, and α 
are varied for optimal curve fitting and the results shown in figures with corres-
ponding captions of each country. 

4.1. Germany 

Figure 2 simulate both models to real time infective daily cases and cumulative 
recovery. Figure 2(a) demonstrates a sensible smooth fit to the real data by  
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Figure 2. Top: Germany’s SIR curve compared with the modified time-delayed SIR mod-
el estimates with 0.17β = , 0.03γ = , 0.01α = , 0 4.25R = , 1 3τ =  and 2 9τ =  vs. 
lower curve representing basic SIR model with 1 2 0τ τ= = . 

 
introducing two-time delays, and reproduction value 0 3.7R = . Where 1τ  is 
the time period effect for an individual moving from the susceptible compart-
ment to the infected compartment and 2τ  is the time period effect for an indi-
vidual moving from an infected compartment to the recovery compartment. The 
parameters β, γ, and α values are shown in the corresponding captions of each 
figure. They are varied to get the best fit in curvature with the real time data 
curve. 

Figure 2(b) does not correspond to today’s picture, predicts a false alarm de-
tection of the epidemic due to considering the incubation and recovery time 
( 1 2 0τ τ= = ), which makes it difficult to cope with the spreading of the disease. 
In the figure, different phenomena are observed significant spreading (sharp rise) 
as well as large daily fluctuations in the infective cases. Germany had its own 
epidemic plans focusing on containment, protection, and mitigation [20]. De-
spite Germany’s strong health care system and early progress on developing a 
tracing application to alert individuals had encounter people tested positive, 
imposing lock down, and the different precautionary measures to interrupt 
transmission of the disease during the severe spreading events (20/3-10/4). The 
situation persists and remained uncontrolled even after locked down and social 
distancing in attempt to reduce the reproduction number 0 3.5R = . The main 
cause for the high spread among the youth is that they did not abide by the safe-
ty protocols and advice provided by the local health authority [21].  
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4.2. Italy 

It took three weeks for Italy to go from discovering the 1st case to the closure of 
all non-essential business, and all movement of individuals within the whole ter-
ritory. Unfortunately, the government underestimated how fast the virus spread 
and how quickly it could push their health care system to the verge of collapse. 
The infection grew very fast and was highly lethal overcoming other major 
countries in the number of infected people as early as March 23rd reaching over 
50,000 total infections [22]. Figure 3 shows numerical solution to both models 
respectively and compared to real time data for daily invective cases and cumu-
lative recovery patients. The result shown in Figure 3(a) fit well with real data, 
and the curves are well constrained. Although the approximated reproductive 
number 0 2.25R =  considered to be relatively low, the Italian outbreak was the 
worst in Europe with the actual reproductive number in the range 0 2 - 3.4R = . 
Mitigation strategies (social distancing, quarantine measures, lock down) are es-
sential to contrast further epidemic spreading, especially in countries experienc-
ing a lag time behind the Italian outbreak such as Kuwait and Oman. Figure 3(b) 
shows a delayed detection time of the epidemic due to not considering the incu-
bation and recovery time ( 1 2 0τ τ= = ). 
 

 
Figure 3. Top: Italy’s SIR curve compared with the modified time-delayed SIR model es-
timates with 0.18β = , 0.03γ = , 0.05α = , 0 2.25R = , 1 3τ =  and 2 8τ =  vs. lower 
curve representing basic SIR model with 1 2 0τ τ= = . 

4.3. Kuwait and Oman 

The global Epidemic outbreak alarmed Gulf region with a lag time compared to 
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Europe, causing the government to enforce control measures, and implement 
several strategies to reduce, interrupt, and/or control spreading of the disease 
(mitigation and suppression). Measurements were taken in early March to sus-
pend non-essential governmental agencies, businesses, studies, and all flights. By 
mid of March, the government announced the country entered a transmission 
stage of coronavirus which led to enforcing curfews, lockdowns, and city isola-
tion, as well as enforcing punishments and fines for violators of guidelines in-
cluding imprisonment. Health authorities have relied on random testing (PCR) 
to identify the infected individuals to treat in the hospital, and the contacted 
ones are quarantined, and monitored. In Kuwait, the aim is to maintain the 
health care system by reducing the number of cases to low level or eliminate 
human to human transmission until a vaccine is available. In April 78% of 
spreading was in migrant cities, the government imposed zonal quarantine to 
five densely populated migrant worker cities to minimize the ongoing spread 
[23]. The reproductive number varied 0 1.08 - 3.8R =  depending on type of ac-
tion implemented by the government in the country. Figure 4 represent a nu-
merical simulation for both models when the reproductive number 0 1.82R = . 
Figure 4(a), shows a simulation solution of model Equations (4)-(6) compared 
to real time data for daily infective cases and cumulative daily recovery. The in-
consistency in the fitting to interpret the actual evolution of the infection is due 
to the complex procedure taken by authorities and the inhomogeneous daily 
number of tests that led to a biased estimation for COVID-19. Figure 4(b), 
shows a delayed detection of the epidemic due to setting 1 2 0τ τ= = . 
 

 
Figure 4. Top: Kuwait’s SIR curve compared with the modified time-delayed SIR model 
estimates with 0.208β = , 0.02γ = , 0.01α = , 0 1.8R = , 1 3τ =  and 2 10τ =  vs. lower 
curve representing basic SIR model with 1 2 0τ τ= = . 
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Figure 5 simulates both models to the real time data for daily infective cases 
and the cumulative daily recovery in Oman. Figure 5(a) demonstrate a smooth 
fit of the modified model with real time data and a reproduction number 

0 1.82R = , while Figure 5(b) shows a delay epidemic when 1 2 0τ τ= = . Oman 
reached the highest daily infective cases later than Kuwait (mid of July). Oman 
implemented similar strategies but at different timing, locked down, restricted 
movement and isolation were imposed to a densely populated province causing 
45% of the total infective cases. Most of the cases 62% were in the expatriates 
[24]. 

 

 
Figure 5. Top: Oman’s SIR curve compared with the modified time-delayed SIR model 
estimates with 0.255β = , 0.05γ = , 0.09α = , 0 1.82R = , 1 3τ =  and 2 9τ =  vs. 
lower curve representing basic SIR model with 1 2 0τ τ= = . 

4.4. Extending the Recovery Period 

For all the above cases extending recovery period 2τ  will stretch the duration of 
the pandemic with another wave of disease and/or perhaps become an endemic.  

Figure 6 shows a numerical simulation of model (2) with different values of 
the parameters given in the corresponding caption. In the figure, the negative 
region of infectives is ignored since it cannot be negative or perhaps immunity 
due to prior exposure. Although the model shows large epidemics occurring; 
nonetheless, the level of the disease reaches a plateau around a constant level. 
Figure 6(b) depicts the Hopf bifurcation of the periodic outbreak of the disease  

which destabilize the system meaning d 0
d
I
t
> . The oscillation and the periodic  

behavior in Figure 6 do rely exclusively on the parameters of the model and not  
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(a) 

 
(b) 

Figure 6. The delayed SIR model undergoes (a) damping oscillation with a parameter 
0.6β = , 0.05γ = , 0.08α = , 1 3τ = , 2 37τ = . (b) Hopf bifurcation with a parameter 
0.255β = , 0.05γ = , 0.01α = , 1 3τ = , 2 37τ = . 

 
necessarily on higher reproductive number. In Figure 6(a), a value of 0 4.6154R =  
produced a decaying oscillation, while varying the parameters of the system to 
reproduce a lower reproductive number 0 4.25R =  resulted in a periodic waves 
of disease. 

5. Conclusion  

This paper demonstrates the effect of incorporating two delay periods within the 
SIR model as compared to real data provided by [19]. The delay periods corres-
pond to the duration of the incubational and recovery periods as it appears in 
COVID-19. The values of the two-delay period were picked in accordance to re-
cent literatures [17] [18]. The parameter variations in the model 1, , ,β γ α τ  and 

2τ  make up different cases corresponding to different situations. The variations 
are introduced based on what is being observed in the literature to predict what 
possible actions of the future are. The model is well fitted on epidemic real time 
data for four countries. Simulation results are consistent with data and generated 
curves are well constrained. The parameters are varied for producing a repro-
duction number within range of the countries. Despite the real time data shown 
in the figures are up to July 7th, 2020 updating the daily infective cases would still 
fit the model because the number of daily infectives is gradually decreasing. 
Therefore, extending the recovery period will result in double exposure and/or 
an epidemic, to avoid oscillations, the model should not exceed a critical thre-
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shold at the endemic equilibrium. Although the mortality rate is a minor frac-
tion of the total infective cases, it is important to include it for a more accurate 
reproduction number. Furthermore, the future is murky because it depends on 
human actions, both individual and collective, which remains a challenge to be 
more accurately predicted and modeled.   
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