
Open Journal of Modelling and Simulation, 2020, 8, 18-34 
https://www.scirp.org/journal/ojmsi 

ISSN Online: 2327-4026 
ISSN Print: 2327-4018 

 

DOI: 10.4236/ojmsi.2020.81002  Dec. 23, 2019 18 Open Journal of Modelling and Simulation 
 

 
 
 

A Proposal for a Benchmark Generator of 
Weakly Connected Directed Graphs 

José Miguel Montañana1 , Antonio Hervás2 , Pedro Pablo Soriano3  

1High Performance Computing Center Stuttgart (HLRS), University of Stuttgart, Nobelstraße, Stuttgart, Germany 
2Instituto Universitario de Matemática Multidisciplinar, Universitat Politècnica de València, Valencia, Spain 
3SEPyC, Universitat Politècnica de València, Valencia, Spain 

 
 
 

Abstract 
The previous studies on detection of communities on complex networks were 
focused on nondirected graphs, such as Neural Networks, social networks, 
social interrelations, the contagion of diseases, and bibliographies. However, 
there are also other problems whose modeling entails obtaining a weakly 
connected directed graph such as the student access to the university, the 
public transport networks, or trophic chains. Those cases deserve particularized 
study with an analysis and the resolution adjusted to them. Additionally, this 
is a challenge, since the existing algorithms in most of the cases were origi-
nally designed for non-directed graphs or symmetrical and regular graphs. 
Our proposal is a Benchmark Generator of Weakly Connected Directed 
Graphs whose properties can be defined by the end-users according to their 
necessities. The source code of the generators described in this article is 
available in GitHub under the GNU license. 
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1. Introduction 

The interaction between the elements in many complex real-world systems can 
be modeled as graphs or networks, where the elements are represented as vertic-
es and the relationships between them as edges. The networks are referred to 
Direct Networks where the relationship between the vertices of the network can 
be unidirectional, while in another case, they are referred to Symmetric Net-
works. The weight of each edge, if it is defined, is an associated numerical 
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attribute. 
Additionally, the networks are referred to dense networks when the elements 

are highly related to them and there are many more edges than vertices. In the 
opposite case, which is not less common, networks are referred to dispersed 
networks when the number of edges is much smaller than they could possibly 
have. The combination of these possible definitions gives rise to a wide variety of 
networks, in general, large and complex, whose study requires simplified mod-
els. The use of models allows for simulating the behavior of networks and stud-
ying their structure and properties [1] [2] [3] [4]. 

We can consider that the study of these networks requires two fundamental 
elements. First, the algorithms that classify vertices into different groups and 
identify their main properties, and secondly, sets of graphs are needed for ap-
plying and testing those algorithms. 

These algorithms search on the graphs for the existence of certain sets of 
highly connected vertices between them and weakly connected with the others, 
these sets are referred to communities. Vertices grouped in the same community 
have common characteristics and play a certain common role within the net-
work. The development of those algorithms and study techniques has been a 
constantly evolving area of work [1] [2] [4]-[9]. Figure 1 shows the results of  

 

 
Figure 1. Example of detection of communities when using different algorithms on the 
same graph. 
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detection after applying different algorithms in the same graph. 
The availability of different graphs to be analyzed by the different algorithms 

is important, because the quality of the algorithms is strongly related to the 
graph properties to which they are applied [10]. For such purpose, generators of 
synthetic graphs with different properties were proposed for its use on the ben-
chmarking of the capacities of the detection algorithms [5] [11] [12]. 

In our work, we require detection algorithms for Weakly Connected Directed 
Graphs, which are common in real problems. In those graphs, the relationship 
between each pair of vertices can be unidirectional, or bidirectional with a dif-
ferent contribution in each direction. Examples of these graphs can be found in 
the representation of bus lines on their city map [13] [14], flights between air-
ports [15], social networks [16], and the demand for enrolment of students in 
different degrees [17]. 

However, we found that the existing community detection algorithms are not 
able to correctly detect the communities in the Weakly Connected Directed 
Graphs. And in addition, we neither found a generator of synthetic graphs with 
such properties. 

There are generators that, in general, work excellently for non directed graphs. 
[4] [5] [12] [13] However, they cannot generate such specific directed graphs as 
the “students’ choice of university degrees” case. In particular, the results of the 
best approximation with the main synthetic generator used for benchmarking, to 
the best of our knowledge [12], are available at the same GitHub where the 
source code of the generators described in this article are available. 

Therefore, we consider that the research on these graphs requires a generator 
of synthetic Weakly Connected Directed Graphs, which can be used later for 
developing and benchmarking new detection algorithms. 

For this reason, in this article, we propose a new directed graphs generator 
with new modelling capabilities, which be able to modelate weakly connected 
directed graphs. In particular, we consider the Students’ Enrolment Demand 
graph, which is referred to as SED-graph, to evaluate the modelling capabilities 
of the new generator. The extension to other models is done naturally. 

2. Related Work 

The benchmarking process consists of 3 steps. At the first step, it is used a syn-
thetic generator for obtaining a set of Initial Sub-Graphs. At the second step, we 
apply the different detection algorithms under comparison on each Initial Graph 
(IG) where initially the communities are disjointed, i.e. there are not intercon-
nected edges between communities, and reapplying those detection algorithms 
after adding new edges between communities until the amount of addition is the 
same amount of edges as in the IG. The percentage of the number of additional 
edges over the number of edges in the IG is commonly referred as a mixing pa-
rameter 0 ≤ µ ≤ 1. Notice that the additional edges are defined also by the syn-
thetic generator. 
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At the last step, there are identified the detection capabilities of each algo-
rithm, which corresponds to the highest value of mixing parameter µ for each 
algorithm where they are still able to detect the original communities. Typically, 
the coefficient Normalized Mutual Information (NMI) is used to evaluate the 
goodness of the detection of the original communities. The NMI is evaluated by 
comparing the detected communities for the different values of the Mixing Pa-
rameter µ, with respect to the initial graph (µ = 0)1. The value of NMI equal to 1, 
corresponds to a detection of communities exact to that of the original graph, 
while the value of NMI decreases as the detected communities differ from those 
of the original graph. 

As an example, we can consider the initially directed graph in Figure 2(a). 
Each edge in a directed graph has a defined direction. In that graph, we can see 3 
disjointed sets of vertices with only internal edges. In the figure, each communi-
ty detected by a hypothetical algorithm is represented by a different colour. 

Figure 2(b) shows the same graph after adding 2 additional edges to each set 
of vertices, which represents an increase of 25% of the edges, and thus the mix-
ing parameter µ is equal to 0.25. 

The main synthetic generator used for benchmarking, to the best of our 
knowledge, was published in [12]. As an example, we have generated with it a 
binary, a directed, a weighted, and a weighted-directed graph, all of them with a 
defined weight of edges. That synthetic generator also provides these graphs 
with different amount of inter-communities edges. Then, we then apply the 
Girvan-Newman community detection algorithm to each of these graphs. The 
results for each of the graphs are shown with the Normalized Mutual Informa-
tion (NMI) in Figure 3. Figure 3 shows that the original communities are no 
longer detected after increasing about 40% the number of edges. 

3. Objectives 

The existing community detection algorithms had been used to find communi-
ties in dense and disperse networks. The former are those networks where ele-
ments are highly related among themselves, with many more edges than vertices.  

 

 
Figure 2. Example of detection of communities, before (a) and after (b) the addition of 
edges. 

 

 

1The source code for calculating the NMI is available at [18]. 
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Figure 3. Example of obtained values of NMI for different values of µ. The value of NMI decreases as the 
detected communities differ from those of the original graph. 

 
The latter, which is more common, consists of networks where the number of 
edges is much smaller. The communities in these networks have groups of ver-
tices highly connected between them and poorly connected with the vertices in 
the other communities [9] [12] [13] [14] [19]. 

However, they have difficulties to detect the communities in directed graphs 
with only a few vertices that have a high output weight, while most of the vertic-
es have a total low output weight, as we found in real scenarios. 

Our objective is to obtain a synthetic generator of such type of graphs. Be-
cause those graphs are not conveniently supported by the existing generators, 
and the challenge of detection communities on those graphs. The difficulty on 
detection is due to the existing algorithms in most of the cases that were origi-
nally designed for non-directed graphs or symmetrical and regular graphs. 

This new synthetic generator will allow us to evaluate and compare commu-
nity detection algorithms on this kind of graphs (benchmarking of detection al-
gorithms). It will be also of particular interest to researchers who develop new 
algorithms. 

3.1. Proportion of Vertices with High and Low Weights on  
Their Output Edges 

The first big difference is the proportion of vertices with high and low weights 
on their output edges. As an example, Figure 4 shows the weight of the output 
edges sorted from highest to lowest in the largest community of the SED-graph. 

Figure 4 shows that only a few vertices have a high value on their total output 
weight, while most of the vertices have a total low output weight. This is impor-
tant because it makes it difficult to correctly detect the communities with edges 
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connecting them, even if those edges have a low weight. 
The fitting results of Figure 4 on different functions show that the best global 

fit is to the exponential function, which also keeps the difference on the weight 
ratio among vertices with higher weight and those with a lower weight. 

The results of the estimation of the fitting parameter appear in Table 1, which 
shows a very good adjustment. 

We can consider the model as statistically significant and we have good ad-
justment because the p-values are less than the pre-determined statistical signi-
ficance level, which is ideally 0.05 (probability of 5% [20]). We can also see that 
the residuals are acceptable because they are centered around zero, i.e. the fit 
function is centered in the distribution of measures. And there is not any outlier, 
i.e. there is not any measure far from the fit function. 

3.2. Ratio of the Size of the Communities 

The second main difference is the ratio of small communities over the total 
amount. We can see the number of communities sorted by size of the SED-graph 
in Figure 5. 

We look for a function that fits with the distribution of community sizes in  
 

 
Figure 4. Weight of the output edges in the largest community of the SED-graph generator. 

 
Table 1. Goodness-of-fit of the weight of the output edges in the SED-graph with an ex-
ponential function using R. 

GOODNESS-OF-FIT STATISTICS 
Formula: y ≈ exp (a − b * x) + c 
Parameters: 

 Estimate Std. Error T value Pr (>|t|)  

a 4.6081 0.0322 143.122 2e−16 *** 

b 0.3419 0.0144 23.737 2e−16 *** 

c 3.6383 0.3813 9.5426 5.17e−11 *** 

Residual standard error: 1.875 on 33 degrees of freedom 
Number of iterations to convergence: 7 
Achieved convergence tolerance: 1.34e−06 

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1''. 
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Figure 5. Amount of communities sorted by size in the SED-graph. 
 

 
Figure 6. Fit of the community sizes in Figure 5 (SED-graph) with different functions 
using R. 

 
Figure 5. Figure 6 shows the functions that fit better with that distribution. In 
particular, we found that the function that fits more accurately was the Weibull 
function. 

Table 2 shows the numerical metrics for different criteria for measuring the 
fitting error with different types of functions. The Weibull function is the one 
that achieves the best coefficient in all the criteria (the smaller the better). In ad-
dition to considering these adjustment criteria, Figure 6 shows that the Weibull 
function is always the one that best adjusts to the data samples for different types 
of probability analyses. 
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The resulting estimation of the fitting parameters of the distribution Weibull 
by maximum likelihood is: shape = 1.201 (Std. Error: 0.064) and scale = 212.948 
(Std. Error: 12.771). The goodness of the fit appears in Table 2. 

3.3. Modeling the Number of Output Edges of the Vertices 

Figure 7(a) shows the number of output edges of the largest community in the 
SED-graph. In that figure, the vertices are sorted from smaller to the largest 
amount of output edges. In the figure, there are 6 possible sets of vertices when 
considering their number of output edges. We can see that the largest set cor-
responds to the set of vertices with the lowest number of output edges, and, that 
the number of vertices in each set is smaller or equal that in the next set with the 
larger number of output edges. 

Our best effort for the challenge of modeling this curve resulted in the number 
of output edges of each set as a function of the number of the set, when the sets 
are numbered from largest to the smallest size. Figure 7(b) shows the fit of this 
function, which corresponds to polynomial y = b + ax + c/x2. 

The results of the estimation of the fitting parameters appear in Table 3. It is a 
very good adjustment, for the same reasons as shown in Section 3.1. 

 
Table 2. Goodness-of-fit of the community sizes in the SED-graph with different functions. 

GOODNESS-OF-FIT STATISTICS 

 Weibull gamma nbinom lognormal 

Kolmogorov-Smirnov statistic 0.03747684 0.04094466 0.04107869 0.08033524 

Cramer-von Mises statistic 0.04279517 0.05291148 0.05271877 0.36063454 

Anderson-Darling statistic 0.26663825 0.30999310 0.31165762 2.21300868 

GOODNESS-OF-FIT CRITERIA 

 Weibull gamma nbinom lognormal 

Akaike’s Information Criterion 2689.306 2689.608 2690.008 2717.229 

Bayesian Information Criterion 2696.038 2696.340 2696.740 2723.961 

 

 
Figure 7. (a) The number of output edges of the largest community in the SED-graph, and (b) the fit of the step 
levels with a polynomial function. 
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Table 3. Goodness-of-fit of the weight of the step levels of the output edges of the largest 
community in the SED-graph with a polynomial function using R. 

GOODNESS-OF-FIT STATISTICS 
Formula: y ≈ ax + b − c/x2 
Parameters: 

 Estimate Std. Error t value Pr (>|t|)  

a 10.149 1.367 7.423 0.00506 *** 

b 47.637 6.364 7.485 0.00494 *** 

c 56.284 6.785 8.295 0.00367 *** 

Residual standard error: 3.539 on 3 degrees of freedom 
Number of iterations to convergence: 1 
Achieved convergence tolerance: 2.694e−08 

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1''. 
 

In the next section, we proceed to describe the graph generator with these sta-
tistical properties. 

4. Proposed Synthetic Graph Generator 

In this section, we describe the proposed generator, which is highly configurable 
according to the needs of the user, allowing to generate directed and non-directed 
graphs, symmetric and regular, as well as non-symmetrical and non-regular. 

In order to facilitate the description, we propose first a simplified version of 
the generator, and later the complete version with additional parameters which 
achieves the modeling our target graphs. 

The first version is a simplified version of the algorithm referred to as “gene-
rator of Directed weighted graphs which vertices have an Unbounded number of 
Output edges” (DUO), and the second one is referred to as “Directed weighted 
graph which vertices have a bounded number of Output edges” (DBO). 

4.1. Generator of Directed Weighted Graphs with Unbounded 
Number of Output Edges (DUO) 

In this first generator, the number of vertices NC per community is obtained 
randomly from a normal function that is defined by the parameters provided at 
the generator input. Next, it creates a routing table, where each route is defined 
by a start in one of the vertices, visiting from that vertex other vertices of the same 
community different from those visited in that same route (See Algorithm 1). 

The number and length of these paths are optional input parameters, the ge-
nerator will use default values calculated as a function of the size of each com-
munity when the user doesn’t define them. 

In order to obtain dominant vertices with a stronger connection in each 
community, these paths will give preference to visiting certain vertices. It is 
achieved using the following probability function to visit a vertex i: 

( )
1

2
2

N i

N N j
j

p i
−

−
=

=
∑

; Where N is the amount of vertices in the community  (1) 
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Algorithm 1. “Directed Unbounded number of Outputs” (DUO) Generator. 

1 Function next_popular_vertex (N, Step,Exclude_destinations[ ]) 

 │ // This function returns the identifier id of a vertex 

 │ // the vertex not included in the vector Exclude_destinations[0::Step - 1] if Step > 0 

 │ // This identifier is a random value smaller than N and 

 │ // it is generated with probability: ( )
1

2
2

N id

N N j

j

Prob id
−

−

=

=
∑

 

2 │ id  prob_rand(N; Prob;Exclude_destinations[ ]). 

3 └ return id 

// N is the total amount of Vertices in the community 

4 Function Generator (N, Length_paths, Total_paths) 

 │ // This function defines the edges and weights of a single community 

5 │ for Source = 0  N do 

6 │ │ for Destination = 0  N do 

7 │ │ │ edge_weight[Source][Destination]  0 

8 │ for X = 0  Total_paths do 

9 │ │ for Step = 0  Length_paths do 

10 │ │ │ if Step == 0 then 

11 │ │ │ └ Path[Step]  next_popular_vertex(N, Step, Ø) 

12 │ │ │ else if Step > 0 then 

13 │ │ │ │ Path[Step]  next_popular_vertex(N; Step; Path[ ]) 

14 │ │ │ │ Previous_v  Path[Step - 1] 

15 │ │ │ │ Current_v  Path[Step] 

16 └ └ └ └ edge_weight[Previous_v][Current_v]+=1=(2^Step) 

 
Each path is composed of a list of N vertices, increasing the weight of the edge 

between the vertex i and the i + 1 of the path with 1/2i, i.e. the weight contribu-
tion of each step in the path is half of the previous step. 

As an example, Figure 8(a) shows a graph of 3 communities. Figure 8(b) and 
Figure 8(c) show the cumulative weight of the output and the input edges, re-
spectively. 

The high degree of connectivity is shown in Figure 8(a) and considering that 
the small-world [21] style graphs have a small set of vertices with high connec-
tivity degree, while many other vertices have a low degree of connectivity, moti-
vated a second version of the generator. 

4.2. Generator of Directed Weighted Graphs with Bounded  
Number of Output Edges (DBO) 

This second generator is based on previous one, which the main difference is 
that it bounds the number of the output edges on each vertex. 

The fixed number of output edges of each vertex is defined by: 

( ) ( )Number of output edges of the vertex 1.2i r Nound i= ∗ −      (2) 

where the vertices within a community have assigned a value of i between 0 and 
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the total number of vertices within the community minus 1. 
The definition of weights of edges is also done in the same way as for DUO. 

But, the definition of paths will be done with the restriction of the number of 
output edges, which limits the possible random paths that can be defined. We 
have to take into account that the limitation of the number of output edges im-
pose that some of the new paths will not reach the desired length. It is because 
some paths reach a vertex from where the path cannot go to any other vertex 
which the path has not already visited. 

As an example, Figure 9, shows a graph of 4 vertices where all the possible 
directed edges already defined, where it is not possible to define a 3 hops path 
without visiting a vertex more than one time. In particular, the only possible 
path starting at A has to be the path A  B. It is limited to having a single hop 
because no vertex can be visited more than once within the same path, and the 
only one output edge from vertex B leads to vertex A which is already visited by 
this path. 

Figure 10(a) shows a graph with 3 communities, where the number of vertic-
es with the highest connectivity degree is smaller than the number of vertices 
with a lower connectivity degree. 

The existing random graph generators require input statistics such as the bound-
ing limits on the number of vertices per community, number of communities,  

 

 
Figure 8. Example of (a) a graph generated by the DUO generator, (b) total weight of the output edges of each vertex, and (c) 
total weight of the output edges of each vertex. 

 

 
Figure 9. Example of a graph on with a bounded number of output edges. 
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Figure 10. Example of (a) a graph generated by DBO, (b) sum of the output edges per vertex, and (c) sum of the input 
edges per vertex. 

 
and the number of edges per vertex. However, it is not enough for generating 
graphs like in the SED-graph as shown and analyzed in this section. 

Therefore, in this paper, we consider that are needed additional parameters, 
such as the number of vertices per community and number of communities. In 
this paper, we propose Algorithm 2, which generates communities with the dis-
tribution of sizes defined by the Weibull function, and the edges and their 
weights are defined random paths inside each community. 

Figure 11 shows (a) a graph generated by DUO, (b) the SED-graph, and (c) a 
graph generated by DBO. These graphs show the improvement of the DBO ge-
nerator for providing graphs with the interconnection ratio of the SED-graph. 
This was the reason to develop the DBO generator, which is an evolution of the 
DUO generator. 

5. Analysis of a Generated Random Graph 

The purpose of this section is to analyze if the generated synthetic graphs have 
the main properties of the weak connected directed graphs, which make difficult 
to detect communities on them. Those properties are the Ratio of the Total 
Output Weights, and the Ratio of the size of the communities. 

5.1. Ratio of the Total Output Weights 

The distribution of output edges of the larger community in the graph is 
represented by a dotted line in Figure 12. We considered the larger community 
because it is the one that provides the greatest number of values to adjust curves. 
The adjustment is shown in Figure 12(a) for the SED-graph, and in Figure 12(b) 
for a random graph generated by the DBO generator proposed in this article. In 
both cases, the best fit function was the function ( )expy a b x c= − ∗ + . 
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Algorithm 2. “Directed Bounded number of Outputs” (DBO) Generator. 

1 Function next_popular_vertex (N, Step, Exclude_Dests[ ], Possible_Dests[ ]) 
 │ // This function returns the identifier id of a vertex 
 │ // The vertex must be in the list Possible_Dests[ ] 
 │ // excepting those included in the array Exclude_Dests[0::Step - 1] if Step > 0 
 │ // Such identifier is a random value smaller than N and 

 │ // it is generated with probability: ( )
1

2
2

N id

N N j

j

Prob id
−

−

=

=
∑

 

2 │ id   prob_rand(N; Prob;Exclude_Dests[ ]; Possible_Dests[ ]). 
3 └ return id 
// N is the total amount of Vertices in the community 
4 Function Generator (N, Length_paths, Total_paths) 
5 │ for Source = 0  N do 
6 │ │ Visited_Vertices[Source][ ] = Ø 

7 │ └ Max_output_edges[Source]= (int) ( )1.2 N Source∗ −  

8 │ for Source = 0  N do 
6 │ │ for Destination = 0  N do 
7 │ │ └ edge_weight[Source][Destination]  0 
8 │ for X = 0  Total_paths do 
9 │ │ for Step = 0  Length_paths do 
10 │ │ │ if Step == 0 then 
11 │ │ │ └ Path[Step]  next_popular_vertex(N, Step, Ø, ALL) 
12 │ │ │ else if Step > 0 then 
13 │ │ │ │ if Max_output_edges[Previous_v]> 0 then 
14 │ │ │ │ │ Path[Step]  next_popular_vertex(N, Step, Path[ ] ,ALL) 
15 │ │ │ │ │ if Current_v not in Visited_Vertices[Previous_v][ ] then 
16 │ │ │ │ │ │ Max_output_edges[Previous_v] - = 1 
17 │ │ │ │ │ └ insert(Visited_Vertices[Previous_v][ ], Current_v) 
18 │ │ │ │ │ else 
19 │ │ │ │ │ └ Path[Step] next_popular_vertex(N, Step, Path[ ],Visited_Vertices[Previous_v][ ]) 
20 │ │ │ │ │ Current_v  Path[Step] 
21 │ │ │ │ │ Previous_v  Path[Step - 1] 
22 └ └ └ └ └ edge_weight[Previous_v][Current_v]+=1=(2^Step) 

 

 
Figure 11. Example of (a) a graph generated by the DUO, (b) the SED-graph, and (c) an example of a graph generated 
by the DBO. The interconnection degree between vertices in the same community in the SED-graph is more similar to 
the interconnection degree in the graph generated by the DBO. 
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5.2. Ratio of the Size of the Communities 

Figure 13(a) shows, with a line with points, the number of communities ordered 
by size, in the case of (a) SED-graph and (b) a random graph generated by the 
DBO generator proposed in this article. In both cases, the adjustments with the 
Weibull function appear as a dashed line. 

5.3. Modeling the Number of Output Edges of the Vertices 

Figure 14(a) and Figure 14(b) show the fit of the number of output edges of the 
largest community with a polynomial function in the SED-graph and a synthetic 
random graph generated by the DBO algorithm. These figures show that the ge-
nerator provides graphs with edges with the ratio of output edges as in the 
SED-graph. 

As the last result, we can see in Figure 15 that the plot shows some level steps 
when the vertices ordered by their total number of output edges, for both cases, 
the SED-graph and the generated graph with the DBO algorithm. This results 
from the way in which the graph was generated, although this pattern was not 
imposed in the algorithm. We also consider this last result as satisfactory, since  

 

 
Figure 12. Weights of the output edges of the largest community, (continuous line), in the case of (a) 
SED-graph and (b) a random graph generated by the DBO generator. The adjustment with the function 

( )expy a b x c= − ∗ +  is represented by a dashed line. 

 

 
Figure 13. Lines with points show the number of communities ordered by size, in the case of (a) 
SED-graph and (b) generator by the proposal of this article. The adjustments with the Weibull function 
appear as a dashed line. 
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to the best of our knowledge none of the existing graph generation algorithms 
produce this type of step pattern. 

5.4. Computation time 

Figure 16(a) shows the mean value with confidence intervals of the computa-
tion time required of the DBO algorithm for generating a graph with 8 different  

 

 
Figure 14. Fit with a polynomial of the step levels of the number of output edges of the largest community 
in the (a) SED-graph, and (b) in a synthetic random graph generated by the DBO. 

 

 
Figure 15. The number of output edges of the largest community in (a) the SED-graph and in (b) a gener-
ated graph. 

 

 
Figure 16. Mean value with confidence intervals (95%) of (a) the total computation time of graphs gener-
ated and (b) the total amount of vertices in the graph. Data from both plots corresponds to the DBO algo-
rithm, and each point is calculated from a set of 10 different graphs. 
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amount of interconnection edges between communities when using an Intel 
I5-5300U 2.3 GHz running Ubuntu 16.04 (64 bits). Figure 16(b) shows the 
mean value with confidence intervals of the number of vertices on each graph. 

6. Conclusions 

In this paper, we have proposed two parametrizable benchmarking algorithms 
that can generate a wide range of graphs, including graphs not-supported by the 
existing generators. In particular, these previously not-supported graphs are 
needed for the study of general problems in “badly conditioned” directed graphs 
from the traditional point of view, for which it is particularly difficult to detect 
their communities. In this way, the proposal in this paper intends to cover a 
space that until now has not been studied due to its difficulty. 

We consider that the availability of synthetic directed graphs is essential for 
the development of new community detection algorithms, and therefore the 
proposed generators in this paper can be a key element. The source code of the 
proposed generators (written in C) is available in GitHub [22]. 
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