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Abstract 
In a convolutional neural network (CNN) classification model for diagnosing 
medical images, transparency and interpretability of the model’s behavior are 
crucial in addition to high classification accuracy, and it is highly important 
to explicitly demonstrate them. In this study, we constructed an interpretable 
CNN-based model for breast density classification using spectral information 
from mammograms. We evaluated whether the model’s prediction scores 
provided reliable probability values using a reliability diagram and visualized 
the basis for the final prediction. In constructing the classification model, we 
modified ResNet50 and introduced algorithms for extracting and inputting 
image spectra, visualizing network behavior, and quantifying prediction am-
biguity. From the experimental results, our proposed model demonstrated 
not only high classification accuracy but also higher reliability and interpre-
tability compared to the conventional CNN models that use pixel information 
from images. Furthermore, our proposed model can detect misclassified data 
and indicate explicit basis for prediction. The results demonstrated the effec-
tiveness and usefulness of our proposed model from the perspective of credi-
bility and transparency. 
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1. Introduction 

Breast cancer is a major public health problem for women worldwide and is cur-
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rently the most common cancer globally. It is estimated that in 2022, approx-
imately 287,850 new cases of invasive breast cancer were diagnosed among US 
women, and about 43,250 women died from the disease [1]. Early detection, 
prompt diagnosis, and effective treatment of breast cancer are expected to im-
prove survival rates, reduce morbidity, and lower cost of care [2]. Mammogra-
phy is the most widely used screening modality for the early detection of breast 
cancer. It has been shown to reduce breast cancer mortality by 38% - 48% 
among participants who were actually screened [3]. Breast density is an impor-
tant factor in determining a woman’s risk of breast cancer [4] [5] [6] [7]. It de-
scribes the relative amount of different types of breast tissues, i.e., glandular tis-
sue, fibrous connective tissue, and fatty breast tissue, as seen on a mammogram. 
Breast density is cited as one of the important indicators for predicting breast 
cancer risk. Dense breast tissue has relatively high amounts of glandular tissue 
and fibrous connective tissue and relatively low amounts of fatty breast tissue 
[8]. Dense breast is a prevalent and strong correlation factor for breast cancer. 
Therefore, classification of mammographic breast density is a very important 
task. The most commonly used tool for classifying breast density clinically is the 
Breast Imaging Reporting and Data Systems 5th edition (BI-RADS). BI-RADS 
classifies breast density into four categories, namely, (BD1; breast density 1) ex-
tremely fatty, (BD2: breast density 2) scattered density, (BD3: breast density 3) 
heterogeneously dense, and (BD4: breast density 4) extremely dense [9] [10]. Of 
these 4 categories, the assessment of BD1 and BD4 is highly consistent. Howev-
er, there is greater variability distinguishing scattered density from heteroge-
neously dense parenchyma [11] [12] [13]. The reading process by radiologists is 
monotonous, tiring, lengthy, and costly. Moreover, there is large inter- and in-
tra-radiologist variability in subjective density categorization [14]. To address 
these issues, the development of computer-aided methods for breast density 
classification is currently being actively pursued. 

Recent advances in machine learning have provided opportunities to use deep 
learning (DL) techniques to address the challenge of breast cancer detection. 
Deep convolutional neural network (DCNN) is one of the most popular algo-
rithms for DL and has been successfully applied in various fields, achieving high 
performance in image recognition and classification [15] [16]. Many studies 
have attempted to apply DCNNs to assess and classify mammographic breast 
density [17] [18] [19] [20]. However, there are important flaws in current 
DCNN-based models. These DCNN-based models are black box models that 
generalize the data transmitted to it and learn from the data. Thus, the relational 
link between input and output is unobservable [21]. For these reasons, artificial 
intelligence (AI)-based methods have yet to be widely used in medical practice. 
A medical diagnosis system needs to be transparent, understandable, and ex-
plainable to earn the trust of medical professionals and patients [22]. Therefore, 
the explainability and interpretability of black box models need to be seriously 
addressed. In recent years, explainable artificial intelligence (XAI) has been a hot 
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research topics. Medical imaging researchers are increasingly using XAI to ex-
plain the results of algorithms, and XAI techniques have been developed using a 
variety of approaches [23]-[29]. 

In a previous study, we proposed a method for automatically classifying breast 
density by employing a wavelet transform-based and fine-tuned DCNN method 
[30]. The experimental results showed that the proposed method achieves 
promising classification performance in distinguishing between scattered density 
and heterogeneous density. However, a flaw of this paper is that the proposed 
DCNN-based model operated essentially as a black box without interpretability. 
Also, analytical reliability evaluations were not performed. A reliable classifica-
tion model should provide a measure of uncertainty associated with the predic-
tion so that physicians can make a well-informed decision. To overcome the 
shortcoming of the previous study, in this study, we newly propose an inter-
pretable DCNN-based model for the classification of breast density in mammo-
graphic images. DCNN-based models typically learn raw image pixels represented 
in the spatial domain and perform image classification tasks by directly provid-
ing pixels as classification inputs. However, in this case, the spectral information 
content of images is not utilized for classification. In the present work, as inputs 
to the DCNN models, we adopt using the wavelet coefficients of original images 
instead of using pixel value information from original images. Our study focuses 
on distinguishing between the two most difficult categories of the BI-RADS densi-
ty classification, namely, scattered density (BD2) vs. heterogeneous density (BD3) 
[31]. The classification of scattered density and heterogeneous high-density is ex-
tremely important. Differentiating between these two types of breast tissue helps 
radiologists identify potential abnormalities. Radiologists can make informed 
decisions and take appropriate actions based on the characteristics of the ob-
served phenomena. Our goals are to assess the breast density classification per-
formance of a newly proposed wavelet-based DCNN model, and to perform an 
analytical reliability evaluation of the model as well as visualize and characterize 
the model’s behavior. 

The main contributions of this study are as follows: 1) Evaluate the reliability of 
the proposed model using reliability diagrams, a measure of whether the output 
probability of the model is consistent with the true probability or not [32]; 2) Use 
t-distributed stochastic neighbor embedding (t-SNE) [33], a nonlinear, iterative 
dimensionality reduction method, to gain a better understanding of the behavior 
and response of the proposed model; 3) Analyze the ambiguity (uncertainty) of the 
proposed model’s judgments from the perspective of Shannon’s information en-
tropy; 4) Use gradient-weighted class activation mapping (Grad-CAM) [34], a 
class discriminable localization method, to visually understand where the pro-
posed model is looking and where mammograms are being evaluated. 

2. Methods 

In this study, we evaluate the reliability of the proposed model, investigate its 
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behavior and judgment ambiguity, and visualize the areas that influence its 
judgment. The proposed model is based on ResNet-50 [35], which has been 
demonstrated to be effective in many medical imaging tasks. ResNet-50 is a 
pre-trained model that has been trained on over one million images from the 
ImageNet database [36] and is designed for large-scale natural images. As natu-
ral images have inherent differences from mammograms, we conduct retraining 
(fine-tuning) throughout all layers of the architecture. 

Image data set used is comprised of 1300 mammograms (MMG). A spectral 
information learning model for the images (hereinafter referred to as “wave-
let-model”) is constructed. For comparison, we also construct a conventional 
original image (pixel information)-based learning model (hereafter referred to as 
“original-model”). Details of the spectral information of the images will be de-
scribed in Section 2.2. Both models perform fine-tuning and 10-fold cross- vali-
dation to distinguish between scattered density (BD2) and heterogeneous 
high-density (BD3). In cross-validation, the original images of each 10-fold da-
taset (10 subsets) are unified for both models for performing training and vali-
dation. In the following, we describe the dataset used, the method of extracting 
the image spectral information used, the architecture of the proposed method, 
the analytical reliability evaluation method, the behavior visualization method, 
the ambiguity measurement, and visualization of judgement regions. 

2.1. Image Data Set 

The image dataset used was mammogram X-ray DICOM images acquired from 
The Cancer Imaging Archive (TCIA) [37]. TCIA is a large archive of publicly 
available medical images (cancer images) on the web. Therefore, there are no 
ethical issues in this study, and the requirement to obtain informed consent was 
waived. 

This dataset includes images with and without calcification/masses, with a de-
finitive diagnosis of benign or malignant. In this study, 650 BD2 and BD3 im-
ages each (1300 images in total, maximum 2 images from the same patient) were 
collected. The collected images were manually segmented by a certified breast 
specialist to remove background areas not needed for diagnosis and labeled as 
BD2 and BD3. The sizes of these segmented images varied. Figure 1 shows an 
example of the segmented images. 

2.2. Extraction of Image Spectral Information Extraction Using 
Redundant Discrete Wavelet Transform 

In this study, two-dimensional redundant discrete wavelet transform (2D-RDWT) 
was used to extract spectral information from original images. In the medical 
field, two-dimensional discrete wavelet transform (2D-DWT) has been applied for 
data compression, image enhancement, and noise reduction [38]. In 2D-DWT, an 
image is initialized at decomposition level 0 and decomposed into four compo-
nents: one low-frequency component and three high-frequency components at  
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Figure 1. Example of the segmented images. (a) BD2 (benign); image size 3468 × 2370 
pixels; (b) BD2 (malignant); image size 4698 × 2352 pixels; (c) BD3 (malignant); image 
size 2238 × 1260 pixels; (d) BD3 (benign); image size 3245 × 1968 pixels. 

 
decomposition level 1. The low-frequency component (LL) produces a smoothed 
image, while the three high-frequency components, namely the low-high (LH), 
high-low (HL), and high-high (HH) components, produce three detailed images. 
When further decomposition is repeated, it is performed on the LL component. 
As the decomposition level increases, the resolution of the image decreases. 
More details of the 2D-DWT can be found in the literature [39]. 

The conventional 2D-DWT involves downsampling, decomposing the image 
into four components, and reducing each component to 1/4 size. The result of 
such 2D-DWT lacks shift-invariance and may cause problems such as loss of 
image contours. To avoid this problem, we used 2D-RDWT, which does not in-
volve downsampling. The basic algorithm of 2D-RDWT applies the transforma-
tion at each point in the image, stores the detailed coefficients, and uses the ap-
proximation coefficients for the next level. Therefore, the size of the coefficient 
array does not decrease for each level [38] [39]. As a result, shift invariance is 
maintained and the size of each of the four decomposed components remains 
the same as the original image. There are various wavelet basis functions in dis-
crete wavelet transform. For example, there are Haar, Daubechies, biorthogonal 
spline, Coiflet, Meyer, etc. In this study, Daubechies order 2 (db2) was used. 

Figure 2 provides an overview of level 1 2D-RDWT and dataset creation. 
Figure 2(a) displays the original image and the four component images of the 
level 1 2D-RDWT. Figure 2(b) is the 3-channel data for the wavelet-model, 
consisting of a combination of LL, LH, and HL images. Figure 2(c) is the 
3-channel data for the original-model. 

2.3. Proposed Architecture Based on Fine-Tuned ResNet50 Using 
Wavelet Coefficients 

We modified ResNet50 by introducing a wavelet coefficient 3-channel algorithm 
in the input layer. In addition, we equipped an algorithm for dimensionality reduc-
tion and 2D mapping of high-dimensional data immediately after the activation  
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Figure 2. Redundant discrete wavelet decomposition and combination of input data. (a) Original image and level 1 wavelet de-
composition; (b) 3-channel input data for the wavelet-model, consisting of a combination of LL, LH, and HL images; (c) 
3-channel input data for the original-model, consisting of three identical original images. 
 

output of the initial pooling layer, final fully convolutional layer, and softmax 
layer. Furthermore, we introduced an entropy calculation algorithm on the out-
put side of the softmax layer. These allow for visualization of the model’s beha-
vior and prediction ambiguity. The proposed network’s structure is shown in 
Figure 3. The ResNet50, on which it is based, is composed of 16 processing 
blocks and implements two types of shortcut connections. One is a module 
called the “conv (convolution) block” that places a convolutional layer in the 
shortcut (the input dimension becomes smaller than the output dimension), and 
the other is the “identity block” that does not place a convolutional layer in the 
shortcut (the input and output have the same dimension). Both modules consist 
of a bottleneck building block structure with three layers (1 × 1, 3 × 3, and 1 × 1 
convolutional layers) and enable reduction of the number of parameters without 
decreasing performance. In this study, we performed retraining of the entire 
network. In other words, we conducted fine-tuning without placing frozen lay-
ers (layers without weight updates) and performed a two-category classifica-
tion. Therefore, we replaced the final fully connected layer (Full conv) and the 
final classification layer (Classification) with new ones that match the number 
of categories. 

ResNet50 requires the input data size to be 224 × 224 due to its structure, so 
the entire image sizes were unified using bi-cubic interpolation. Model perfor-
mance evaluation was performed using 10-fold cross-validation (10% of the total 
data as validation data, the remaining 90% as training data), and the average  
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Figure 3. Overall structure of the proposed network. The ×2, ×3, and ×5 on the right side of the diagram indicate the number of 
blocks, the blue rectangle on the left side shows the structure of the Conv (Convolution) block where the input dimension 
changes, and the orange rectangle on the right side shows the structure of the Identity block where the input dimension remains 
the same. (a) Input (wavelet transform) layer; (b) 2D mapping display of activation output in the 3 different layers; (c) Visualiza-
tion of prediction ambiguity. 
 

accuracy of the 10 subsets is used as the model’s accuracy. The mini-batch size is 
10, and the optimizer is Adam (momentum SGD+RMSprop). In the retraining 
with mammograms, the parameters were adjusted so that the learning speed in-
creases in the newly replaced fully connected layer and decreases in the transfer 
layer, and so that the learning speed decreases every 5 epochs. Additionally, an 
L2 regularization term was added to the cost function (loss function) to prevent 
overfitting. The number of epochs was determined by performing accuracy va-
lidation after every iteration, and re-training stops if the accuracy is lower than 
the highest achieved accuracy for 5 consecutive iterations. 

2.4. Methods for Visualizing Confidence of CNN Models 

We evaluated confidence calibration using reliability diagrams based on the pre-
dicted scores for the wavelet-model and original-model inputs. We also used 
t-distributed stochastic neighbor embedding (t-SNE) to visualize the behavior of 
the models (changes in data distribution as the layers deepen). Entropy was 
computed from the output of the softmax layer to identify the ambiguity of the 
model’s decisions and ambiguous images. Furthermore, we used gradient-weighted 
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class activation mapping (Grad-Cam) [34] to highlight the regions of the model’s 
final prediction. 

2.4.1. Confidence Calibration 
Confidence calibration refers to the process of assessing how well a deep learn-
ing model’s predicted probabilities reflect the true probabilities of the events be-
ing predicted [32]. In other words, it measures whether the model is overconfi-
dent or underconfident in its predictions. A well-calibrated model assigns high 
probabilities to events that are likely to occur, and low probabilities to events 
that are unlikely to occur. There are several methods to evaluate confidence ca-
libration. Reliability diagram is a visual tool used to evaluate the confidence ca-
libration of a deep learning-based model. The diagram plots the predicted prob-
ability on the x-axis and the observed frequency of positive labels on the y-axis. 
In this experiment, a positive label is BD3 and a negative label is BD2. The dia-
gram is divided into a set of equally spaced bins based on the predicted probabil-
ities. In each bin, the mean predicted probability and observed frequency of pos-
itive labels are calculated and plotted as points on the diagram. Ideally, the 
points on the reliability diagram should be on the diagonal, indicating that the 
model’s predicted probabilities and observed frequencies of positive labels are 
perfectly calibrated. Points above the diagonal line indicate an underestimate, 
meaning the model’s predicted probability is lower than the true frequency. 
Points below the line indicate overconfidence, meaning the model’s predicted 
probability is larger than the true frequency. Points on the diagonal line indicate 
perfect calibration. Note that in this experiment the positive label is BD3 and the 
negative label is BD2. 

The general procedure for creating a reliability diagram is as follows: 
1) Divide the prediction probabilities into equally spaced bins; 
2) For each bin, calculate the average predicted probability and the observed 

frequency of BD3 labels of the prediction (actual accuracy); 
3) Plot the average predicted probability on the x-axis and the observed fre-

quency of BD3 labels on the y-axis. Plot one point in each bin; 
4) Draw a diagonal line from the bottom left corner to the top right corner of 

the graph. This line represents a perfectly calibrated model. 

2.4.2. T-Distributed Stochastic Neighbor Embedding (t-SNE) 
T-distributed stochastic neighbor embedding (t-SNE) is an unsupervised nonli-
near dimensionality reduction algorithm developed by Laurens van der Maaten 
and Geoffrey Hinton in 2008 for reducing high-dimensional data to a low-
er-dimensional space [33]. The idea is to embed higher dimensional data points 
into lower dimensions such that the similarity between the data points is re-
flected. It has the advantage of being able to learn and perform dimensionality 
reduction even for relationships that cannot be expressed linearly. Specifically, 
dimensionality reduction is performed by reducing the difference between the 
probability distribution of the distance of data points in high-dimensional space 
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and the probability distribution of the distance of data points in low-dimensional 
space. The probability distribution that represents the distance of data points in 
high-dimensional space uses the normal distribution (Gaussian distribution), 
while its distribution in low-dimensional space uses the t-distribution (Student-t 
distribution). The basic steps of t-SNE are as follows: 

Step 1 For each data point, assuming a normal distribution, the probability pij 
is calculated from data xi and xj using Equations (1) and (2); 

Step 2 Place an equal number of data points to the total number of test data n 
randomly in a low-dimensional space; 

Step 3 Based on the t-distribution (1 degree of freedom) from the data points 
yi, yj in the low-dimensional space corresponding to the data points xi, xj in the 
high-dimensional space, the probability distribution qij after dimensionality re-
duction is calculated using Equation (3); 

Step 4 The data points in the low-dimensional space are relocated so that the 
two probability distributions, pij and qij, become closer to each other; 

Step 5 Repeat steps 3 and 4 until the result converges. 
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where i, j, k are sample indices, pi|j is the conditional probability obtained in the 
calculation process, and σi is the standard deviation of the normal distribution 
centered on xi. Note that pii = qjj = 0. 

In t-SNE, the probability distribution pij of data points xi and xj in the 
high-dimensional space is mapped into a probability distribution qij in the 
low-dimensional space, while preserving their closeness. In this case, the Kull-
back-Leibler divergence (KL-divergence) is employed. KL-divergence can be 
used as a measure of the difference between the distances of data points in 
high-dimensional space and those in low-dimensional space. Therefore, we aim 
to minimize the sum of the KL-divergences between the joint probability distri-
butions pij and qij in Equation (4). If pij and qij have exactly the same distribution, 
the KL-divergence will be zero, but it increases when the distributions differ 
greatly. 
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= =∑ ∑∑�                 (4) 

Note that the result of Equation (1) varies depending on the standard devia-
tion σi. When the data points around xi are dense, σi should be small, and when 
they are sparse, should be large. Therefore, perplexity is used as a parameter to 
search for an appropriate σi. Perplexity is a parameter that adjusts the width (va-
riance) of a normal distribution representing the distance between data points in 
a high-dimensional space. If perplexity is large, σi also becomes large, and the 
contribution of neighboring points of xi located far away to learning becomes 
significant. In this experiment, perplexity is set to 30. 

2.4.3. Calculation of Classification Ambiguity Using Entropy 
We measured the ambiguity of the model predictions for each input image. In 
this study, the entropy of the output values from the softmax layer is used as an 
indicator of ambiguity. Assuming the data are classified into n classes, let Pi be 
the probability of belonging to class i. The entropy I in information theory is de-
fined by Equation (5). 

[ ]2 2
1 1

1log log bit
n n

i i i
i i

I p p p
p= =

= = −∑ ∑                 (5) 

For example, when comparing the entropy values for two models, a lower en-
tropy indicates that the model is more certain in its predictions and therefore 
more accurate, while a higher entropy indicates more uncertainty and lower ac-
curacy. In this study, we perform two-class classification of breast tissue into 
scattered and heterogeneous high-density categories. Therefore, if entropy is 
close to 1 from Equation (5), it means that the model cannot clearly determine 
the class to which a particular image belongs, while if it is 0, it means that the 
image is certainly classified into a specific class. This means that a model still 
could be used for classifying data, even if the model does not sufficiently under-
stand the data. 

2.4.4. Gradient-Weighted Class Activation Mapping (Grad-CAM) 
Grad-CAM is a class-discriminative localization method that can generate visual 
explanations without requiring architecture modification or retraining. It loca-
lizes relevant image regions and emphasizes which part of the image has the 
largest impact on the final prediction probability score using the gradient (de-
rivative) of the feature map of the final convolutional layer of the network. Areas 
with high gradients have a significant impact on the prediction result. Figure 4 
shows the flowchart of how to implement Grad-CAM: 

1) Forward propagate the input images and extract the final convolutional 
layer and classification result; 

2) Perform error backpropagation using the classification results and compute 
the gradient of the classification output for each element of the final convolu-
tional layer; 
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Figure 4. Schematic of the Grad-CAM. (a) Forward propagation; (b) Backpropagation; (c) 
Calculate GPA for each channel; (d) Gradient calculation process using ReLU function. 

 
3) Calculate the global average pooling (GAP) of the gradients obtained in 2); 
4) Take the weighted sum of the convolutional-layer values extracted in 1) 

with the GAP as weights, and resize to the original image size. 

3. Results 

In this study, we proposed an interpretable breast density classification model 
using wavelet coefficients (wavelet-model) and constructed an XAI-CAD system 
that can evaluate the reliability and ambiguity. For comparison, we also con-
structed a model using the conventional image pixel values (original-model). 
The accuracy (average accuracy of 10-fold cross-validation) of both models was 
0.922 and 0.915, respectively, and the area under an ROC curve (AUC) was 
0.974 and 0.977, respectively, with no statistically significant difference. Table 1 
shows the results of the performance evaluation of the models. 

Figure 5(a) and Figure 5(b) show the validation results for the reliability of 
the original-model and wavelet-model, respectively, indicating whether the mod-
el’s score values can be trusted as probability values. The upper graphs display 
histograms of the mean predicted scores (frequency of occurrence for predicted  

https://doi.org/10.4236/ojmi.2023.133007


E. Matsuyama et al. 
 

 

DOI: 10.4236/ojmi.2023.133007 74 Open Journal of Medical Imaging 
 

Table 1. Model performance evaluation results. 

 Original-model Wavelet-model 

AUC 0.974 0.977 

Accuracy 0.915 0.922 

Recall 0.925 0.925 

Specificity 0.905 0.920 

precision 0.906 0.920 

 

 
Figure 5. Confidence histograms (top) and reliability diagrams. (a) Original-model; (b) Wave-
let-model. The upper graphs show the frequency of occurrence against predicted scores, while the 
lower graphs are reliability diagrams with dashed lines indicating perfect calibration. 

 
scores), while the lower graphs show reliability diagrams (ratio of BD3 labels per 
bin to the mean of predictive score values per bin). The number of bins used in 
this experiment is 10. The closer the plotted point is to the dashed line in the re-
liability diagrams, the more reliable the prediction score is [32]. 

In this experiment, we aimed to verify the uncertainty of the model in re-
sponse to changes in the dataset. To achieve this, we used the original images of 
the 10 subsets of 10-fold cross-validation as a common dataset for both models 
and visualized the behavior of the models (variation in data distribution). An 
example of the results is shown in Figure 6. The classification accuracies of the  
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Figure 6. Behavior of the two models. (a)-(c) are original-model, (d)-(f) are wavelet-model. The upper rows for both models are 
distribution plots of high-dimensional data mapped into two dimensions. The lower rows show the KL-divergence and gradient 
norm for the two-dimensional mapping. (a) and (d) are the activation outputs of the initial pooling layer; (b) and (e) are the acti-
vated outputs of the final convolutional layer; (c) and (f) are the activation outputs of the softmax layer. 
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original-model and wavelet-model shown in the figures are 0.99 and 1.0, respec-
tively. The arrows in the figure indicate the data that became isolated points in 
the final distribution of the original-model. The lower part of the figure shows 
the changes in KL-divergence and gradient norm with iteration counts. 

Figure 7 shows the entropy values of the model predictions for the subsets 
shown in Figure 6. Figure 8 shows the original image of the DB3 Image no. 112 
data, which was an isolated point in the original-model, and the regions that 
serve as the basis for the predictions of both models. A heat map was given to 
the image data using Grad-CAM for visualization. As the heat map shifts from 
blue to red, it gives more significant information about the influence of the pre-
diction results. 

We compared the reliability of both models using each subset of 10-fold cross- 
validation. An example of the results is shown in Figure 9. Figure 9(a) and  

 

 
Figure 7. Ambiguity in judgment and extracted data. (a) original-model; (b) wavelet-model. The images in the 
graphs represent the input data (BD3 Image no.112) that resulted in a false negative for the original-model. The 
arrows in the graphs indicate the entropy value of BD3 Image no.112. 

 

 
Figure 8. Original image and region of interest for each model’s prediction (Grad-cam). 
(a) Original image of the data (DB3 Image.no112) that became an isolated point in the 
original-model; (b) Predicted region of interest for BD3 Image.no112 in original-model; 
(c) Predicted region of interest for DB3 Image.no112 in wavelet-model. 
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Figure 9. Prediction ambiguity graphs and distributions of prediction. (a) and (c) are the entropy values for the top 100 most am-
biguous cases in the original-model and wavelet-model cases, respectively, and the black bars indicate misclassifications. (b) and 
(d) are the probability distributions of the final predictions; red and blue letters in the figures indicate false positive and false nega-
tive data, respectively. 
 

Figure 9(c) show the entropy values for the top 100 most ambiguous images. 
Black bars indicate misclassified data. Figure 9(b) and Figure 9(d) are 
two-dimensional mapping by t-SNE. Proper classification results in two clusters, 
red and blue, but misclassification results in a mixture of red and blue. In Figure 
9(b) and Figure 9(d), red text represents false-positive data, while blue text 
represents false-negative data. 

4. Discussion 

In the performance evaluation of the proposed model and the conventional 
model, as shown in Table 1, both models demonstrated high accuracy exceeding 
90%. While the overall results were good, these evaluation methods are insuffi-
cient for evaluating error distribution. That is, it does not take into consideration 
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the problem of the model being over-confident, where it outputs large scores 
despite not being able to make correct predictions. Therefore, in this study, we 
conducted an investigation into the uncertainty of the prediction scores output 
obtained by the two models. The results are shown in Figure 5. The top row 
shows the histograms of the mean prediction scores. Regarding the results of the 
verification using 1300 input images (650 negative (DB2) and 650 positive 
(BD3)), in the original-model, 573 images were predicted negative with a mean 
prediction score of 0 to 0.1, while 583 images were predicted positive with a 
score of 0.9 to 1.0 (Figure 5(a)). On the other hand, in the wavelet-model, 572 
images were predicted negative with a mean prediction score of 0 to 0.1, while 
569 images were predicted positive with a score of 0.9 to 1.0 (Figure 5(b)). This 
means that the original-model assigns higher scores and predicts more positive 
cases. The bottom row shows reliability diagrams. A reliability diagram visually 
expressed how well a model is calibrated. When a model is perfectly calibrated, 
the accuracy (the relative frequency of positives) becomes an identity function of 
reliability (the mean predicted score) and is plotted on the dashed line in the fig-
ure. If the plot is below the perfectly calibrated line, the reliability is greater than 
the accuracy, which means that the model is overconfident. On the other hand, if 
the plot is above the line, the accuracy is greater than the reliability, which means 
that the model is underestimated. Both models are not perfect. In the case of the 
original-model, the plots in the figure are generally located lower than the perfectly 
calibrated line (dashed line). On the other hand, the plots of the wavelet-model are 
closer to the dashed line, indicating that it is well-calibrated. Specifically, when the 
average predicted score is between 0.9 and 1.0, in the case of the original-model 
(Figure 5(a)), approximately 85% of the predictions are in the positive (BD3) 
class. As mentioned above, the histograms in the upper row suggest that the 
original-model assigns high scores and makes positive predictions, but the out-
put of the model cannot be taken as a probabilistic meaning as it is. On the other 
hand, in the wavelet-model (Figure 5(b)), when the average predicted score is 
between 0.9 to 1.0, approximately 95% of the samples are classified as positive 
(BD3) class, and the model’s score can be treated as a probability. Therefore, it 
can be said that the results of the wavelet-model are more reliable. 

Figure 6 visualizes the behavior of input data as it passes through the layers of 
the network. The top rows of Figures 6(a)-(c) and Figures 6(d)-(f) show the 
distribution changes of a certain subset using t-SNE for the original-model and 
wavelet-model, respectively. The bottom rows show the KL-divergence and gra-
dient norm. As the number of iterations increases, the values decrease, indicat-
ing that high-dimensional probability distributions are effectively mapped to 
lower dimensions. Dense clusters in the t-SNE plots correspond to classes that 
are inherently classified correctly. Generally, when pixel information of an image 
is input to a CNN, the initial layers tend to act on low-level features such as 
edges and luminance. Therefore, as shown in Figure 6(a), the original-model 
does not show the clustering of the target BD2 and BD3 classes. From Figure 
6(d), it can be seen that the wavelet-model, which takes image spectrum infor-
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mation as input, exhibits a similar tendency. Moreover, as the layers become 
deeper in both models, clustering for each class is shown. However, in Figure 
6(c) and Figure 6(f), in the original-model, the BD3 (image No.112) is displayed 
as an isolated point in the BD2 (blue) cluster. On the other hand, in the wave-
let-model, both BD2 (red) and BD3 (blue) are appropriately clustered, indicating 
correct classification. In both models, the output of the final convolutional layer 
(Figure 6(b) and Figure 6(e)) is appropriately clustered. This suggests model 
uncertainty rather than data uncertainty. In other words, it can be inferred that 
the original-model has higher ambiguity in the final decision compared to the 
wavelet-model. 

In this proposed method, the information entropy is introduced as an algo-
rithm to calculate the level of ambiguity in the softmax layer. As this experiment 
is a binary classification, the highest ambiguity is 1 bit, and the lowest is 0 bit 
when there is no ambiguity. As shown in Figure 7, the ambiguity of image 
No.112 (an isolated data point in Figure 6(c)) is high at 0.929. This means that 
the original-model cannot clearly determine the class it should be classified into. 
The reason may be that the original-model has not learned the differences in 
similar features or that the image contains elements of both classes, causing 
confusion in the model. On the other hand, wavelet-model has a very low en-
tropy value of 0.017, which suggests that it is making a confident decision. Fig-
ure 8 shows the regions of interest that the models focused on when making the 
prediction for Image No.112. The red regions had the most influence on the 
prediction, while the blue regions had little influence. In the original-model 
(Figure 8(b)), it can be seen that the model focused more on the tumor area ra-
ther than the mammary region of the image. This may have caused confusion in 
the model. On the other hand, the wavelet-model (Figure 8(c)) is correctly clas-
sified by focusing on the mammary gland region and has high certainty. As 
shown in Figure 7, the wavelet-model is generally less ambiguous. This suggests 
that the wavelet-model provides a clearer judgment than the original-model 
prediction. Figure 9 shows the measurement results of ambiguity for a certain 
subset and the probability distribution of the final output. From Figure 9(a) and 
Figure 9(c), it can be seen that the wavelet-model has overall lower entropy val-
ues and lower ambiguity than the original-model. However, despite low ambiguity 
in both models, some data are misclassified (black bars). It is considered that this 
is caused by confusion in judgment of similar images. However, for the wave-
let-model, it turns out that over-confidence does not occur in BD2. From this re-
sult, it can be said that the proposed wavelet-model is better in terms of reliability. 

In this study, we constructed a breast density classification XAI-CAD system 
using spectral information from mammograms. In addition to conventional ac-
curacy validation, we verified the reliability of the model from the histogram of 
the mean prediction score and reliability diagram, and demonstrated that the 
model’s prediction scores are reliable. In the proposed model, t-SNE was used to 
visualize the behavior of input data passing through the layers of the network as 
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probability distributions. Through visualization of these probability distribu-
tions, we were able to detect isolated data points, misclassified data, and data 
points near the classification boundary. In addition to the explainability of the 
model, we believe that it has a wide range of generalizations, such as data clean-
ing, model retraining, and reviewing data-label reviewing. In the proposed mod-
el, we also introduced an algorithm for calculating information entropy as a 
quantitative measure of uncertainty. In the present study, it was easy to deter-
mine the ambiguity from the prediction score because of the two-class classifica-
tion. However, in multi-class classification, since various scores are assigned, we 
believe that evaluating uncertainty using information entropy is a useful evalua-
tion method for detecting ambiguous data. In the final prediction, we visualized 
the model’s reasoning using Grad-CAM, which not only allowed us to identify 
the causes of misclassification and adjust the training data but also enhanced the 
transparency and interpretability of the model. However, there are limitations to 
this study. If the model is properly calibrated, the accuracy (relative frequency of 
positives) should be an identity function of the confidence (mean predicted 
score). Nevertheless, our model was not able to achieve this result. Additionally, 
the shape of clusters in t-SNE can be altered by parameter tuning. These consid-
erations should be addressed as future tasks. Moreover, how to apply the pro-
posed model in a clinical setting will be one of our future work. 

5. Conclusion 

We used spectral information from mammograms to construct an interpretable 
CNN-based system for breast density classification. We evaluated whether the 
prediction score of the classification model is a highly reliable probability value 
using a reliability diagram, and visualized the basis for the final prediction using 
Grad-CAM. In constructing the classification model, we modified ResNet50 and 
introduced algorithms for extracting and inputting image spectra, visualizing 
network behavior using t-SNE, and quantifying prediction ambiguity using in-
formation entropy. Experimental results show that the proposed model can 
demonstrate not only high classification accuracy but also high reliability and 
interpretability compared to conventional CNN models that use image pixel in-
formation. Furthermore, the proposed model can detect misclassified data and 
explicitly indicate the basis of prediction. The results demonstrated the effec-
tiveness and usefulness of our proposed model from the perspective of credibili-
ty and transparency. 
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