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Abstract 
The contribution of benthic foraminifera to sediment bioturbation has widely 
been overlooked despite their huge abundance in intertidal soft sediments. In 
this preliminary study, we specifically chose to focus on two key species of 
benthic foraminifera in temperate intertidal mudflats, Quinqueloculina se-
minula and Ammonia tepida, and first experimentally investigated their indi-
vidual movements at the sediment surface. We subsequently derived from 
these observations the individual-level surface sediment reworking rates, and 
used the actual abundance of these species to extrapolate these rates at the 
population level. Individual surface sediment reworking rates SSRRi ranged 
between 0.13 and 0.32 cm2∙ind−1∙day−1 for Q. seminula, and between 0.12 and 
0.28 cm2∙ind−1∙day−1 for A. tepida. Population-level surface sediment rework-
ing rates were subsequently estimated as ranging between 11,484 and 28,710 
cm2∙m−2∙day−1 for Q. seminula and 27,876 and 65,044 cm2∙m−2∙day−1 for A. te-
pida. Noticeably, these reworking rates are comparable to, and eventually 
even higher than, the rates reported in the literature for populations of inter-
tidal macro-invertebrates, such as the annelid polychaete Melinna palmata 
and the bivalve Abra ovata. Taken together these results suggest that despite 
their minute size intertidal benthic foraminifera are, thanks to their abun-
dance, non-negligible contributors to the reworking of surface sediment, and 
may then play an unanticipated role in the benthic ecosystem functioning, 
through e.g. the enhancement of fluxes at the sediment-water interface.  
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Intertidal Mudflats 

 

1. Introduction 

Benthic fauna typically influences the structure and function of soft-sediment 
benthic ecosystems through bioturbation, that is the biogenic modification of 
sediments through particle reworking and burrow ventilation; see [1] for a re-
view. For instance, bioturbation by infaunal macrobenthos has been shown to 
influence sediment granulometry, oxygen, pH and redox gradients [1], bacterial 
metabolic activity and community composition, and ultimately carbon and ni-
trogen cycling [2]. Noticeably, the contribution of meiofauna to sediment bio-
turbation has been far less studied [3] [4] [5] [6] [7], and barely considered in an 
attempt to estimate community bioturbation potential based on a review of 1033 
benthic invertebrate species from the northwest European continental shelf [8]. 
A recent review [9] even showed that most publications on the role of benthic 
meiofauna dealt with nematodes and harpacticoid copepods. Despite their high 
abundance (they can represent up to 50% of the eukaryotic biomass; [10]) and 
their acknowledged contributions to global calcium carbonate production [11] 
and both carbon and nitrogen cycles [12] [13], the role of benthic foraminifera 
on fluxes at the sediment-water interface in general and bioturbation in particu-
lar is still to be quantified. 

A few typical features of the ecology of benthic foraminifera such as cyst 
building [14] and locomotion [15] [16] are, however, likely leading to displace 
sediment particles. Specifically, foraminiferal movements typically lead to the 
creation of intense networks of surface trails [17]. These trails may enhance the 
erodibility of mudflat sediments as previously shown for benthic macrofauna 
[18]. Movements of benthic foraminifera are, however, not restricted to the se-
diment surface [19]. Benthic foraminifera are able to migrate down through the 
sediment, up to a depth of 4 cm for Quinqueloculina impressa [17]. This process 
leads to the construction of biogenic structures, such as networks of galleries for 
Q. impressa [17] and cavities for Elphidium excavatum clavatum [20] [21]. 
These biogenic structures contribute to a better oxygenation of the surface layer 
[22] and ultimately determine the fluxes of both particulate and dissolved mate-
rials at the sediment-water interface as in benthic macrofauna [1]. However, to 
the best of our knowledge only one deep-sea study estimated the bioturbation 
rate of a population of benthic foraminifera as 0.2 cm2∙year−1 [23]. This rate is 
noticeably comparable to the rates reported for a population of benthic macro-
fauna in a coastal lagoon, i.e. 0.5 cm2∙year−1 [24]. Taken together, these observa-
tions suggest that benthic foraminifera may have the ability to significantly con-
tribute to sediment reworking. This is, however, still an open question as only 
one study quantified bioturbation by benthic foraminifera [23]. 

In this context, as a first step in assessing the ability of benthic foraminifera to 
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contribute to sediment reworking, we followed the surface image analysis me-
thod initially developed to quantify macrofauna surface sediment reworking 
rates [25]. Among the range of methods available to assess sediment reworking 
rates (see review in [26]), the surface image analysis method appeared to be the 
most appropriate one for benthic foraminifera at this stage since 1) little is still 
known about reworking activities by benthic foraminifera, 2) their contribution 
to bioturbation is likely to occur during locomotion, and 3) they are described as 
mostly living at the sediment-water interface. The objective of this preliminary 
study is to fill the knowledge gap related to the potential role played by benthic 
foraminifera in sediment reworking through quantitative laboratory assessment 
of the surface sediment reworking rates of two key foraminiferal species of tem-
perate intertidal mudflats [27] [28], i.e. Ammonia tepida and Quinqueloculina 
seminula. To further assess the relevance of these reworking rates, we further 
discussed them in the general context of the reworking rates reported for ma-
crofaunal species typical of soft sediment ecosystems. 

2. Material and Methods 
2.1. Sample Collection and Preservation 

Sediment samples of the 0 - 1 cm layer were collected in triplicates using a core device 
(inner diameter: 8.6 cm) on two French intertidal mudflats, Saint-Vaast-La-Hougue 
(49˚26'31.3"N, 0˚16'25.2"E) and the Seine estuary (49˚34'38.6"N, 1˚16'38.8"W) in 
order to quantify abundances of Quinqueloculina seminula and Ammonia tepi-
da. They were subsequently preserved in a mixture of 70% ethanol and Rose 
Bengal (2 g∙l−1) to separate living from dead specimens. Living foraminifera were 
collected by gently scraping off the sediment surface, maintained in a portable 
isotherm container at ambient temperature (22˚C) and transported to the labor-
atory. 

2.2. Sample Processing for the Abundance of Target Species 

Replicates were washed through a 63 μm mesh, and the fraction > 63 μm was 
dried at 50˚C. After drying, tests were concentrated by heavy liquid flotation us-
ing carbon tetrachloride (CCl4). A total number of living foraminifera of 250 
specimens per replicate were counted to have a representative assessment of 
their actual abundance [29]. Abundances (mean ± SD ind∙cm−2) of Ammonia te-
pida in the Seine estuary and Quinqueloculina seminula in Saint-Vaast-La-Hougue 
were then estimated. 

2.3. Experimental Set-Up and Behavioural Observations 

The motion behaviour of Quinqueloculina seminula and Ammonia tepida was 
investigated in glass Petri dishes (7.5 cm in diameter) filled with a thin (ca. 5 
mm) layer of in situ azoic (i.e. freezed at −20˚C) sediment overlaid with in situ 
seawater (S = 32 PSU) to a height of 5 mm. All experiments were conducted un-
der homogenous dim light conditions (450 lux; Light Probe MeterTM 403125, 
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Extech Instruments, Nashua, USA) in a temperature-controlled room at 22˚C, a 
temperature representative of the conditions experienced in situ by these species 
at the time of sampling. Prior to individual collection, the fraction > 63 μm was 
kept in a temperature-controlled room at 22˚C overnight. Q. seminula and A. 
tepida individuals were in the size range 400 - 500 μm and 300 - 400 μm, respec-
tively. Respectively 14 and 15 distinct Q. seminula and A. tepida individuals 
were used in the behavioural experiments. Prior to each experiment, living indi-
viduals were carefully sorted under a stereomicroscope with a brush, and imme-
diately transferred to the experimental Petri dish, where they were allowed to ac-
climatize for 5 min. 

Individual activity was monitored using an automated acquisition system 
composed of a digital camera (Nikon J5 mounted with a Nikkor VR 10 - 30 mm 
lens) following the method described by Hollertz & Duchêne (2001) [25]. The 
position of each individual was subsequently recorded every 10 min for 24 
hours, after which the (x, y) coordinates were manually extracted from the re-
sulting 144 images using GraphClick (Arizona Software), and used to characte-
rise the path travelled by each individual [15]. All experiments were conducted 
under continuous light and immersion conditions to avoid any behavioural bias 
that may relate to endogenous diel and/or tidal rhythms [15]. 

Test-length (L), total distance travelled (d) and the duration of the experiment 
t (i.e. 24 h) were used to calculate the individual surface sediment reworking rate 
SSRRi (cm2∙ind−1∙d−1) following Maire et al. (2008) [26] as SSRRi = dL/t. In situ 
abundances of Quinqueloculina seminula and Ammonia tepida were subse-
quently used to scale the individual SSRRi up to a surface unit of 1 m2 as a popu-
lation-level surface sediment reworking rate SSRRp (cm2∙m−2∙d−1; [30] [31] [32]). 

3. Results 

Both Quinqueloculina seminula and Ammonia tepida drastically modified the in-
itially smooth and undisturbed sediment surface (Figure 1(A)) where they typi-
cally created intense networks of sinuous trails surrounded by a fluffy layer of 
sediment (Figure 1(B)). These trails were typically as wide as the specimens test 
length L (i.e. 400 - 500 μm and 300 - 400 μm for Q. seminula and A. tepida, re-
spectively), and the distance travelled in 24 h d ranged from 31.9 to 63.8 mm for  

 

 
Figure 1. Archetypical example of the reworking of sediment surface by Quinqueloculina 
seminula over a period of 24 hours ((A): t0; (B): t0+24h). 
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Q. seminula and from 40.4 to 70.7 mm for A. tepida. 
Individual surface sediment reworking rates SSRRi ranged between 0.13 and 

0.32 cm2∙ind−1∙day−1 in Quinqueloculina seminula (Table 1). These rates were 
similar for Ammonia tepida with a minimum of 0.12 cm2∙ind−1∙day−1 and a 
maximum of 0.28 cm2∙ind−1∙day−1 (Table 1). Given the observed abundance of Q. 
seminula (9 ± 3 ind cm−2; mean ± SD) and A. tepida (23 ± 4 ind cm−2), popula-
tion surface sediment reworking rates SSRRp were subsequently estimated as 
ranging between 11,484 and 28,710 cm2∙m−2∙day−1 for Q. seminula and 27,876 
and 65,044 cm2∙m−2∙day−1 for A. tepida (Figure 2). 

4. Discussion 

This study suggests that the intertidal foraminifera Quinqueloculina seminula 
and Ammonia tepida may drastically modify surface sediment. Specifically, the 
surface crawling activities (Figure 1(B)) reported here for Q. seminula and A. 
tepida resemble those of the gastropod Peringia ulvae, that involve both sedi-
ment reworking and the creation of a fluffy layer of sediment around the tracks 
[18]. Fluffy layers are disconnected from the surface matrix, decrease sediment 
cohesiveness, hence increase sediment erodibility [33]. Though this may be spe-
culative, sediment reworking related to Q. seminula and A. tepida movements may 
also contribute to increase sediment erodibility. This modification of the surface se-
diment physical properties may subsequently enhance the benthic-pelagic coupling 
through increased resuspension of both sediment and microphytobenthos in the  

 
Table 1. Minimum (Min) and maximum (Max) individual surface sediment reworking 
rate SSRRi (cm2∙ind−1∙d−1) and abundance (ind∙m−2) of Quinqueloculina seminula and 
Ammonia tepida, sampled from intertidal mudflats located in Saint-Vaast-La-Hougue 
and the Seine estuary, respectively. 

 Min Max Abundance 

Quinqueloculina seminula 0.13 0.32 90,000 

Ammonia tepida 0.12 0.28 230,000 

 

 
Figure 2. Minimum and maximum population-level surface sediment reworking rate 
SSRRp (cm2∙m−2∙d−1) of the two studied foraminiferal species, Quinqueloculina seminula 
and Ammonia tepida. 
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water column [18]. Note that the population-level surface sediment reworking 
rates SSRRp estimated here are likely to be conservative estimates as other puta-
tive processes involved in sediment reworking (e.g. feeding activities and cyst 
building) have not been considered. In addition, because we restricted our expe-
rimental approach to large foraminifera (i.e. 400 - 500 μm for Q. seminula and 
300 - 400 μm for A. tepida), the contribution of small juvenile individuals to se-
diment reworking has been neglected. Though our results non-ambiguously in-
dicate that the contribution of benthic foraminifera to sediment reworking 
should not be neglected, these limitations warrant the need for further work to 
refine the relative contribution of foraminifera to intertidal sediment reworking 
rates. This would be achieved through the consideration of 1) the identification 
and further quantification of the species-specific traits likely impacting sediment 
reworking, 2) the role played by individuals of different sizes, and 3) the nature 
of the foraminiferal assemblages under scrutiny, including species richness and 
abundance. 

Noticeably, Quinqueloculina seminula and Ammonia tepida specimens were 
consistently hidden in the sediment during our experiments, suggesting that the 
movement of these two species is not sensu stricto restricted to the sediment 
surface but may also have a vertical component as previously shown in Q. im-
pressa [17]. These vertical movements are likely to modify sediment porosity 
and permeability [9], and affect a range of critical patterns and processes such as 
oxygen, pH and redox gradients as other infaunal invertebrates typically do. The 
horizontal and vertical movements of foraminifera are then likely to enhance the 
transport of sediment particles from the surface to the sedimentary column and 
the ventilation of cohesive intertidal sediments, as reported for deep-sea benthic 
foraminifera [23]. The resolution of this specific issue is, however, far beyond 
the objectives of the present study and further work is needed to disentangle the 
contribution of the movement of intertidal foraminifera to the facilitation of 
biogeochemical processes by the modifications of the physical properties of se-
diment induced by meiofauna [34]. 

In their work on, respectively, the annelid polychaete Melinna palmata and 
the bivalve Abra ovata, Massé et al. (2019) [35] and Maire et al. (2007) [36] 
measured SSRRi of these two macrofaunal species with a method closely similar 
to ours. It hence allowed for sound comparisons to assess to what extend the 
contribution to surface sediment fluxes of the two studied benthic foraminiferal 
species is important. The individual surface sediment reworking rates SSRRi of 
the two foraminiferal species considered in this study are one order of magni-
tude smaller than those reported for the polychaete M. palmata (1 to 5.5 
cm2∙ind−1∙day−1; [35]), and the bivalve A. ovata (20 to 100 cm2∙ind−1∙day−1; [36]). 
However, considering the typical abundance of M. palmata (i.e. 277 ind∙m−2, 
[37]) and A. ovata (i.e. 592 ind∙m−2, [38]) in soft-sediment intertidal substrates, 
population-level surface sediment reworking rates SSRRp would respectively 
range from 277 to 1523 cm2∙m−2∙day−1 from 11,840 and 59,200 cm2∙m−2∙day−1. For 
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A. ovata, these figures have the same order of magnitude as the population-level 
SSRRp estimated here for Quinqueloculina seminula and Ammonia tepida 
(Figure 2). Noticeably, however, the surface sediment reworking rates estimated 
for M. palmata are ca. 40-fold lower than the figures obtained for Q. seminula 
and A. tepida (Figure 2). We finally stress that because our experiments exclu-
sively focused on the surface of the sediment, the figures reported in the present 
work for SSRRi and SSRRp are implicitly underestimating the contribution of 
benthic foraminifera to sediment reworking rates, which warrants both the im-
portance of these minute organisms to overall sediment reworking rates and the 
need for further work. 

5. Conclusions 

Taken together, our result suggests that despite their minute size benthic fora-
minifera may play a significant role, though still largely overlooked, in intertidal 
mudflats sediment reworking. It is further stressed that because the fluxes of 
dissolved elements at the sediment-water interface [39] and bio-irrigation are 
known processes driven by meiofauna bioturbation [4], foraminifera may play 
an unsuspected role in the patterns and processes driving intertidal soft-sediment 
ecosystems. Further work is nevertheless needed to thoroughly assess 1) the rela-
tive contribution of a community of foraminifera compared to the one of ma-
crobenthic organisms, and 2) the sediment reworking related to foraminiferal 
vertical movements. For instance, further assessment of the vertical mixing gen-
erated by foraminiferal motion behaviour should be an urgent question to tackle, 
since specimens were consistently shifting between “on the sediment surface” 
and “in sediment” positions in this study. 
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