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Abstract 
Accurate histological classification of lung cancer in CT images is essential for 
diagnosis and treatment planning. In this study, we propose a vision trans-
former (ViT) model with two-stage fine-tuning using wavelet transformation 
to improve classification performance. In the first stage, feature extraction is 
enhanced using wavelet-transformed images, and in the second stage, the 
model is fine-tuned with the original CT images. This method improves classi-
fication accuracy and enhances model robustness. Experimental results show 
that the proposed method outperforms conventional ViT and CNN fine-tuning 
methods. It achieves a classification accuracy of 0.971, surpassing the 0.953 ob-
tained with conventional ViT fine-tuning and 0.945 with ResNet50 fine-tuning. 
Moreover, the proposed method reduces classification uncertainty, with par-
ticularly significant improvements in the classification of large cell lung carci-
noma. These results demonstrate the effectiveness of incorporating wavelet-
based feature extraction into ViT fine-tuning for lung cancer classification. Fu-
ture research will focus on developing optimization techniques, applying the 
method to multimodal medical imaging, and integrating explainable AI tech-
nologies to further improve its applicability in clinical settings. 
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1. Introduction 

Lung cancer remains one of the leading causes of cancer-related mortality world-
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wide, with approximately 2.5 million new cases diagnosed in 2022 [1] [2]. It is 
broadly classified into small cell lung cancer (SCLC) and non-small cell lung can-
cer (NSCLC). The latter includes subtypes such as lung adenocarcinoma (LUAD), 
lung squamous cell carcinoma (LUSC), and large cell carcinoma (LULC), which 
are classified based on cytological characteristics [3] [4]. Early identification of 
histological subtypes is crucial for effective treatment and improved prognosis. 
Although chest X-rays and CT scans are considered the gold standard in health 
screenings and examinations, they have limitations in histological differentiation, 
making accurate diagnosis challenging. 

The advent of vision transformers (ViTs) has significantly influenced computer 
vision, leveraging the self-attention mechanism from natural language processing. 
Since their introduction, ViTs have achieved state-of-the-art performance in im-
age recognition, object detection, segmentation, and classification, surpassing 
convolutional neural networks (CNNs) in several benchmark tasks [5]-[9]. Their 
ability to capture long-range dependencies enables a more comprehensive under-
standing of spatial relationships, which is particularly beneficial for medical im-
aging applications, including lung cancer detection [3] [10]. 

ViT-based methods have been widely applied in medical image analysis, includ-
ing cancer classification, tumor segmentation, nodule detection, and survival pre-
diction [9]-[14]. While numerous studies have demonstrated promising perfor-
mance in lung cancer classification, several challenges remain. One of the primary 
limitations is the reliance on positional embedding and the lack of locality in self-
attention. Since ViT encodes spatial information using positional embeddings, it 
may be less effective in capturing fine-grained local features compared to CNNs. 

Moreover, although self-attention considers relationships across all patches, it 
exhibits a limited capacity to capture local patterns, particularly in the early layers. 
These limitations significantly affect the detection of small abnormalities, such as 
pulmonary nodules in lung CT scans. Therefore, further improvements in ViT-
based approaches are necessary to enhance diagnostic accuracy. 

Wavelet-based ViT models have recently emerged as a promising solution for 
improving local feature extraction [15]-[19]. Unlike conventional ViT models, 
these methods leverage wavelet transformation to decompose images into multi-
ple frequency components, capturing both global (low-frequency) and local (high-
frequency) features. This enables better differentiation of fine-grained structures, 
such as tumor textures and subtle intensity variations, while preserving the overall 
structural integrity of the image. For example, LUAD typically exhibits fine glan-
dular structures, whereas LUSC tends to have coarser tissue patterns. To effec-
tively capture these morphological differences, leveraging multi-scale information 
is essential, making wavelet transformation a well-suited approach for this task. 

This study proposes a wavelet-based two-stage fine-tuning ViT model that in-
tegrates feature extraction using wavelet transform and applies stepwise fine-tun-
ing to enhance adaptability to lung CT images. In our previous study [9], ViT 
models pretrained on ImageNet 2012 were fine-tuned for four-category classifi-
cation of LUAD, LUSC, LULC, and normal cases; however, challenges persist in 
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improving classification accuracy. In particular, pretraining on small-scale da-
tasets resulted in insufficient utilization of local information, limiting classifica-
tion performance improvement. ViT models are typically pretrained on large-
scale datasets such as ImageNet-21k (14 million images) and JFT-300M (300 mil-
lion images), enabling high accuracy even with a limited number of samples dur-
ing fine-tuning. However, these large-scale datasets are not publicly available. 

This study aims to achieve improved classification performance while main-
taining the same scale of pretraining and fine-tuning datasets as in our previous 
study. To this end, we propose a two-stage fine-tuning method incorporating 
wavelet transform, which effectively leverages local information even in small-
scale datasets. 

Our method consists of two fine-tuning stages: Stage 1: The model is fine-tuned 
using wavelet-transformed images to enhance feature learning. Stage 2: The fine-
tuned model is further trained on the original CT images to refine the learned 
representations. 

To evaluate model performance, we employ cross-entropy as an additional per-
formance evaluation metric, along with standard classification metrics, to quan-
tify uncertainty in image classifiers. 

The key contributions of this study are as follows: 
1) We propose a novel wavelet-based two-stage fine-tuning ViT model that 

combines wavelet transformation with progressive transfer learning. This approach 
enhances classification accuracy and generalization by leveraging multi-scale fea-
ture extraction and adaptive learning. 

2) We use cross-entropy not only as a cost function in CNN training but also 
as a performance evaluation metric to quantify classifier uncertainty. 

3) We demonstrate that the proposed model achieves higher classification ac-
curacy and robustness than conventional ViT-based and CNN-based fine-tuning 
models, as evaluated on the same pretraining and lung CT datasets used in our 
previous study. 

2. Materials and Methods 

This study proposes a method to improve histological classification performance 
of lung cancer in CT images during pretraining with a small-scale dataset and 
fine-tuning with a limited amount of data. 

2.1. Dataset 

The dataset used in this study consists of lung CT images publicly available on 
Kaggle [20] and intended for non-profit research purposes. Therefore, this study 
does not raise ethical concerns, and informed consent is not required. The dataset 
is categorized into four classes: LUAD, LULC, LUSC, and normal lung tissue. An 
example is shown in Figure 1. For the experiments, each class contained 187 im-
ages, resulting in a total of 748 images. A 10-fold cross-validation approach was 
applied, with 90% of the data used for training and the remaining 10% for valida-
tion. 
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Figure 1. An example of image data: (a) LUAD (lung adenocarcinoma); (b) LUSC (lung squamous cell carcinoma); (c) Normal 
(healthy lung); (d) LULC (large cell carcinoma). 

2.2. Proposed Approach 
2.2.1. The 2D Discrete Wavelet Transform 
Wavelet transform is a mathematical technique for analyzing data across multiple 
scales. The discrete wavelet transform (DWT) applies wavelet decomposition in a 
discrete manner, making it particularly effective for image processing and compres-
sion. In medical imaging, the two-dimensional discrete wavelet transform (2D-
DWT) is widely used for data compression, image enhancement, and noise reduc-
tion [21] [22]. 

The 2D-DWT starts at decomposition level 0 and, at level 1, decomposes the 
image into four frequency sub-bands: a low-frequency component (LL) and three 
high-frequency components—low-high (LH), high-low (HL), and high-high (HH). 
The LL component provides a smoothed approximation of the image, while the 
high-frequency components capture structural details. At higher decomposition 
levels, further transformations are applied exclusively to the LL component, pro-
gressively reducing resolution while preserving key multi-scale features. This hier-
archical process efficiently represents complex image structures while retaining 
crucial details. The overview of 2D-DWT decomposition is shown in Figure 2. 

 

 
Figure 2. Level-1, two-dimensional DWT. A one-dimensional DWT is applied along the rows of the image, followed by another 
one-dimensional DWT along the columns. The four generated components (LL, LH, HL, and HH) are arranged to maintain the 
original image size. 

 
DWT employs various wavelet basis functions for decomposition, including 
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Haar, Daubechies, Coiflet, and Meyer wavelets. In this study, the Daubechies wave-
let of order 2 (db2) was chosen for its optimal balance between computational 
efficiency and feature preservation. Additional details on 2D-DWT can be found 
in the literature [23]-[25]. 

2.2.2. Two-Stage Fine-Tuning Strategy 
To adapt the ViT model for lung cancer classification, this study employs a two-
stage fine-tuning strategy. This approach consists of the following three steps: 

Step 1: Pretraining Using ImageNet 
First, the ViT model undergoes pretraining on the ImageNet 2012 dataset, which 

consists of approximately 1.3 million natural images with a resolution of 384 × 
384 for a 1000-class classification task. This pretraining method is widely used and 
learns general feature representations. However, at this stage, the model does not 
incorporate features specific to CT images or lung cancer. 

Step 2: Fine-Tuning Using Wavelet-Transformed CT Images 
In this step, wavelet decomposition is applied to lung CT images, and the re-

sulting wavelet coefficients (Level 1) are used as input to fine-tune the pretrained 
ViT model. 

ViT models are known to have weak inductive biases and tend to prioritize ex-
tracting low-frequency components over high-frequency components [26] [27]. 
This step leverages the self-attention mechanism of ViT, which accounts for cor-
relations across all features, while enhancing its ability to capture the relationships 
between high- and low-frequency components—an aspect where ViT typically 
underperforms. By incorporating medical image-specific features and utilizing 
multi-scale decomposition, this approach enables the model to capture texture 
variations more effectively compared to using raw CT images for training alone. 

During this step, the multi-layer perceptron (MLP) head of the pretrained ViT 
model is removed and replaced with a feedforward layer tailored to the number 
of target classes. Additionally, since this stage involves processing images with a 
different resolution from that used during pretraining, the original patch embed-
ding and position embedding are not suitable for direct use. Consequently, all em-
beddings are retrained, and the linear transformation layer preceding the scaled 
dot-product attention in the transformer encoder is fine-tuned as well. This pro-
cess can be regarded as a form of deep fine-tuning. 

Step 3: Fine-Tuning Using Original CT Images 
In this final step, the ViT model, which has already learned wavelet-based fea-

tures, undergoes additional fine-tuning using original CT images. This process 
aims to adapt the model to high-resolution CT data while balancing texture-based 
and structural feature learning. As in the previous step, embeddings are updated, 
and the linear transformation layer preceding the scaled dot-product attention in 
the encoder is retrained. 

This two-stage fine-tuning approach first emphasizes texture enhancement 
through wavelet feature learning in the first stage and subsequently refines the 
global representations in the second stage using original CT images. 
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2.2.3. Overall Network Framework 
Figure 3 illustrates the overall network framework of the proposed method. This 
approach utilizes a Base-sized ViT model consisting of 12 stacked transformer 
encoder blocks, each with 12 attention heads. The model is pre-trained on the 
ImageNet 2012 dataset. Although the standard ImageNet 2012 dataset uses an im-
age resolution of 224 × 224 pixels, this study adopts high-resolution training at 
384 × 384 pixels to capture finer details. 

 

 
Figure 3. Overall network framework of the proposed two-stage fine-tuning method. From left to right: Pretraining on ImageNet, 
first-stage fine-tuning using wavelet coefficients, and second-stage fine-tuning using raw images. 
 

The training data are divided into 16 × 16 patches, which are then transformed 
into 768-dimensional patch embeddings. A class token is then prepended, and 
position embeddings are added to each patch before they are fed into the trans-
former encoder. After initial training, the existing MLP head is replaced with a 
new one, and a novel feature map generation mechanism is integrated into the 
first transformer encoder block. Specifically, a DWT block is added before patch 
partitioning. This block applies a level-1 DWT to the image, producing four wave-
let coefficient components (LL, LH, HL, and HH) that form a 384 × 384 × 3 array. 
The array is then partitioned into patches, and after initializing the pre-trained 
embeddings, the model undergoes additional training. 

During retraining, the 36 linear layers preceding the 12 scaled dot-product at-
tention mechanisms in each block (totaling 432 layers) are updated. For training, 
Adam is used as the optimizer, with a learning rate of 0.0001, a mini-batch size of 
12, and a maximum of 50 epochs. In other words, this process corresponds to the 
fine-tuning of the pre-trained ViT model. 

https://doi.org/10.4236/ojmi.2025.152005


E. Matsuyama et al. 
 

 

OI: 10.4236/ojmi.2025.152005 63 Open Journal of Medical Imaging 
 

For retraining, 10-fold cross-validation is conducted to generate ten subset-trained 
models. The model with the highest accuracy is selected, after which the DWT block 
is removed and raw CT images are fed directly into the model. The model is then 
retrained under the same learning conditions, updating the embedding layer and the 
432 linear layers preceding the scaled dot-product attention mechanism. 

2.3. Advantages of the Proposed Two-Stage Fine-Tuning Approach 

1) Enhanced Feature Representation and Inductive Bias Reinforcement in 
ViT with Wavelet Transform: 

Wavelet decomposition captures features in both spatial and frequency do-
mains, making it easier for ViT to learn the fine structures of lung cancer tissues. 
Compared to raw CT images, wavelet-transformed images emphasize texture var-
iations and provide critical information for classifying lung cancer subtypes. ViT 
has a weaker inductive bias than CNNs and struggles with learning local infor-
mation effectively. However, by using DWT to decompose images into LL, LH, 
HL, and HH components and arranging them to match the original image size, 
local information is naturally embedded within patches, allowing ViT to learn 
both local patterns and long-range relationships more effectively. Specifically, LL 
preserves the coarse structure of the image, aiding in the learning of long-range 
dependencies, while LH, HL, and HH retain edge and local features, compensat-
ing for ViT’s weakness in capturing local information. In this way, ViT can learn 
both global structures and local details. 

2) Improved Domain Adaptation from ImageNet to Medical Imaging: 
The wavelet-based fine-tuning phase acts as a transition between ImageNet pre-

training and lung CT classification, allowing the model to gradually adapt to the 
medical imaging domain. This progressive learning approach enhances generali-
zation compared to directly fine-tuning on CT images. 

3) More Effective Feature Learning: 
In conventional fine-tuning, only the final fully connected layer is primarily 

updated. In contrast, our method retrains the linear transformations in the en-
coder to refine the embedding representations. This approach enables the optimi-
zation of feature representations tailored to the medical imaging domain while 
retaining useful prior knowledge learned from ImageNet. 

4) Higher Classification Accuracy: 
The wavelet-based fine-tuning stage enhances texture feature learning, while 

subsequent fine-tuning on original CT images refines global structural represen-
tations. This balanced approach improves classification accuracy and reduces cat-
astrophic forgetting during the transition from ImageNet pretraining to lung CT 
image classification.  

5) Greater Generalization and Robustness: 
Fine-tuning directly on small medical datasets often leads to overfitting. Intro-

ducing an intermediate wavelet-based stage enhances generalization to unseen 
data while normalizing variations in contrast and texture, making the model more 
robust to differences in CT image quality. 
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6) Reduction of Computational Cost: 
DWT decomposition reduces data redundancy and improves the efficiency of 

feature extraction while compressing information. As a result, it reduces the com-
putational burden of ViT while also improving accuracy. 

2.4. Performance Measurement 

In this study, in addition to standard performance metrics, we use cross-entropy 
to assess uncertainty in image classifiers. 

2.4.1. Standard Metrics 
A confusion matrix is essential for performance evaluation, as it serves as the basis 
for calculating standard metrics [28] [29]. It comprises four possible outcomes: 
true positive (TP), false negative (FN), false positive (FP), and true negative (TN). 
In this study, the following standard metrics were used: accuracy, precision, recall, 
specificity, and F1-score. 

Accuracy, a widely used metric, accounts for all values in the confusion matrix, 
measuring the proportion of correctly classified instances among all cases (TP, 
FN, FP, and TN). Precision evaluates the proportion of TP cases among all pre-
dicted positive instances. Recall, also called sensitivity, assesses the proportion of 
TP cases among all actual positive instances. Specificity measures the proportion 
of correctly classified negative cases. The F1-score, the harmonic mean of preci-
sion and recall, provides a balanced measure of both metrics. 

2.4.2. Cross Entropy 
We use cross-entropy as a performance metric to quantify classifier uncertainty.  

Cross-entropy measures the difference between the two probability distribu-
tions [30]-[32]. In machine learning and deep learning, it is commonly used to 
assess how closely a model’s predicted probabilities align with the true probabili-
ties. Essentially, cross-entropy quantifies the discrepancy between the two distri-
butions. 

The cross-entropy between two distributions is defined mathematically as fol-
lows: 

 ( ) ( ) ( ), logexH p q p x q x= −∑  (1) 

where p represents the true distribution, q denotes the predicted distribution, and 
x sums over all possible outcomes. 

Cross-entropy also quantifies the information loss when approximating the 
true distribution using the predicted one. It is particularly useful for evaluating 
classification models that output probabilities in the range [0, 1]. In simple terms, 
a lower cross-entropy value indicates a closer match between the predicted and 
true distributions, while a higher value signifies greater divergence. 

As a performance metric, cross-entropy enables model comparison by compar-
ing entropy values. A lower cross-entropy suggests greater confidence in predic-
tions, often correlating with higher accuracy, whereas a higher value indicates 
higher uncertainty and lower accuracy. A numerical example illustrating the use 
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of cross-entropy in multi-class classification is provided in [33]. 

3. Results and Discussion 

In this study, we proposed a two-stage fine-tuning method and evaluated its per-
formance in classifying lung cancer histological subtypes using CT images. The 
proposed method is designed for a four-class classification task, distinguishing 
three lung cancer histological subtypes (LUAD, LULC, and LUSC) and normal 
lung tissue. In the experiments, we used the same number of training samples as 
in a previous study [9] and assessed classification performance using five metrics: 
accuracy, precision, recall, F1-score, and specificity. Cross-entropy was used to 
evaluate uncertainty. 

Tables 1-3 present the performance evaluation results for three different fine-
tuning approaches: first-stage fine-tuning only (Table 1), the proposed two-stage 
fine-tuning method (Table 2), and conventional fine-tuning (Table 3). A com-
parison of Tables 1-3 indicates that the proposed method (Table 2) achieved bet-
ter performance than the other approaches across all metrics (mean values). 

 
Table 1. Evaluation results when only first-stage fine-tuning is applied (average values of 
10-fold cross-validation). 

Category Precision Recall F1 Specificity 

LUAD 0.926 0.866 0.895 0.977 

LULC 0.957 0.941 0.949 0.986 

Normal 0.964 0.995 0.979 0.988 

LUSC 0.918 0.963 0.940 0.971 

Average 0.941 0.941 0.941 0.980 

 
Table 2. Evaluation results when second-stage fine-tuning is applied following first-stage 
fine-tuning (proposed method) (average values of 10-fold cross-validation). 

Category Precision Recall F1 Specificity 

LUAD 0.962 0.947 0.954 0.988 

LULC 0.973 0.952 0.962 0.991 

Normal 0.984 1.000 0.992 0.995 

LUSC 0.963 0.984 0.974 0.988 

Average 0.971 0.971 0.970 0.990 

 
Table 3. Evaluation results of the conventional fine-tuning in our previous study using 
original image training (average values of 10-fold cross-validation). 

Category Precision Recall F1 Specificity 

LUAD 0.921 0.941 0.931 0.970 

LULC 0.959 0.907 0.932 0.991 

Normal 0.995 1.000 0.997 0.998 

LUSC 0.947 0.947 0.947 0.980 

Average 0.955 0.949 0.952 0.985 
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On the other hand, in the first-stage fine-tuning (Table 1), the metric values 
were slightly lower than those of conventional fine-tuning (Table 3). This may be 
because the pre-trained ViT model is optimized for pixel-level information and 
thus may not effectively capture feature representations from wavelet-trans-
formed images. However, the improvement in the metrics after the second-stage 
fine-tuning suggests that wavelet-based features learned in the first stage empha-
sized local information and facilitated the ViT’s ability to capture global relation-
ships. In other words, this suggests that the proposed method reinforces the in-
ductive bias of the ViT. 

Furthermore, when comparing the classification metrics for normal images (in-
dicated as “Normal” in the tables), conventional fine-tuning (Table 3) achieved 
slightly higher scores than the proposed method (Table 2). This result suggests 
that normal images, which have simpler and more consistent structures compared 
to lesion images, can be classified with high accuracy even without the additional 
inductive bias introduced by the proposed method. Specifically, normal tissue in 
CT images tends to have a relatively homogeneous pixel distribution, allowing the 
model to distinguish it based on simple features such as brightness, shape, and 
texture. Therefore, biases introduced by model design and training methods are 
likely to have a smaller impact on the classification of normal images. 

Tables 4-6 present the accuracy and cross-entropy for each subset in the 10-
fold cross-validation. Table 4 shows the results of first-stage fine-tuning, where 
the ViT model is fine-tuned using wavelet coefficients, representing the interme-
diate stage of the proposed algorithm. Among the subsets in Table 4, the model 
with the highest accuracy (subset No. 4) was selected for fine-tuning on the orig-
inal CT image set. The final results of the proposed method, applying second-
stage fine-tuning following first-stage fine-tuning, are presented in Table 5. Table 
6 shows the results of conventional fine-tuning, where the pre-trained ViT model 
was fine-tuned using original lung CT images. 

The final column of the first row in Table 4 and Table 5 shows the mean accu-
racy for first-stage fine-tuning and second-stage fine-tuning, which are 0.941 and 
0.971, respectively. A statistically significant difference was observed between the 
two (P < 0.05). This result suggests the effectiveness of the proposed two-stage 
fine-tuning method. In contrast, our previous study reported that the accuracy of 
a fine-tuned ResNet50 model using original CT images was 0.945 [9]. Addition-
ally, the accuracy of the pre-trained ViT model in this study was 0.953 (final col-
umn of the first row in Table 6), showing no significant difference compared to 
ResNet50 (P = 0.26). This finding supports the known limitation that the ViT 
model does not fully demonstrate its potential when pre-trained with a small da-
taset. Despite the use of a small-scale pre-training dataset, as in the previous study, 
the proposed method achieved an accuracy of 0.971, demonstrating a statistically 
significant improvement over ResNet50 (accuracy: 0.945, P < 0.05). This result 
suggests that the proposed method enables a ViT model pre-trained on a small 
dataset to outperform a high-performance CNN model (ResNet50) in classifica-
tion accuracy. 
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Table 4. Cross entropy and accuracy when only first-stage fine-tuning is applied. 

 Accuracy 0.960 0.893 0.920 0.987 0.960 0.920 0.947 0.960 0.946 0.919 0.941 

 Subset No. 1 2 3 4 5 6 7 8 9 10 Average 

Cross  
entropy 

LUAD 0.509 1.000 0.119 0.131 0.458 0.613 0.327 0.277 0.519 0.502 0.429 

LULC 0.050 0.476 0.652 0.021 0.003 0.053 0.076 0.263 0.093 0.317 0.204 

Normal 0.000 0.021 0.197 0.003 0.028 0.032 0.006 0.008 0.000 0.000 0.028 

LUSC 0.047 0.336 0.103 0.000 0.017 0.244 0.593 0.181 0.086 0.158 0.179 

Average 0.152 0.458 0.268 0.039 0.127 0.235 0.251 0.180 0.174 0.244 0.209 

 
Table 5. Cross entropy and accuracy when second-stage fine-tuning is applied following first-stage fine-tuning. The results were 
obtained from fine-tuning on the original images using the Subset No. 4 model from Table 4. 

 Accuracy 0.987 0.947 0.987 0.973 1.000 0.960 0.920 0.987 0.973 0.973 0.971 

 Subset No. 1 2 3 4 5 6 7 8 9 10 Average 

Cross  
entropy 

LUAD 0.192 0.546 0.017 0.058 0.024 0.235 0.036 0.002 0.061 0.129 0.156 

LULC 0.030 0.461 0.105 0.041 0.001 0.000 0.222 0.062 0.130 0.070 0.114 

Normal 0.013 0.003 0.027 0.000 0.039 0.002 0.004 0.000 0.001 0.001 0.008 

LUSC 0.002 0.012 0.000 0.003 0.010 0.211 0.369 0.034 0.014 0.042 0.072 

Average 0.059 0.256 0.037 0.026 0.019 0.112 0.238 0.024 0.051 0.060 0.087 

 
Table 6. Cross entropy and accuracy for the conventional fine-tuning in our previous study using original image training. 

 Accuracy 0.947 0.960 0.947 0.974 0.974 0.974 0.960 0.974 0.946 0.879 0.953 

 Subset No. 1 2 3 4 5 6 7 8 9 10 Average 

Cross  
entropy 

LUAD 0.418 0.018 0.113 0.181 0.373 0.137 0.201 0.048 0.303 0.410 0.22 

LULC 0.143 0.511 0.776 0.307 0.051 0.062 0.216 0.031 0.378 0.195 0.267 

Normal 0.028 0.002 0.16 0.000 0.145 0.026 0.000 0.000 0.000 0.197 0.056 

LUSC 0.275 0.024 0.004 0.008 0.037 0.240 0.224 0.414 0.088 0.155 0.147 

Average 0.216 0.139 0.263 0.124 0.152 0.117 0.160 0.123 0.192 0.240 0.172 

 
Rows 3-6 in Tables 4-6 present the uncertainty (cross-entropy) for each disease 

category across different subsets, whereas the final row shows the mean cross-
entropy value. A cross-entropy value of 2.0 indicates that the model is entirely 
unable to classify the four categories (i.e., it has extremely low confidence in its 
predictions). A cross-entropy value of 1.0 suggests that the model cannot distin-
guish between two of the four categories and assigns similar confidence levels to 
them. When the cross-entropy value is 0.5, the model has slightly higher confi-
dence in one category while maintaining lower confidence in the other three. A 
cross-entropy value of 0.2 indicates high confidence in one category, while a value 
of 0 implies absolute certainty in one category, meaning there is no uncertainty in 
the model’s prediction. 

From the results in Tables 4-6, it was confirmed that cross-entropy values var-
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ied even when accuracy remained the same. This suggests that models with iden-
tical classification accuracy can exhibit different levels of uncertainty in their pre-
dictions. For instance, subsets with an accuracy of 0.960 include subset No. 1, 5, 
and 8 in Table 4, subset No. 6 in Table 5, and subset No. 2 and 7 in Table 6. 
Among these, subset No. 6 in Table 5 had the lowest mean cross-entropy value, 
at 0.112 (P < 0.05). This result indicates that even when accuracy is the same, the 
level of uncertainty differs, and the predictions made by the model trained with 
two-stage fine-tuning are closer to the target distribution—meaning they are more 
precise and exhibit lower uncertainty—compared to other models. Conversely, 
subset No. 5 in Table 5 achieved an accuracy of 1.00, yet its mean cross-entropy 
value was not zero. This implies that even when the model achieves 100% accu-
racy, it still retains a certain level of uncertainty. This finding suggests that evalu-
ating model uncertainty can help identify models with higher reliability. 

When evaluating each disease category, the proposed method exhibited lower 
cross-entropy values across all categories than conventional fine-tuning. For ex-
ample, in conventional fine-tuning, the category with the highest uncertainty was 
LULC, with a mean cross-entropy value of 0.267 (final column of Table 6). In 
contrast, the mean cross-entropy value for LULC using the proposed method was 
0.114 (final column of the fourth row in Table 5), which was statistically signifi-
cantly lower (P < 0.05). These results demonstrate the superiority of the proposed 
method and suggest that in evaluating deep learning model performance, as-
sessing uncertainty alongside conventional metrics provides a more comprehen-
sive assessment of model reliability. In particular, cross-entropy as an evaluation 
metric facilitates a more holistic assessment of model performance. 

This study has several limitations. First, the proposed two-stage fine-tuning 
method increases computational costs compared to conventional fine-tuning ap-
proaches. Deploying this model in resource-constrained environments may ne-
cessitate optimization techniques such as model pruning and quantization. Sec-
ond, while the proposed method improves classification accuracy, the interpreta-
bility of ViT-based models remains a challenge. Future research should explore 
techniques for visualizing learned features and elucidating the decision-making 
process to facilitate clinical applications. Third, this study compared the proposed 
model with ViT and CNN-based ResNet50 models. In our next study, we will con-
duct a comprehensive comparison with more advanced architectures, including 
Swin Transformer, ConvNeXt, and other relevant hybrid models. 

4. Conclusions 

In this study, we proposed a ViT model with wavelet-based two-stage fine-tuning 
for histological classification of lung cancer using CT images. In the first stage of 
fine-tuning, wavelet-transformed images were utilized to enhance feature extrac-
tion. In the second stage, the model was further refined using the original CT im-
ages to improve learned representations. This approach integrates both global and 
local features, enhancing classification accuracy and model robustness. 
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Experimental results demonstrated that the proposed method outperformed 
conventional fine-tuning methods based on CNNs and ViTs, achieving a classifi-
cation accuracy of 0.971. This significantly surpasses the accuracy of 0.953 
achieved by conventional ViT fine-tuning and 0.945 achieved by ResNet50 fine-
tuning. Moreover, the two-stage fine-tuning approach significantly reduced cross-
entropy loss, indicating enhanced model confidence in classification decisions. 
Notably, the classification uncertainty associated with large cell carcinoma (LULC), 
which had been higher in previous methods, was effectively mitigated, leading to 
improved classification accuracy across all lung cancer subtypes. These findings 
suggest that incorporating wavelet-based feature extraction in the initial fine-tun-
ing stage enhances the performance of ViT for lung cancer histological classifica-
tion. 

Furthermore, an evaluation of uncertainty revealed that models with similar 
accuracy levels exhibited variations in prediction confidence, emphasizing the im-
portance of assessing uncertainty alongside conventional accuracy metrics. How-
ever, several challenges remain, including dataset size, computational cost, and 
model interpretability. While the proposed method achieved high classification 
accuracy even with a relatively small dataset, further validation on larger and more 
diverse datasets is necessary to establish its generalizability. 

Future research will focus on optimizing fine-tuning strategies through the in-
corporation of adaptive learning rates and alternative feature extraction tech-
niques. Additionally, we will explore extending this method to multimodal medi-
cal imaging data, such as PET-CT fusion images, to further enhance classification 
performance and clinical applicability. Furthermore, improving model interpret-
ability through explainable AI techniques will be essential for integrating it into 
clinical practice. 

The findings of this study indicate that the wavelet-based two-stage fine-tuning 
ViT model improves accuracy in automated lung cancer diagnosis and has the 
potential to enhance the reliability of histological classification in medical imag-
ing. 
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