
Open Journal of Modelling and Simulation, 2020, 8, 18-34
https://www.scirp.org/journal/ojmsi

ISSN Online: 2327-4026
ISSN Print: 2327-4018

DOI: 10.4236/ojmsi.2020.81002 Dec. 23, 2019 18 Open Journal of Modelling and Simulation

A Proposal for a Benchmark Generator of
Weakly Connected Directed Graphs

José Miguel Montañana1 , Antonio Hervás2 , Pedro Pablo Soriano3

1High Performance Computing Center Stuttgart (HLRS), University of Stuttgart, Nobelstraße, Stuttgart, Germany
2Instituto Universitario de Matemática Multidisciplinar, Universitat Politècnica de València, Valencia, Spain
3SEPyC, Universitat Politècnica de València, Valencia, Spain

Abstract
The previous studies on detection of communities on complex networks were
focused on nondirected graphs, such as Neural Networks, social networks,
social interrelations, the contagion of diseases, and bibliographies. However,
there are also other problems whose modeling entails obtaining a weakly
connected directed graph such as the student access to the university, the
public transport networks, or trophic chains. Those cases deserve particularized
study with an analysis and the resolution adjusted to them. Additionally, this
is a challenge, since the existing algorithms in most of the cases were origi-
nally designed for non-directed graphs or symmetrical and regular graphs.
Our proposal is a Benchmark Generator of Weakly Connected Directed
Graphs whose properties can be defined by the end-users according to their
necessities. The source code of the generators described in this article is
available in GitHub under the GNU license.

Keywords
Graphs and Networks Applications, Clustering, Cluster Analysis, Complex
Networks, Social Models, Higher Education Management

1. Introduction

The interaction between the elements in many complex real-world systems can
be modeled as graphs or networks, where the elements are represented as vertic-
es and the relationships between them as edges. The networks are referred to
Direct Networks where the relationship between the vertices of the network can
be unidirectional, while in another case, they are referred to Symmetric Net-
works. The weight of each edge, if it is defined, is an associated numerical

How to cite this paper: Montañana, J.M.,
Hervás, A. and Soriano, P.P. (2020) A Pro-
posal for a Benchmark Generator of Weak-
ly Connected Directed Graphs. Open Journal
of Modelling and Simulation, 8, 18-34.
https://doi.org/10.4236/ojmsi.2020.81002

Received: October 21, 2019
Accepted: December 20, 2019
Published: December 23, 2019

Copyright © 2020 by author(s) and
Scientific Research Publishing Inc.
This work is licensed under the Creative
Commons Attribution International
License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

Open Access

https://www.scirp.org/journal/ojmsi
https://doi.org/10.4236/ojmsi.2020.81002
https://www.scirp.org/
https://orcid.org/0000-0002-7522-3423
https://orcid.org/0000-0002-6880-502X
https://orcid.org/0000-0002-9147-2681
https://doi.org/10.4236/ojmsi.2020.81002
http://creativecommons.org/licenses/by/4.0/

J. M. Montañana et al.

DOI: 10.4236/ojmsi.2020.81002 19 Open Journal of Modelling and Simulation

attribute.
Additionally, the networks are referred to dense networks when the elements

are highly related to them and there are many more edges than vertices. In the
opposite case, which is not less common, networks are referred to dispersed
networks when the number of edges is much smaller than they could possibly
have. The combination of these possible definitions gives rise to a wide variety of
networks, in general, large and complex, whose study requires simplified mod-
els. The use of models allows for simulating the behavior of networks and stud-
ying their structure and properties [1] [2] [3] [4].

We can consider that the study of these networks requires two fundamental
elements. First, the algorithms that classify vertices into different groups and
identify their main properties, and secondly, sets of graphs are needed for ap-
plying and testing those algorithms.

These algorithms search on the graphs for the existence of certain sets of
highly connected vertices between them and weakly connected with the others,
these sets are referred to communities. Vertices grouped in the same community
have common characteristics and play a certain common role within the net-
work. The development of those algorithms and study techniques has been a
constantly evolving area of work [1] [2] [4]-[9]. Figure 1 shows the results of

Figure 1. Example of detection of communities when using different algorithms on the
same graph.

https://doi.org/10.4236/ojmsi.2020.81002

J. M. Montañana et al.

DOI: 10.4236/ojmsi.2020.81002 20 Open Journal of Modelling and Simulation

detection after applying different algorithms in the same graph.
The availability of different graphs to be analyzed by the different algorithms

is important, because the quality of the algorithms is strongly related to the
graph properties to which they are applied [10]. For such purpose, generators of
synthetic graphs with different properties were proposed for its use on the ben-
chmarking of the capacities of the detection algorithms [5] [11] [12].

In our work, we require detection algorithms for Weakly Connected Directed
Graphs, which are common in real problems. In those graphs, the relationship
between each pair of vertices can be unidirectional, or bidirectional with a dif-
ferent contribution in each direction. Examples of these graphs can be found in
the representation of bus lines on their city map [13] [14], flights between air-
ports [15], social networks [16], and the demand for enrolment of students in
different degrees [17].

However, we found that the existing community detection algorithms are not
able to correctly detect the communities in the Weakly Connected Directed
Graphs. And in addition, we neither found a generator of synthetic graphs with
such properties.

There are generators that, in general, work excellently for non directed graphs.
[4] [5] [12] [13] However, they cannot generate such specific directed graphs as
the “students’ choice of university degrees” case. In particular, the results of the
best approximation with the main synthetic generator used for benchmarking, to
the best of our knowledge [12], are available at the same GitHub where the
source code of the generators described in this article are available.

Therefore, we consider that the research on these graphs requires a generator
of synthetic Weakly Connected Directed Graphs, which can be used later for
developing and benchmarking new detection algorithms.

For this reason, in this article, we propose a new directed graphs generator
with new modelling capabilities, which be able to modelate weakly connected
directed graphs. In particular, we consider the Students’ Enrolment Demand
graph, which is referred to as SED-graph, to evaluate the modelling capabilities
of the new generator. The extension to other models is done naturally.

2. Related Work

The benchmarking process consists of 3 steps. At the first step, it is used a syn-
thetic generator for obtaining a set of Initial Sub-Graphs. At the second step, we
apply the different detection algorithms under comparison on each Initial Graph
(IG) where initially the communities are disjointed, i.e. there are not intercon-
nected edges between communities, and reapplying those detection algorithms
after adding new edges between communities until the amount of addition is the
same amount of edges as in the IG. The percentage of the number of additional
edges over the number of edges in the IG is commonly referred as a mixing pa-
rameter 0 ≤ µ ≤ 1. Notice that the additional edges are defined also by the syn-
thetic generator.

https://doi.org/10.4236/ojmsi.2020.81002

J. M. Montañana et al.

DOI: 10.4236/ojmsi.2020.81002 21 Open Journal of Modelling and Simulation

At the last step, there are identified the detection capabilities of each algo-
rithm, which corresponds to the highest value of mixing parameter µ for each
algorithm where they are still able to detect the original communities. Typically,
the coefficient Normalized Mutual Information (NMI) is used to evaluate the
goodness of the detection of the original communities. The NMI is evaluated by
comparing the detected communities for the different values of the Mixing Pa-
rameter µ, with respect to the initial graph (µ = 0)1. The value of NMI equal to 1,
corresponds to a detection of communities exact to that of the original graph,
while the value of NMI decreases as the detected communities differ from those
of the original graph.

As an example, we can consider the initially directed graph in Figure 2(a).
Each edge in a directed graph has a defined direction. In that graph, we can see 3
disjointed sets of vertices with only internal edges. In the figure, each communi-
ty detected by a hypothetical algorithm is represented by a different colour.

Figure 2(b) shows the same graph after adding 2 additional edges to each set
of vertices, which represents an increase of 25% of the edges, and thus the mix-
ing parameter µ is equal to 0.25.

The main synthetic generator used for benchmarking, to the best of our
knowledge, was published in [12]. As an example, we have generated with it a
binary, a directed, a weighted, and a weighted-directed graph, all of them with a
defined weight of edges. That synthetic generator also provides these graphs
with different amount of inter-communities edges. Then, we then apply the
Girvan-Newman community detection algorithm to each of these graphs. The
results for each of the graphs are shown with the Normalized Mutual Informa-
tion (NMI) in Figure 3. Figure 3 shows that the original communities are no
longer detected after increasing about 40% the number of edges.

3. Objectives

The existing community detection algorithms had been used to find communi-
ties in dense and disperse networks. The former are those networks where ele-
ments are highly related among themselves, with many more edges than vertices.

Figure 2. Example of detection of communities, before (a) and after (b) the addition of
edges.

1The source code for calculating the NMI is available at [18].

https://doi.org/10.4236/ojmsi.2020.81002

J. M. Montañana et al.

DOI: 10.4236/ojmsi.2020.81002 22 Open Journal of Modelling and Simulation

Figure 3. Example of obtained values of NMI for different values of µ. The value of NMI decreases as the
detected communities differ from those of the original graph.

The latter, which is more common, consists of networks where the number of
edges is much smaller. The communities in these networks have groups of ver-
tices highly connected between them and poorly connected with the vertices in
the other communities [9] [12] [13] [14] [19].

However, they have difficulties to detect the communities in directed graphs
with only a few vertices that have a high output weight, while most of the vertic-
es have a total low output weight, as we found in real scenarios.

Our objective is to obtain a synthetic generator of such type of graphs. Be-
cause those graphs are not conveniently supported by the existing generators,
and the challenge of detection communities on those graphs. The difficulty on
detection is due to the existing algorithms in most of the cases that were origi-
nally designed for non-directed graphs or symmetrical and regular graphs.

This new synthetic generator will allow us to evaluate and compare commu-
nity detection algorithms on this kind of graphs (benchmarking of detection al-
gorithms). It will be also of particular interest to researchers who develop new
algorithms.

3.1. Proportion of Vertices with High and Low Weights on
Their Output Edges

The first big difference is the proportion of vertices with high and low weights
on their output edges. As an example, Figure 4 shows the weight of the output
edges sorted from highest to lowest in the largest community of the SED-graph.

Figure 4 shows that only a few vertices have a high value on their total output
weight, while most of the vertices have a total low output weight. This is impor-
tant because it makes it difficult to correctly detect the communities with edges

https://doi.org/10.4236/ojmsi.2020.81002

J. M. Montañana et al.

DOI: 10.4236/ojmsi.2020.81002 23 Open Journal of Modelling and Simulation

connecting them, even if those edges have a low weight.
The fitting results of Figure 4 on different functions show that the best global

fit is to the exponential function, which also keeps the difference on the weight
ratio among vertices with higher weight and those with a lower weight.

The results of the estimation of the fitting parameter appear in Table 1, which
shows a very good adjustment.

We can consider the model as statistically significant and we have good ad-
justment because the p-values are less than the pre-determined statistical signi-
ficance level, which is ideally 0.05 (probability of 5% [20]). We can also see that
the residuals are acceptable because they are centered around zero, i.e. the fit
function is centered in the distribution of measures. And there is not any outlier,
i.e. there is not any measure far from the fit function.

3.2. Ratio of the Size of the Communities

The second main difference is the ratio of small communities over the total
amount. We can see the number of communities sorted by size of the SED-graph
in Figure 5.

We look for a function that fits with the distribution of community sizes in

Figure 4. Weight of the output edges in the largest community of the SED-graph generator.

Table 1. Goodness-of-fit of the weight of the output edges in the SED-graph with an ex-
ponential function using R.

GOODNESS-OF-FIT STATISTICS
Formula: y ≈ exp (a − b * x) + c
Parameters:

 Estimate Std. Error T value Pr (>|t|)

a 4.6081 0.0322 143.122 2e−16 ***

b 0.3419 0.0144 23.737 2e−16 ***

c 3.6383 0.3813 9.5426 5.17e−11 ***

Residual standard error: 1.875 on 33 degrees of freedom
Number of iterations to convergence: 7
Achieved convergence tolerance: 1.34e−06

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1''.

https://doi.org/10.4236/ojmsi.2020.81002

J. M. Montañana et al.

DOI: 10.4236/ojmsi.2020.81002 24 Open Journal of Modelling and Simulation

Figure 5. Amount of communities sorted by size in the SED-graph.

Figure 6. Fit of the community sizes in Figure 5 (SED-graph) with different functions
using R.

Figure 5. Figure 6 shows the functions that fit better with that distribution. In
particular, we found that the function that fits more accurately was the Weibull
function.

Table 2 shows the numerical metrics for different criteria for measuring the
fitting error with different types of functions. The Weibull function is the one
that achieves the best coefficient in all the criteria (the smaller the better). In ad-
dition to considering these adjustment criteria, Figure 6 shows that the Weibull
function is always the one that best adjusts to the data samples for different types
of probability analyses.

https://doi.org/10.4236/ojmsi.2020.81002

J. M. Montañana et al.

DOI: 10.4236/ojmsi.2020.81002 25 Open Journal of Modelling and Simulation

The resulting estimation of the fitting parameters of the distribution Weibull
by maximum likelihood is: shape = 1.201 (Std. Error: 0.064) and scale = 212.948
(Std. Error: 12.771). The goodness of the fit appears in Table 2.

3.3. Modeling the Number of Output Edges of the Vertices

Figure 7(a) shows the number of output edges of the largest community in the
SED-graph. In that figure, the vertices are sorted from smaller to the largest
amount of output edges. In the figure, there are 6 possible sets of vertices when
considering their number of output edges. We can see that the largest set cor-
responds to the set of vertices with the lowest number of output edges, and, that
the number of vertices in each set is smaller or equal that in the next set with the
larger number of output edges.

Our best effort for the challenge of modeling this curve resulted in the number
of output edges of each set as a function of the number of the set, when the sets
are numbered from largest to the smallest size. Figure 7(b) shows the fit of this
function, which corresponds to polynomial y = b + ax + c/x2.

The results of the estimation of the fitting parameters appear in Table 3. It is a
very good adjustment, for the same reasons as shown in Section 3.1.

Table 2. Goodness-of-fit of the community sizes in the SED-graph with different functions.

GOODNESS-OF-FIT STATISTICS

 Weibull gamma nbinom lognormal

Kolmogorov-Smirnov statistic 0.03747684 0.04094466 0.04107869 0.08033524

Cramer-von Mises statistic 0.04279517 0.05291148 0.05271877 0.36063454

Anderson-Darling statistic 0.26663825 0.30999310 0.31165762 2.21300868

GOODNESS-OF-FIT CRITERIA

 Weibull gamma nbinom lognormal

Akaike’s Information Criterion 2689.306 2689.608 2690.008 2717.229

Bayesian Information Criterion 2696.038 2696.340 2696.740 2723.961

Figure 7. (a) The number of output edges of the largest community in the SED-graph, and (b) the fit of the step
levels with a polynomial function.

https://doi.org/10.4236/ojmsi.2020.81002

J. M. Montañana et al.

DOI: 10.4236/ojmsi.2020.81002 26 Open Journal of Modelling and Simulation

Table 3. Goodness-of-fit of the weight of the step levels of the output edges of the largest
community in the SED-graph with a polynomial function using R.

GOODNESS-OF-FIT STATISTICS
Formula: y ≈ ax + b − c/x2
Parameters:

 Estimate Std. Error t value Pr (>|t|)

a 10.149 1.367 7.423 0.00506 ***

b 47.637 6.364 7.485 0.00494 ***

c 56.284 6.785 8.295 0.00367 ***

Residual standard error: 3.539 on 3 degrees of freedom
Number of iterations to convergence: 1
Achieved convergence tolerance: 2.694e−08

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1''.

In the next section, we proceed to describe the graph generator with these sta-
tistical properties.

4. Proposed Synthetic Graph Generator

In this section, we describe the proposed generator, which is highly configurable
according to the needs of the user, allowing to generate directed and non-directed
graphs, symmetric and regular, as well as non-symmetrical and non-regular.

In order to facilitate the description, we propose first a simplified version of
the generator, and later the complete version with additional parameters which
achieves the modeling our target graphs.

The first version is a simplified version of the algorithm referred to as “gene-
rator of Directed weighted graphs which vertices have an Unbounded number of
Output edges” (DUO), and the second one is referred to as “Directed weighted
graph which vertices have a bounded number of Output edges” (DBO).

4.1. Generator of Directed Weighted Graphs with Unbounded
Number of Output Edges (DUO)

In this first generator, the number of vertices NC per community is obtained
randomly from a normal function that is defined by the parameters provided at
the generator input. Next, it creates a routing table, where each route is defined
by a start in one of the vertices, visiting from that vertex other vertices of the same
community different from those visited in that same route (See Algorithm 1).

The number and length of these paths are optional input parameters, the ge-
nerator will use default values calculated as a function of the size of each com-
munity when the user doesn’t define them.

In order to obtain dominant vertices with a stronger connection in each
community, these paths will give preference to visiting certain vertices. It is
achieved using the following probability function to visit a vertex i:

()
1

2
2

N i

N N j
j

p i
−

−
=

=
∑

; Where N is the amount of vertices in the community (1)

https://doi.org/10.4236/ojmsi.2020.81002

J. M. Montañana et al.

DOI: 10.4236/ojmsi.2020.81002 27 Open Journal of Modelling and Simulation

Algorithm 1. “Directed Unbounded number of Outputs” (DUO) Generator.

1 Function next_popular_vertex (N, Step,Exclude_destinations[])

 │ // This function returns the identifier id of a vertex

 │ // the vertex not included in the vector Exclude_destinations[0::Step - 1] if Step > 0

 │ // This identifier is a random value smaller than N and

 │ // it is generated with probability: ()
1

2
2

N id

N N j

j

Prob id
−

−

=

=
∑

2 │ id prob_rand(N; Prob;Exclude_destinations[]).

3 └ return id

// N is the total amount of Vertices in the community

4 Function Generator (N, Length_paths, Total_paths)

 │ // This function defines the edges and weights of a single community

5 │ for Source = 0 N do

6 │ │ for Destination = 0 N do

7 │ │ │ edge_weight[Source][Destination] 0

8 │ for X = 0 Total_paths do

9 │ │ for Step = 0 Length_paths do

10 │ │ │ if Step == 0 then

11 │ │ │ └ Path[Step] next_popular_vertex(N, Step, Ø)

12 │ │ │ else if Step > 0 then

13 │ │ │ │ Path[Step] next_popular_vertex(N; Step; Path[])

14 │ │ │ │ Previous_v Path[Step - 1]

15 │ │ │ │ Current_v Path[Step]

16 └ └ └ └ edge_weight[Previous_v][Current_v]+=1=(2^Step)

Each path is composed of a list of N vertices, increasing the weight of the edge

between the vertex i and the i + 1 of the path with 1/2i, i.e. the weight contribu-
tion of each step in the path is half of the previous step.

As an example, Figure 8(a) shows a graph of 3 communities. Figure 8(b) and
Figure 8(c) show the cumulative weight of the output and the input edges, re-
spectively.

The high degree of connectivity is shown in Figure 8(a) and considering that
the small-world [21] style graphs have a small set of vertices with high connec-
tivity degree, while many other vertices have a low degree of connectivity, moti-
vated a second version of the generator.

4.2. Generator of Directed Weighted Graphs with Bounded
Number of Output Edges (DBO)

This second generator is based on previous one, which the main difference is
that it bounds the number of the output edges on each vertex.

The fixed number of output edges of each vertex is defined by:

() ()Number of output edges of the vertex 1.2i r Nound i= ∗ − (2)

where the vertices within a community have assigned a value of i between 0 and

https://doi.org/10.4236/ojmsi.2020.81002

J. M. Montañana et al.

DOI: 10.4236/ojmsi.2020.81002 28 Open Journal of Modelling and Simulation

the total number of vertices within the community minus 1.
The definition of weights of edges is also done in the same way as for DUO.

But, the definition of paths will be done with the restriction of the number of
output edges, which limits the possible random paths that can be defined. We
have to take into account that the limitation of the number of output edges im-
pose that some of the new paths will not reach the desired length. It is because
some paths reach a vertex from where the path cannot go to any other vertex
which the path has not already visited.

As an example, Figure 9, shows a graph of 4 vertices where all the possible
directed edges already defined, where it is not possible to define a 3 hops path
without visiting a vertex more than one time. In particular, the only possible
path starting at A has to be the path A B. It is limited to having a single hop
because no vertex can be visited more than once within the same path, and the
only one output edge from vertex B leads to vertex A which is already visited by
this path.

Figure 10(a) shows a graph with 3 communities, where the number of vertic-
es with the highest connectivity degree is smaller than the number of vertices
with a lower connectivity degree.

The existing random graph generators require input statistics such as the bound-
ing limits on the number of vertices per community, number of communities,

Figure 8. Example of (a) a graph generated by the DUO generator, (b) total weight of the output edges of each vertex, and (c)
total weight of the output edges of each vertex.

Figure 9. Example of a graph on with a bounded number of output edges.

https://doi.org/10.4236/ojmsi.2020.81002

J. M. Montañana et al.

DOI: 10.4236/ojmsi.2020.81002 29 Open Journal of Modelling and Simulation

Figure 10. Example of (a) a graph generated by DBO, (b) sum of the output edges per vertex, and (c) sum of the input
edges per vertex.

and the number of edges per vertex. However, it is not enough for generating
graphs like in the SED-graph as shown and analyzed in this section.

Therefore, in this paper, we consider that are needed additional parameters,
such as the number of vertices per community and number of communities. In
this paper, we propose Algorithm 2, which generates communities with the dis-
tribution of sizes defined by the Weibull function, and the edges and their
weights are defined random paths inside each community.

Figure 11 shows (a) a graph generated by DUO, (b) the SED-graph, and (c) a
graph generated by DBO. These graphs show the improvement of the DBO ge-
nerator for providing graphs with the interconnection ratio of the SED-graph.
This was the reason to develop the DBO generator, which is an evolution of the
DUO generator.

5. Analysis of a Generated Random Graph

The purpose of this section is to analyze if the generated synthetic graphs have
the main properties of the weak connected directed graphs, which make difficult
to detect communities on them. Those properties are the Ratio of the Total
Output Weights, and the Ratio of the size of the communities.

5.1. Ratio of the Total Output Weights

The distribution of output edges of the larger community in the graph is
represented by a dotted line in Figure 12. We considered the larger community
because it is the one that provides the greatest number of values to adjust curves.
The adjustment is shown in Figure 12(a) for the SED-graph, and in Figure 12(b)
for a random graph generated by the DBO generator proposed in this article. In
both cases, the best fit function was the function ()expy a b x c= − ∗ + .

https://doi.org/10.4236/ojmsi.2020.81002

J. M. Montañana et al.

DOI: 10.4236/ojmsi.2020.81002 30 Open Journal of Modelling and Simulation

Algorithm 2. “Directed Bounded number of Outputs” (DBO) Generator.

1 Function next_popular_vertex (N, Step, Exclude_Dests[], Possible_Dests[])
 │ // This function returns the identifier id of a vertex
 │ // The vertex must be in the list Possible_Dests[]
 │ // excepting those included in the array Exclude_Dests[0::Step - 1] if Step > 0
 │ // Such identifier is a random value smaller than N and

 │ // it is generated with probability: ()
1

2
2

N id

N N j

j

Prob id
−

−

=

=
∑

2 │ id prob_rand(N; Prob;Exclude_Dests[]; Possible_Dests[]).
3 └ return id
// N is the total amount of Vertices in the community
4 Function Generator (N, Length_paths, Total_paths)
5 │ for Source = 0 N do
6 │ │ Visited_Vertices[Source][] = Ø

7 │ └ Max_output_edges[Source]= (int) ()1.2 N Source∗ −

8 │ for Source = 0 N do
6 │ │ for Destination = 0 N do
7 │ │ └ edge_weight[Source][Destination] 0
8 │ for X = 0 Total_paths do
9 │ │ for Step = 0 Length_paths do
10 │ │ │ if Step == 0 then
11 │ │ │ └ Path[Step] next_popular_vertex(N, Step, Ø, ALL)
12 │ │ │ else if Step > 0 then
13 │ │ │ │ if Max_output_edges[Previous_v]> 0 then
14 │ │ │ │ │ Path[Step] next_popular_vertex(N, Step, Path[] ,ALL)
15 │ │ │ │ │ if Current_v not in Visited_Vertices[Previous_v][] then
16 │ │ │ │ │ │ Max_output_edges[Previous_v] - = 1
17 │ │ │ │ │ └ insert(Visited_Vertices[Previous_v][], Current_v)
18 │ │ │ │ │ else
19 │ │ │ │ │ └ Path[Step] next_popular_vertex(N, Step, Path[],Visited_Vertices[Previous_v][])
20 │ │ │ │ │ Current_v Path[Step]
21 │ │ │ │ │ Previous_v Path[Step - 1]
22 └ └ └ └ └ edge_weight[Previous_v][Current_v]+=1=(2^Step)

Figure 11. Example of (a) a graph generated by the DUO, (b) the SED-graph, and (c) an example of a graph generated
by the DBO. The interconnection degree between vertices in the same community in the SED-graph is more similar to
the interconnection degree in the graph generated by the DBO.

https://doi.org/10.4236/ojmsi.2020.81002

J. M. Montañana et al.

DOI: 10.4236/ojmsi.2020.81002 31 Open Journal of Modelling and Simulation

5.2. Ratio of the Size of the Communities

Figure 13(a) shows, with a line with points, the number of communities ordered
by size, in the case of (a) SED-graph and (b) a random graph generated by the
DBO generator proposed in this article. In both cases, the adjustments with the
Weibull function appear as a dashed line.

5.3. Modeling the Number of Output Edges of the Vertices

Figure 14(a) and Figure 14(b) show the fit of the number of output edges of the
largest community with a polynomial function in the SED-graph and a synthetic
random graph generated by the DBO algorithm. These figures show that the ge-
nerator provides graphs with edges with the ratio of output edges as in the
SED-graph.

As the last result, we can see in Figure 15 that the plot shows some level steps
when the vertices ordered by their total number of output edges, for both cases,
the SED-graph and the generated graph with the DBO algorithm. This results
from the way in which the graph was generated, although this pattern was not
imposed in the algorithm. We also consider this last result as satisfactory, since

Figure 12. Weights of the output edges of the largest community, (continuous line), in the case of (a)
SED-graph and (b) a random graph generated by the DBO generator. The adjustment with the function

()expy a b x c= − ∗ + is represented by a dashed line.

Figure 13. Lines with points show the number of communities ordered by size, in the case of (a)
SED-graph and (b) generator by the proposal of this article. The adjustments with the Weibull function
appear as a dashed line.

https://doi.org/10.4236/ojmsi.2020.81002

J. M. Montañana et al.

DOI: 10.4236/ojmsi.2020.81002 32 Open Journal of Modelling and Simulation

to the best of our knowledge none of the existing graph generation algorithms
produce this type of step pattern.

5.4. Computation time

Figure 16(a) shows the mean value with confidence intervals of the computa-
tion time required of the DBO algorithm for generating a graph with 8 different

Figure 14. Fit with a polynomial of the step levels of the number of output edges of the largest community
in the (a) SED-graph, and (b) in a synthetic random graph generated by the DBO.

Figure 15. The number of output edges of the largest community in (a) the SED-graph and in (b) a gener-
ated graph.

Figure 16. Mean value with confidence intervals (95%) of (a) the total computation time of graphs gener-
ated and (b) the total amount of vertices in the graph. Data from both plots corresponds to the DBO algo-
rithm, and each point is calculated from a set of 10 different graphs.

https://doi.org/10.4236/ojmsi.2020.81002

J. M. Montañana et al.

DOI: 10.4236/ojmsi.2020.81002 33 Open Journal of Modelling and Simulation

amount of interconnection edges between communities when using an Intel
I5-5300U 2.3 GHz running Ubuntu 16.04 (64 bits). Figure 16(b) shows the
mean value with confidence intervals of the number of vertices on each graph.

6. Conclusions

In this paper, we have proposed two parametrizable benchmarking algorithms
that can generate a wide range of graphs, including graphs not-supported by the
existing generators. In particular, these previously not-supported graphs are
needed for the study of general problems in “badly conditioned” directed graphs
from the traditional point of view, for which it is particularly difficult to detect
their communities. In this way, the proposal in this paper intends to cover a
space that until now has not been studied due to its difficulty.

We consider that the availability of synthetic directed graphs is essential for
the development of new community detection algorithms, and therefore the
proposed generators in this paper can be a key element. The source code of the
proposed generators (written in C) is available in GitHub [22].

Funding

This work has been supported by the Project “Complex Networks” from the In-
stituto Universitario de Matemática Multidisciplinar (IUMM) of the Universitat
Politècnica de València (UPV) [under Grant number (266500194) 20170251-
Complex-Networks-UPV] [23].

Conflicts of Interest

The authors declare no conflicts of interest regarding the publication of this pa-
per.

References
[1] Boccaletti, S., Latora, V., Moreno, Y., Chavez, M. and Hwang, D.U. (2006) Complex

Networks: Structure and Dynamics. Physics Reports, 424, 175-308.
https://doi.org/10.1016/j.physrep.2005.10.009

[2] Fortunato, S. (2010) Community Detection in Graphs. Physics Reports, 486, 75-174.
https://doi.org/10.1016/j.physrep.2009.11.002

[3] Newman, M.E. (2003) The Structure and Function of Complex Networks. Society
for Industrial and Applied Mathematics (SIAM) Review, 45, 167-256.
https://doi.org/10.1137/S003614450342480

[4] Van Der Hofstad, R. (2016) Random Graphs and Complex Networks, Volume 1.
Cambridge University Press, Cambridge. https://doi.org/10.1017/9781316779422

[5] Lancichinetti, A. and Fortunato, S. (2009) Benchmarks for Testing Community De-
tection Algorithms on Directed and Weighted Graphs with Overlapping Communi-
ties. Physical Review E, 80, Article ID: 016118.
https://doi.org/10.1103/PhysRevE.80.016118

[6] Newman, M.E.J. (2004) Fast Algorithm for Detecting Community Structure in
Networks. Physical Review E, 69, Article ID: 066133.
https://doi.org/10.1103/PhysRevE.69.066133

https://doi.org/10.4236/ojmsi.2020.81002
https://doi.org/10.1016/j.physrep.2005.10.009
https://doi.org/10.1016/j.physrep.2009.11.002
https://doi.org/10.1137/S003614450342480
https://doi.org/10.1017/9781316779422
https://doi.org/10.1103/PhysRevE.80.016118
https://doi.org/10.1103/PhysRevE.69.066133

J. M. Montañana et al.

DOI: 10.4236/ojmsi.2020.81002 34 Open Journal of Modelling and Simulation

[7] Newman, M.E.J. (2006) Finding Community Structure in Networks Using the Ei-
genvectors of Matrices. Physical Review E, 74, Article ID: 036104.
https://doi.org/10.1103/PhysRevE.74.036104

[8] Newman, M.E.J. and Girvan, M. (2004) Finding and Evaluating Community Struc-
ture in Networks. Physical Review E, 69, Article ID: 026113.
https://doi.org/10.1103/PhysRevE.69.026113

[9] Raghavan, U.N., Albert, R. and Kumara, S. (2007) Near Linear Time Algorithm to
Detect Community Structures in Large-Scale Networks. Physical Review E, 76, Ar-
ticle ID: 036106. https://doi.org/10.1103/PhysRevE.76.036106

[10] Lancichinetti, A. and Fortunato, S. (2009) Community Detection Algorithms: A
Comparative Analysis. Physical Review E, 80, Article ID: 056117.
https://doi.org/10.1103/PhysRevE.80.056117

[11] Girvan, M. and Newman, M.E. (2002) Community Structure in Social and Biologi-
cal Networks. Proceedings of the National Academy of Sciences, 99, 7821-7826.
https://doi.org/10.1073/pnas.122653799

[12] Lancichinetti, A., Fortunato, S. and Radicchi, F. (2008) Benchmark Graphs for
Testing Community Detection Algorithms. Physical Review E, 78, Article ID: 046110.
https://doi.org/10.1103/PhysRevE.78.046110

[13] Feng, S.M., Hu, B.Y., Nie, C. and Shen, X.H. (2016) Empirical Study on a Directed
and Weighted Bus Transport Network in China. Physica A: Statistical Mechanics
and Its Applications, 441, 85-92. https://doi.org/10.1016/j.physa.2015.08.030

[14] Sienkiewicz, J. and Hołyst, J.A. (2005) Statistical Analysis of 22 Public Transport
Networks in Poland. Physical Review E, 72, Article ID: 046127.
https://doi.org/10.1103/PhysRevE.72.046127

[15] U.S. Department of Transportation, Bureau of Transportation Statistics (2017) Trans-
portation Economic Trends. https://www.bts.gov

[16] Himelboim, I., Smith, M.A., Rainie, L., Shneiderman, B. and Espina, C. (2017) Clas-
sifying Twitter Topic-Networks Using Social Network Analysis. Social Media + So-
ciety, 3, Article ID: 2056305117691545. https://doi.org/10.1177/2056305117691545

[17] Hervas, A., Soriano, P.P., Jimenez, A., Peinado, J., Capilla, R. and Montañana, J.M.
(2017) Modeling Human Behavior: Individuals and Organizations, Chapter “Ap-
plying a Graph Model for the Spanish Public University System”. Nova Science
Publishers, Inc., New York, 9-24.

[18] Joseph, K., Carley, K.M. and Hong, J.I. (2014) Project tist_article.
https://github.com/kennyjoseph/tist_article/tree/master/mutual3

[19] Latora, V., Nicosia, V. and Russo, G. (2017) Complex Networks. Principles, Me-
thods and Applications. Cambridge University Press, Cambridge.
https://doi.org/10.1017/9781316216002

[20] Crawley, M.J. (2007) The R Book. John Wiley & Sons Ltd., Hoboken.

[21] Watts, D.J. and Strogatz, S.H. (1998) Collective Dynamics of “Small-World” Net-
works. Nature, 393, 440-442. https://doi.org/10.1038/30918

[22] Montañana, J.M., Hervas, A. and Soriano-Jiménez, P.P. (2018) Project Graph-Gen-
erators.
https://github.com/jmmontanana/Graph-Generators/tree/master/Weakly-Connecte
d-Directed-Graphs

[23] Universidad Politècnica de València.
http://data.crossref.org/fundingdata/funder/10.13039/501100004233

https://doi.org/10.4236/ojmsi.2020.81002
https://doi.org/10.1103/PhysRevE.74.036104
https://doi.org/10.1103/PhysRevE.69.026113
https://doi.org/10.1103/PhysRevE.76.036106
https://doi.org/10.1103/PhysRevE.80.056117
https://doi.org/10.1073/pnas.122653799
https://doi.org/10.1103/PhysRevE.78.046110
https://doi.org/10.1016/j.physa.2015.08.030
https://doi.org/10.1103/PhysRevE.72.046127
https://www.bts.gov/
https://doi.org/10.1177/2056305117691545
https://github.com/kennyjoseph/tist_article/tree/master/mutual3
https://doi.org/10.1017/9781316216002
https://doi.org/10.1038/30918
https://github.com/jmmontanana/Graph-Generators/tree/master/Weakly-Connected-Directed-Graphs
https://github.com/jmmontanana/Graph-Generators/tree/master/Weakly-Connected-Directed-Graphs
http://data.crossref.org/fundingdata/funder/10.13039/501100004233

	A Proposal for a Benchmark Generator of Weakly Connected Directed Graphs
	Abstract
	Keywords
	1. Introduction
	2. Related Work
	3. Objectives
	3.1. Proportion of Vertices with High and Low Weights on Their Output Edges
	3.2. Ratio of the Size of the Communities
	3.3. Modeling the Number of Output Edges of the Vertices

	4. Proposed Synthetic Graph Generator
	4.1. Generator of Directed Weighted Graphs with Unbounded Number of Output Edges (DUO)
	4.2. Generator of Directed Weighted Graphs with Bounded Number of Output Edges (DBO)

	5. Analysis of a Generated Random Graph
	5.1. Ratio of the Total Output Weights
	5.2. Ratio of the Size of the Communities
	5.3. Modeling the Number of Output Edges of the Vertices
	5.4. Computation time

	6. Conclusions
	Funding
	Conflicts of Interest
	References

