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Abstract 
Uncertainty in determining optimum conjunctive water use lies not only on 
variability of hydrological cycle and climate but also on lack of adequate data 
and perfect knowledge about groundwater-surface water system interactions, 
errors in historic data and inherent variability of system parameters both in 
space and time. Simulation-optimization models are used for conjunctive water 
use management under uncertain conditions. However, direct application of 
such approach whereby all realizations are considered at every-iteration of 
the optimization process leads to a highly computational time-consuming 
optimization problem as the number of realizations increases. Hence, this 
study proposes a novel approach—a Retrospective Optimization Approxima-
tion (ROA) approach. In this approach, a simulation model was used to de-
termine aquifer system responses (draw-downs) which were assembled as re-
sponse matrices and incorporated in the optimization model (procedure) as 
coefficients in the constraints. The sample optimization sub-problems gener-
ated, were solved and analyzed through ROA-Active-Set procedure imple-
mented under MATLAB code. The ROA-Active Set procedure solves and eva-
luates a sequence of sample path optimization sub-problems in an increasing 
number of realizations. The methodology was applied to a real-world con-
junctive water use management problem found in Great Letaba River basin, 
South Africa. In the River basin, surface water source contributes 87% of the 
existing un-optimized total conjunctive water use withdrawal rate (6512.04 
m3/day) and the remaining 13% is contributed by groundwater source. Through 
ROA approach, results indicate that the optimum percentages contribution of 
the surface and subsurface sources to the total water demand are 58% and 
42% respectively. This implies that the existing percentage contribution can 
be increased or reduced by ±29% that is groundwater source can be increased 
by 29% while the surface water source contribution can be reduced by 29%. 
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This reveals that the existing conjunctive water use practice is unsustainable 
wherein surface water system is overstressed while groundwater system is 
under-utilized. Through k-means sampling technique ROA-Active Set pro-
cedure was able to attain a converged maximum expected total optimum 
conjunctive water use withdrawal rate of 4.35 × 104 m3/day within a relatively 
few numbers of iterations (6 to 8 iterations) in about 2.30 Hrs. In conclusion, 
results demonstrated that ROA approach is capable of managing real-world 
regional aquifers sustainable conjunctive water use practice under hydro-geo- 
logical uncertainty conditions. 
 

Keywords 
A Novel Approach, Conjunctive Use Management, Retrospective  
Optimization Approximation (ROA), Uncertainty 

 

1. Introduction 

Water availability is a major determinant for any social-economic development. 
Climate change, rapid population growth, increasing water demand, mining and 
industrial development coupled with the dynamics in the hydrological cycle as 
well as the hydrogeological conditions of river systems have led to increased 
pressure on water resources in many developing countries [1]. One of the new 
methods currently accustomed for addressing water shortage problems in most 
developed countries is optimum conjunctive water use [2] [3]. However, opti-
mum conjunctive use demands that the surface and subsurface reservoirs are 
thoroughly characterized if deterministic methods are to give accurate results. 
This is because in real world phenomena full characterization of surface and 
subsurface reservoirs is practically impossible. Surface and subsurface hydrology 
is highly uncertain [4] [5]. The parameters of uncertainty involved pose a great 
challenge for decision makers to have reliable water use policy and predictable 
returns from the water systems [6] [7] emphasized that water managers and de-
cision makers must understand the surface water-groundwater system interac-
tions, especially under uncertainty. This is because as in any system management, 
conjunctive water use system is also characterized by uncertainties. Hence, it is 
imperative that this uncertainty has to be explicitly considered when managing 
conjunctive water use [5] [8]. 

Different methods have been developed and used by various researchers to 
account for the uncertainty. Ndambuki [8] investigated Multi-Objective ground-
water quantity management using stochastic methods for modeling cost of 
groundwater production and pumping rate decisions. The uncertain conditions 
of aquifer hydrogeology were analyzed for many hydrogeological model simula-
tions in a Monte Carlo simulation and Second-Order-Cone Programming ap-
proaches. Schoups, et al. [9] used a multi-objective interannual optimization 
model to generate Pareto curves and evaluate trade-offs between sustainable 
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agriculture and optimal reservoir operation. The uncertain conditions of hy-
drology were analyzed for many equally probable streamflow series in a Monte 
Carlo approach. Marques, et al. [10] presented modeling conjunctive water use 
operations and farm decisions with two-stage stochastic quadratic programming. 
Schoups, et al. [11] studied conjunctive water use management to alleviate drought 
for irrigated agriculture with a spatially distributed simulation-optimization 
model. Moreover, Kentel, et al. [12] developed a simulation-optimization model 
with constraints on drawdowns which were used to optimize additional ground-
water withdrawal rates in a coastal aquifer system. Other studies include [13] [14] 
[15] also investigated optimum groundwater operations with a stochastic surface 
water system.  

From the aforementioned literature, it is evidenced that simulation-optimiza- 
tion models are normally used for conjunctive water use management. However, 
note that direct application of the approach where all realizations are considered 
for every iteration of the optimization process leads to a highly computational 
time-consuming optimization as the number of realizations increases [16]. 
Moreover, Wang, et al. [16] opined that handling of uncertainty, mainly those 
arising from hydrogeological conditions, poses a major task in the application of 
optimization methods. Thus, they underscored the need for many geological 
realizations if high degree of uncertainty is to be resolved. Hence, the aim of this 
work is to propose an efficient method for managing real-world regional aqui-
fers conjunctive water use withdrawal over multiple geological model realiza-
tions. This paper is based on the most recent emerged technique of Sample Aver-
age Approximation (SAA) method—the Retrospective Optimization Approxima-
tion (ROA) approach a stochastic simulation-optimization framework.  

Traditionally, integration of simulation model with optimization-based man-
agement procedure (model) is a challenge and difficult task, takes substantial 
computational time to realize optimal solution [7]. Often embedding or re-
sponse matrix approaches are used to combine simulation and optimization 
models [17]. In this work, response matrix approach was adopted. For more de-
tail discussions on embedding and response matrix approaches one is referred to 
[2] [8] [17] [18] [19] and [21]. 

In short, the principal idea behind ROA approach is that it does not consider 
all realizations (samples) at every iteration of the optimization process. Alterna-
tively, ROA procedure generates a sequence of approximate sample optimization 
sub-problems, which sequentially account for increasing number of realizations 
(sample size). ROA approach takes in the advantage of “warm start” method 
where an initial guess is updated by assigning the initial solution of the current 
sub-problem being the solution obtained from the previous sub-problem solu-
tion solved. ROA method is new approach in solving regional aquifers conjunc-
tive water use management problems under uncertainty through simulation- 
optimization modelling framework. However, the author is aware that in current 
years, the approach has mostly been applied in other areas such as operation re-
search [22] [23], petroleum engineering [24] [25] and well placement optimiza-
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tion problem [16] [26] [27] [28] [29]. Recently, the method has been used in 
water resources management through hypothetical example [4] [5] and 
groundwater resources management [30] but, their applications were mainly 
based on fixed and few decision variables. The ROA procedure developed and 
applied in this study is designed to solve a multiple variables regional aquifers 
conjunctive water use management problem under hydrogeological uncertain 
conditions. 

2. Materials and Methods 
2.1. Formulation of Conjunctive Use Optimization Problem 

In the conjunctive use optimization problem, we seek to optimize the surface 
water and groundwater withdrawal rates of a number of spatially distributed 
pumping wells and abstraction points (surface water diversion points), consi-
dering aquifer hydraulic conductivity field (geological) uncertainty conditions. 
The uncertainty was addressed as assemblage of random aquifer system draw-
downs (responses) due to unit withdrawal rate at every pumping well location. 
The assemblage set of the random responses (i.e., response matrix coefficients) 
represents simulation model in the simulation-optimization stochastic modeling 
framework. 

Consider there exists a probability space ( ), ,F PΩ , where Ω, is a set of en-
tirely possible outcomes; F is a set of collection of all subsets of Ω possible reali-
zations; and P defines a probability measure. Thus, for a given total possible 
number of outcomes Ω, assume hydraulic conductivity field uncertainty realiza-
tion be defined by ϖ , such that ϖ ∈Ω . Hence, for every realization ϖ  there 
will be different set of random response matrix denoted by Mϖ  allied with 
random response matrix components represented as ,ija ϖ . In general form, 
therefore, the conjunctive use optimization problem under the hydraulic con-
ductivity field uncertainty realizations can be formulated as follows: Given a so-
lution set Y, such that *Y Y∈ , find a solution *Y , that: 

( ) , ,1 1Maximize , 1,2, , ; 1, 2, ,gw swN N
gw j sw d gw swj dF Y Y j N d N

= =
 = + = = ∑ ∑Y   (1) 

Subject to: 

( ), , 1, 2, , ;,gw j i cG Y M b i Nϖ ϖΩ
  ≤ = ∀ ∈Ω              (2) 

where Ω  represents the expectation function over the solution set of all possi-
ble outcomes Ω; and G is a numerical stochastic modeling process that computes 
the sample optimization sub-problems constraint functions ( ), ,gw jG Y Mϖ  for a 
given Y  and the realization outcome ϖ . In which, Y  is a vector in space 

N  such that gw swN N N= +  defining total number of decision variables of 
the vector variables gwY  and swY  such that ,gw swY Y Y∈ . In which, gwY  and 

swY  are groundwater withdrawal rates (a vector in space gwN  of the first ele-
ments of) and surface water withdrawal rates (a vector in space swN  of the 
remaining elements of Y) respectively. ( )F Y  is objective function evaluated 
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over estimates of a random constrain function ( ), ,gw jG Y Mϖ  by performing 
numerical simulations with the hydrogeological model defined by realization 
outcome ϖ  of uncertain parameter. Note that in the formulation (1) through 
(2), the vector variable ,gw jY  denotes the groundwater pumping rate of a 
pumping well located at j; the vector variable ,sw dY  is the surface water abstrac-
tion (withdrawal) rate at a point located at d; ib  is a hydraulic head constrain-
ing value at control point i; gwN  and swN  present total number of groundwa-
ter pumping wells and surface water diversion points, respectively; and cN  is 
the total number of monitoring control points. 

Recall the random response matrix denoted by Mϖ  with allied random re-
sponse matrix components ,ija ϖ  or simply denoted by ϖ . Assume random-
ness in hydraulic head drawdowns is only due to uncertainty conditions of aqui-
fer system hydraulic conductivity field realizations and that ,ija Mϖ ϖ∈  such 
that Mϖ ∈Ω . Moreover, assume that P is well defined with unknown distribu-
tion function but, what is known is expected mean values, and/or standard devi-
ation of the random responses ϖ . Consider a stochastic constraint function 
process as ( ),gwG Y ϖ ∈Ω  to be defined as ( ),gw gwG Y M Yϖϖ = . Thus, the ex-
pected value of the function ( ),gwG Y ϖ  is defined as ([2] [4] [5]):  

( ),gw gwG Y A Yϖϖ  =     .                     (3) 

Hence, the constraint inequality (2) can be formulated as ( ),gwG Y bϖ  ≤   
whereby the expectation ( ) ( ) ( ), , dgw gwG Y G Y Pϖ ϖ ϖ

Ω
  =  ∫  is the correspond-

ing expected value function. Consequently, inequality (2) can be approximated 
by applying Monte Carlo sampling based estimation methods (e.g., the ROA ap-
proach) by taking into account a sequence of finite set of generated samples of 
random response matrices for   realizations of { } { }

1
, ,

k k
M M Aϖ ϖ ϖ= 

  
. 

The approximate the expected constraint function ( ),
kgwG Y ϖ 

   as ([2] [4] 
[5]): 

( ) ( )1

1, ,k

k kgw gwz
k

G Y G Yϖ ϖ
=

  =  ∑
 


                (4)  

Then progressively evaluate resulting sample optimization sub-problems of 
formulation (5) through (6) by using ROA method for 1,2, , spk =    (in 
which sp  is total number of sample optimization sub-problems). Thus, by 
substituting the inequality constraint (2) with the approximations of expected 
constraint function, the corresponding Estimates Retrospective Conjunctive wa-
ter use Sample Optimization Problems (ERCSOP) can be formulated as: 

( ) , ,1 1Maximize , 1,2, , ; 1, 2, ,gw sw

k

N N
gw j sw d gw swj dF Y Y j N d N

= =
 = + = = ∑ ∑Y   (5) 

Subject to: 

( )1

1 , , 1, 2, , , 1, 2, ,k

kgw k spz
k

G Y b z kϖ
=

≤ = =∑  


  


         (6) 

It should be noted that formulation (5) through (6) is deterministic optimiza-
tion problem that can be solved by any appropriate standard core deterministic 
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optimization solver. The conjunctive use optimization problems in the form of 
formulation (1) through (2) and formulation (5) through (6) are referred to as 
the true optimization problem and estimates optimization problem, respectively. 

Note that in the optimization problem inequality (6), the term 1

k
 defines  

the weight factor or probability associated with realizations ϖ . In this work, 
different number of realizations k  (sample sizes) were considered for every 
sample optimization sub-problem. The performance objective function meas-
ured is the expected total optimal conjunctive use withdrawal rate. Decision va-
riables measured are groundwater and surface water withdrawal rates (i.e., posi-
tive real values Y, such that NY ∈ , in which N is the total number of sur-
face-subsurface abstraction points). The solution set *Y  is assumed to be closed 
and bounded, hence the optimization sub-problems generated have finite set of 
feasible solutions. 

2.2. ROA Approach 

Retrospective Optimization Approximation (ROA) approach optimizes through 
sampling technique process. In which, instead of considering all samples (reali-
zations) at each iteration of optimization, ROA procedure generates a sequence 
of sample sets of optimization sub-problems and subsequently solves and eva-
luates the optimization sub-problems generated in an increasing number of 
sample size (realizations) and updating initial guess solution through a “warm 
start” technique. In which, the initial guess is updated where the current sub- 
problem initial guess (solution) is just the solution from the previous sub-problem 
solved. The number of sample size (realizations) is increased sequentially from 
sub-problem to sub-problem resolved. Thus, the “warm start” technique applied 
ensures an increasing solution accuracy and a decreasing error of tolerance. 
Thus, ROA technique guarantees solution accuracy and speedy convergence to 
the true optimization problem solution. This is because in early iterations, ROA 
optimizations do not require much computational time as the number of reali-
zations (sample sizes) is small. Similarly, at later iterations, the computational 
effort is inexpensive because the initial solutions are closer to the optimal solu-
tion of the true optimization problem. Hence, this is advantageous because the 
overall iterations required by the core optimizer is relatively fewer, and hence, 
computational savings can be attained compared to a direct optimization ap-
proach which considers all realizations at every iteration. The stochastic con-
junctive use management optimization problem was solved and evaluated 
through ROA approach based on the following procedure illustrated through 
flow chart as shown in Figure 1.  

2.3. Application of ROA Approach to a Real-World Regional  
Aquifer Water System 

2.3.1. Study Area  
The Retrospective Optimization Approximation (ROA) procedure developed  
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Figure 1. Flow chart for the ROA procedure.  
 
was demonstrated the application to a real-world regional aquifer conjunctive 
water use system in the Great Letaba River (GLR) catchment (Figure 2(a)). The 
GLR catchment forms part of primary drainage region B of the Olifants River 
basin Water Management Area (WMA) which is located in the Mopani District 
of the Limpopo Province, South Africa. The GLR is one of the major tributaries 
of the Olifants River with drainage area of approximately 4952 km2 [31]. 

2.3.2. Hydrology and Hydrogeological Settings 
The study area is mainly drained by the Great Letaba River (also known as Groot 
Letaba River) and its tributaries. From the confluence of the Great Letaba and 
Klein Letaba Rivers, the Great Letaba River flows to the eastward through the 
Kruger National Park (KNP) until it joins with the Olifants River near the bor-
der to Mozambique. The study area regional water supply scheme uses water 
from the Great Letaba River and its tributaries to supply water to a number of 
towns including Polokwane (Pietersburg), Tzaneen, Duiwelskloof, Haenertsburg 
and to various villages. Also, extensive irrigation activities occurring within the 
catchment is supplied with water from this water supply system [32]. In the cat-
chment, a total of 20 abstraction points is identified to be active. Figure 2(b) 
shows the Great Letaba River Basin quaternary catchments of the study area. 

Groundwater pumping wells are also used to supply water to the study area 
and are spatially distributed throughout the catchment except in the quaternary 
catchment (QC) B81A where there is no pumping well (see Figure 2(b) and 
Figure 2(c)). Aquifers located in the catchment are predominantly secondary 
with exception of alluvial deposits along the main river system. Intergranular 
aquifers (ranging from unconsolidated to semi-consolidated materials with pri-
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mary porosity occur in the study area. Figure 2(c) shows the pumping and ob-
servation wells distribution as well as the hydrogeological regions of the aquifer 
system. 

In the study area, there exist 809 boreholes which are operational and another 
294 boreholes are blocked or abandoned due to various reasons such as poor 
water quality. A total of eight (8) groundwater monitoring (control points) wells 
have been installed by the Government for groundwater level measurements (see 
Figure 2(c) blue dots). The existence of hot springs within the regional aquifer 
system suggests that the aquifer is confined except along the major rivers where  
 

 
(a) 

 
(b) 
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(c) 

Figure 2. (a) Study area location map of Great Letaba River Basin; (b) Great Letaba River Basin Quaternary Catchments of the 
Study Area; (c) Great Letaba River Basin Pumping Wells, Observation Wells and Hydrogeological Regions of the Study Area 
Aquifer System. 

 
localized alluvium aquifers occur including the eastern end of the catchment 
within the Kruger National Park (KNP) where unconfined aquifers occur. The 
aquifer water system is categorized by low magnitude of transmissivity values, 
ranging from a minimum of 7 m2/day to a maximum of 31 m2/day [33]. Re-
charge is mainly realized within the high elevation areas of the Great Escarp-
ment (the Drakensburg Escarpment) mountains where rainfall is high above 
1000 mm/annum and in the alluvium aquifers along major rivers. Total net re-
charge is about 126 mm/annum (DWAF, 2003) [32]. 

2.3.3. Conjunctive Water Use Conceptual and Simulation Models  
Conceptual model was developed and used to build up conjunctive use simula-
tion model. Figure 3 shows a schematized of the various components of the de-
veloped conjunctive water use conceptual model of the GLR catchment. 

From Figure 3, DDA is Dams Direct Abstraction; RCDA is River Course Di-
rect Abstraction; GWP is Groundwater Pumping; U/S and D/S are upstream and 
downstream, respectively. To delineate the study area regional aquifer water 
system from local aquifers, the whole study area was discretized into 150 × 100 
cells, each in a model domain of a grid cell dimensional size of 1500 m × 1500 m. 
The area of interest was discretized through finite difference method. Figure 4 
shows finite difference groundwater flow numerical simulation model. 
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Figure 3. Schematized conjunctive water use conceptual model. 

 

 
Figure 4. Finite difference numerical simulation model of the study area. 

 
It was realized that in the modelled domain, no-flow boundary appears at the 

northern and southern parts of the catchment, while constant flux boundary 
conditions exist for the two boundaries located at the north-west and south-west 
parts (these are areas bounded by the Great Escarpment (i.e., the Drakensburg 
Escarpment mountainous regions). Moreover, specific head boundary condition 
(also referred to as Dirichlet condition) for which head is considered to be inde-
pendent of time was specified for the surface water bodies (i.e., rivers and Dams) 
and eastern boundary of the modelled domain. Other potential surface water 
bodies (such as wetlands and springs) were also included in the modelled area. 
In this study, steady-state simulations have been considered and hence, initial 
condition is not a major concern. This is because in any groundwater steady-state 
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numerical simulations, the focus is to determine aquifer drawdown in response 
to externally imposed excitations/stresses such as groundwater pumping where-
by relative heads as measured with respects to drawdown responses are of great 
importance rather than absolute head values. Due to limited availability of water 
demands data, the existing (current) water pumping (withdrawal) rates were con-
sidered as the minimum pumping (withdrawal) rate limits (i.e., lower bounds 
pumping (withdrawal) rates) which were required to satisfy the minimum water 
requirements of the competing water users. In this study, stochastic simulations 
were carried out to determine aquifer water system responses (drawdowns) due 
to unit withdrawal rate at each pumping well location for every set of realization 
of hydraulic conductivity field values realized. These aquifer water system res-
ponses (drawdowns) were assembled as response matrix and incorporated in the 
optimization model as hydraulic head constrain coefficients for the Retrospective 
Optimization Approximation (ROA) simulation-optimization problem analysis. 

2.3.4. Model Data Input 
Data on boreholes and surface water systems were found from GRIP Database 
[34] and the Department of Water and Sanitation of South Africa, respectively. 
Table 1 presents quaternary catchments names, named variables (combined 
pumping wells (CPW) withdrawal rates) and surface water diversion named va-
riable (combined surface water diversion (CSWD) withdrawal rate) with their 
corresponding number of abstraction points, saturated mean aquifer thicknesses, 
and quaternary catchment polygon surface areas, which were used for the Re-
trospective Optimization Approximation (ROA) simulation-optimization prob-
lem analysis. 

A total of 515 pumping wells with known capacity (average daily abstraction 
capacity ranges 62 - 70 m3/day) and 20 surface water abstraction points (i.e.,  
 
Table 1. Summary characteristics of quaternary catchments (QC) and abstraction points 
used in study. 

S/No QC Name 
Named  
Variable 

# of Pumping Wells/ 
Abstraction Points 

Mean Aquifer  
Saturated Thickness (m) 

QC-Area 
(km2) 

1 B81G CPW1 122 10.26 513 

2 B81H CPW2 83 19.96 668 

3 B81A - 0 3.56 169 

4 B81B CPW3 5 6.42 481 

5 B81C CPW4 10 3.24 208 

6 B81E CPW5 65 5.07 665 

7 B81F CPW6 112 7.56 1201 

8 B81J CPW7 38 12.47 568 

9 B81D CPW8 80 16.79 479 

10 - CSWD 20 - - 

Σ - - 535 86.33 4952 
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from river course and dams’ abstraction points with average daily abstraction 
capacity ranges 500 - 14,500 m3/day) were used. Hence, a total of 535 abstraction 
points (i.e., decision variables excluding slack variables) were used in simula-
tion-optimization problem analysis. Table 2 presents model input parameter 
values of the river and aquifer systems properties. 

2.3.5. Conjunctive Water Use Management under Hydrogeological  
Uncertainty  

The overall objective was maximization of total conjunctive use withdrawal rates. 
Because of the water shortages of the study area for both irrigation and domestic 
use, surplus water from any water storage source can be used for irrigation 
and/or domestic. Hence, this objective seeks to maximize the amount of total 
conjunctive water production that can sustainably be withdrawn from both 
aquifer and surface water storage systems subjected to a number of constraints. 
In this work, the following objective and constraints were considered: 

1) Conjunctive Use Objective Function 
The objective function was formulated as follows: 

( ) , ,1Maximize , 1, , ; 1, ,pw sdN N
gw j sw d pw sdj dF Y Y Y j N d N

=
 = + = = ∑ ∑    (7) 

where ( )F Y  is the objective function which defines the total of groundwater 
and surface water withdrawal rates; gwY  and swY  are the spatially distributed 
surface and subsurface water withdrawal rates, respectively; pwN  and sdN  are 
the total number of pumping wells and surface water diversion points, respec-
tively.  

2) Conjunctive Use Constraints 
The following objective function constraints were considered: 
a) Drawdown Constraint 
Drawdown constraint is meant for protection of the aquifer and ecosystem to 

circumventing excessive drawdowns. These constraints were formulated as fol-
lows: 

, ,1 ; 1, ,pwN
i j gw j i cj a Y b i N

=
≤ =∑ 

                   (8) 

 
Table 2. Parameter values of river—aquifer systems properties. 

Item River—Aquifer System Property Parameter Value 

1 Mean River/Streambed Hydraulic Conductivity 0.2 m/day 

2 Mean River Width ranges 10 m - 100 m 

3 Mean Riverbed Thickness ranges 0.5 m - 2.5 m 

4 Mean River flow depth (stage) ranges 0.05 m - 2.5 m 

5 Mean Aquifer Saturated Thickness ranges 3.240 m - 19.96 m 

6 Mean Aquifer Hydraulic Conductivity value 1.45 m/day 

7 Aquifer specific yield 0.05 

8 Total net mean groundwater Recharge 126 mm/year 
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in which ,i ja  is the response at control point i due to a unit pumping rate from 
pumping well located at j; ib  is the allowable drawdown (response) at control 
point i; and cN  is the total number of monitoring wells control points. Since 
the hydraulic conductivity field parameter values are sought to be uncertain, so 
the drawdowns ,i ja  are ought to be dependent on realizations of the hydraulic 
conductivity field, ϖ . In this case, the assemblage of these random response 
coefficients values , ,i ja ϖ  (which can simply be denoted by ϖ ) defines a finite 
set of independent identically distributed (i.i.d.) samples of random response 
matrices denoted by Mϖ  of   realizations as { } { }

1
, ,

k k
M M Mϖ ϖ ϖ= 

  
, 

for 1,2, , spk =   . Therefore, inequality (8) can be transformed into the fol-
lowing form [2] [4] [5]: 

( )Ω , , 1, 2, , ; 1, 2, , ;,
kgw j i c spG Y M b i N kϖ ϖ  ≤ = = ∀ ∈Ω  

 


      (9)  

Thus, the stochastic optimization inequality constraint (9) can be approximated 
as follow: 

( )1

1 , , 1, 2, , ; 1, 2, , ; 1, 2, ,k

kgw i c sp kz
k

G Y M b i N k zϖ=
≤ = = =∑   



  


(10) 

in which 
k

Mϖ
 is the kth sample optimization sub-problem constraint response 

matrix, and all other parameters are as previously defined. 
b) Total Recharge Constraint 
To protect the aquifer from excessive exploitation, the total amount of water 

pumped from the aquifer was controlled so as not to surpass the total natural 
recharge. The constraint was considered as: 

,1 TWRpwN
gw jj Y

=
≤∑                        (11) 

in which TWR is the total recharge of the aquifer system. 
c) Base Flow to River Constraint  
In this constraint aquifer heads at grid cells near to river course were re-

stricted not to fall below riverbed bottom elevations. This constraint was set to 
maintain base flow water to river and ensures downstream water requirements. 
The constraint was formulated as follows: 

,aq j rTH TRIVBOT≥                       (12) 

where ,aq jTH  is the water head/water table level at aquifer grid cell location j 
near to river course; and rTRIVBOT  is the riverbed bottom elevation at river 
reach cell r. 

d) Total Water Demand Constraint 
The aquifer and river (surface water) were considered as the only sources of 

water supply. Hence, this means that the premeditated optimal conjunctive 
withdrawal water policy must gratify at least the minimum total water demand 
without affecting negatively other water sources. This constraint was considered 
as follows: 

, ,1 TWRpw sdN N
gw j sw dj dY Y

=
+ ≥∑ ∑                  (13) 
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in which TWR is the total water requirement; and all other parameters are as 
previously defined. 

e) Surface Water and Groundwater Withdrawal Constraints 
To ensure positive real values, the water abstraction (withdrawal) rates at 

every pumping well and surface water abstraction point, were controlled to val-
ues between some values minimum and maximum withdrawal rates. These con-
straints were considered as follows: 

min max
, , , ; 1, 2, ,gw j gw j gw j pwY Y Y j N≤ ≤ =                  (14) 

min max
, , , ; 1, 2, ,sw d sw d sw d sdY Y Y d N≤ ≤ =                  (15) 

where min
gwY , max

gwY  and min
swY , max

swY  are the minimum and maximum per-
missible groundwater and surface water withdrawal rates, respectively. 

2.3.6. Statement of the Conjunctive Water Use Management Problem 
The stochastic conjunctive water uses optimization problem solved, therefore, 
was formulated as follows: 

( ) , ,1Maximize , 1,2, , ; 1, 2, ,pw sdN N
gw j sw d pw sdj dF Y Y Y j N d N

=
 = + = = ∑ ∑   (16) 

Subject to: 

( ), , 1, 2, , ; 1, 2, ;, ,
kgw j i c spG Y M b i N kϖ ϖΩ

  ≤ = = ∀ ∈Ω  

      (17) 

 ,1 TWRpwN
gw jj Y

=
≤∑                       (18) 

,aq j rTH TRIVBOT≥                       (19) 

, ,1 TWRpw sdN N
gw j sw dj dY Y

=
+ ≥∑ ∑                  (20) 

min max
, , , ; 1, 2, ,gw j gw j gw j pwY Y Y j N≤ ≤ =                 (21)  

min max
, , , ; 1, 2, ,sw d sw d sw d sdY Y Y d N≤ ≤ =                 (22)  

The optimization problem (formulations (16) through (22)) is stochastic op-
timization problem. This is because the optimal solution realized depends on the 
outcomes of realizations of hydraulic conductivity field ϖ . The stochastic op-
timization problem solutions can be estimated through Retrospective Optimiza-
tion Approximation (ROA) approach hence, the conjunctive water use sample 
optimization sub-problems solved, were considered as follows: 

( ) , ,1Maximize , 1, , ; 1, ,pw sdN N
gw j sw d pw sdj dF Y Y Y j N d N

=
 = + = = ∑ ∑    (23) 

Subject to: 

( )1

1 , , 1, 2, , ; 1, 2, , ; 1, 2, ,k

kgw i c sp kz
k

G Y M b i N k zϖ=
≤ = = =∑   



  


 (24) 

 ,1 TWRpwN
gw jj Y

=
≤∑                       (25) 

,aq j rTH TRIVBOT≥                       (26)  

, ,1 TWRpw sdN N
gw j sw dj dY Y

=
+ ≥∑ ∑                   (27)  
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min max
, , , ; 1, ,gw j gw j gw j pwY Y Y j N≤ ≤ =                   (28) 

min max
, , , ; 1, ,sw d sw d sw d sdY Y Y d N≤ ≤ =                   (29)  

Note that the inequality (24) now becomes deterministic thus, formulation (23) 
through (29) is deterministic optimization problem which can be solved by any 
appropriate core deterministic optimization solver. This is the major advantage 
of ROA approach. The sample optimization sub-problems generated were solved 
and evaluated by using the ROA approach. 

2.3.7. Formulation of Sample Path Optimization Sub-Problems  
A correlation length of 100,000 m by 50,000 m in 2D-Dimensional, x, y-plane, 
was found to be sufficient to characterize input parameter uncertainties. In total, 
500 realizations of uncertain aquifer hydraulic conductivity fields were produced. 
In the aquifer system, eight (8) groundwater control points were identified active. 
The water heads at these control points were restricted not to fall below certain 
prescribed maximum allowable limiting values. Twenty (20) abstractions points 
from river system network were identified active and the surface water levels 
(stages) at these abstraction points were constrained not to fall below riverbed 
bottom elevations. Collection of the aquifer system responses due to the 500 rea-
lizations resulted in 4020 constrain rows (i.e., observations rows). Hence, a re-
sponse matrix of the size 4020 by 535 was produced and used to generate ten (10) 
sample optimization sub-problems of different number of sample rows (obser-
vation rows) for the optimization model. Sample sizes were designed heuristi-
cally. Table 3 presents the formulation of sample optimization sub-problems. 

From Table 3, a sequence of 20, 30, 40, 60, 80, 100, 150, 200, 250, 500 realiza-
tions of hydraulic conductivity field realized, generated a sequence of 180, 260, 
340, 500, 660, 820, 1220, 1620, 2020, 4020 of constraints, respectively (excluding 
total recharge, total demand and surface water base flow constrains). This se-
quence of constraints produced the corresponding ten (10) sample optimization 
sub-problems in a sequence of increasing number of observation rows (includ-
ing total recharge, total demand, and surface water base flow constrains) of 183 
× 535, 263 × 535, 343 × 535, 503 × 535, 663 × 535, 823 × 535, 1223 × 535, 1623 × 
535, 2023 × 535, and 4023 × 535 (excluding lower and upper bounds, and non-
negative bound constraints). The last sample optimization sub-problem (i.e., 
SOSP10) is recognized to be the true conjunctive use optimization problem. 

3. Results and Discussion 

In total, 535 abstraction points (i.e., decision variables excluding slack variables) 
from groundwater and surface water sources were considered in simula-
tion-optimization problem analysis. Currently, surface water source produces 87 
percent of the total un-optimized conjunctive water use withdrawal rate and the 
remaining 13 percent is produced by groundwater source. Figure 5 shows over-
all percentages contributions of the existing (un-optimized) conjunctive use of 
surface water and groundwater sources in a pie chart view. 
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Table 3. Formulation of sample optimization sub-problems. 

Sample Path 
Sub-Problem 

#Realizations 
Response Matrix 

(#Rows/Constrains) 
#Decision Variables* 

(#Columns) 

SOSP01 20 180 535 

SOSP02 30 260 535 

SOSP03 40 340 535 

SOSP04 60 500 535 

SOSP05 80 660 335 

SOSP06 100 820 535 

SOSP07 150 1220 535 

SOSP08 200 1620 535 

SOSP09 250 2020 535 

SOSP10 500 4020 535 

*Decision variables for conjunctive use withdrawal rates in which, the first 515 decision 
variables/columns represent groundwater withdrawal rates and the remaining 20 decision 
variables/columns represent surface water withdrawal rates. 
 

 
Figure 5. Existing un-optimized overall percentage contribution of surface and subsur-
face water sources. 
 

In this work, MODFLOW [35] simulation model and Active-Set core opti-
mizer (Sequential Quadratic Programming (SQP) algorithm, implemented un-
der MATLAB 2014a environment) codes were used for simulation-optimization 
problem analysis. The k-means clustering sampling technique was used for the 
realizations mapping. The objective of the optimization was to determine op-
timal withdrawal rates that maximize the expected total conjunctive use of sur-
face and subsurface water withdrawal rates. To present the results in different 
graphical formats, the optimal conjunctive use solutions (i.e., the optimal 
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groundwater withdrawal rates) obtained were sorted out according to their 
pumping wells location in the model domain and their associated quaternary 
catchments, and then for each quaternary catchment polygon a geometrical 
mean of the optimal groundwater withdrawal rates were computed. The optimal 
surface water mean withdrawal rates were also computed and set to a multiple of 
factor 0.1 so as to reduce the high differences between the surface and subsurface 
water withdrawal rates. Table 4 summarizes the Retrospective Optimization 
Approximation (ROA) conjunctive use sample path optimization sub-problems 
optimal mean withdrawal rates (in m3/day). 

From Table 4, it can be seen that the expected total optimal conjunctive use 
objective function average (mean) values range from a minimum of 14835.72 
m3/day to a maximum of 43453.36 m3/day. Moreover, the percentage error of 
tolerance decreases as the number of sample size (realizations) increases. The 
errors of tolerance range from 65.86 percent (i.e., at 20 realizations) to 0.00 per-
cent (i.e., at 500 realizations). Note that the optimal conjunctive use average 
withdrawal volume rate solution values corresponding to the 500 hydraulic 
conductivity realizations varies from one another (see Table 4). This is because 
the optimal withdrawal volume rates designed based on Retrospective Optimiza-
tion Approximation (ROA) approach depend on the outcomes of the uncertainty 
realizations. Figure 6 shows the conjunctive water use simulation-optimization 
sample optimization sub-problems optimal solutions. 

Also, Figure 6 indicates that the sample optimization sub-problems solutions 
converge to the true conjunctive use optimization problem (i.e., SOSP10) as the 
number of realizations (sample size) increases. It can also be observed from  
 

Table 4. ROA conjunctive use sample optimization sub-problems optimal mean withdrawal rates solutions (in m3/day). 
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SP

07
R1

50
 

SO
SP
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R2

00
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SP

09
R2

50
 

SO
SP

10
R5

00
 

CPW01 352.17 528.25 645.64 733.68 804.11 862.81 913.12 957.14 996.27 1031.49 

CPW02 510.49 765.73 935.89 1063.52 1165.61 1250.69 1323.62 1387.43 1444.15 1495.20 

CPW03 184.82 277.23 338.84 385.05 422.01 452.82 479.22 502.32 522.86 541.34 

CPW04 78.58 117.88 144.07 163.72 179.43 192.53 203.76 213.58 222.31 230.17 

CPW05 157.73 236.59 289.17 328.60 360.14 386.43 408.96 428.68 446.20 461.98 

CPW06 289.42 434.13 530.60 602.96 660.84 709.08 750.43 786.60 818.76 847.70 

CPW07 385.75 578.62 707.20 803.64 880.79 945.08 1000.19 1048.40 1091.26 1129.84 

CPW08 464.06 696.09 850.78 966.79 1059.61 1136.95 1203.25 1261.25 1312.82 1359.22 

CSWD 12412.70 18619.05 22756.62 25859.79 28342.33 30411.11 32184.36 33735.94 35115.13 36356.40 

Expected Total 14835.72 22253.57 27198.81 30907.74 33874.88 36347.50 38466.89 40321.36 41969.77 43453.36 

% Error 65.86 48.79 37.41 28.87 22.04 16.35 11.48 7.21 3.41 0.00 
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Figure 6. Conjunctive water use simulation-optimization sample optimization sub-problems 
optimal solutions. 
 
Figure 6 that after 30 realizations (sample size) the sample optimization sub- 
problems solutions are very close to true optimization problem solution. This is 
because in statistics, sample sizes below 30 are considered as small, hence, 
beyond which the convergence gains momentum and therefore, through Re-
trospective Optimization Approximation (ROA) approach it converges rapidly 
because the optimization process takes the advantage of “warm start” technique 
whereby initial guess solution of subsequent sub-problem is the solution of the 
current sub- problem. From Figure 6, it can also be seen that the ninth sample 
optimization sub-problem (SOSP9) optimal solution is almost equal to the orig-
inal (true) optimization problem (SOSP10) solution. Thus, the tenth sample op-
timization problem (SOSP10) (in which all the 500 realizations generated were 
considered), converged with few iterations. This is because the initial guess solu-
tion of problem (SOSP10) is the solution of optimization sub-problem SOSP9 
which is probably nearly equal to the true optimization problem (SOSP10) op-
timal solution. Figure 7(a) presents histogram diagram of the optimal conjunc-
tive use withdrawal rates solution of the true optimization problem (SOSP10). 

In Figure 6 and Figure 7(a), it can be observed that the highest groundwater 
withdrawal rates (>1000 m3/day) occurred within the quaternary catchments 
B81G, B81H, B81J, B81D with combined pumping wells CPW1, CPW2, CPW7, 
CPW8 (see Table 1) while the lowest volume rate (<250 m3/day) occurred at qu-
aternary catchment B81C with combined pumping well CPW4. High differences 
in groundwater pumping rates are due to differences in aquifer hydraulic con-
ductivity values and boundary conditions of the model domain. This is because 
quaternary catchments with combined pumping wells CPW1, CPW2, CPW7 and 
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CPW8 are characterized by hydraulic conductivity values of relatively high mag-
nitude values while the quaternary catchment with combined pumping well 
CPW4 falls within a relatively low magnitude of hydraulic conductivity value. 

To evaluate the performance of the Retrospective Optimization Approxima-
tion (ROA) conjunctive use management model, the sample optimization sub- 
problems were resolved with changed initial solutions for three runs, which resulted  
 

 
(a) 

 
(b) 
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(c) 

Figure 7. (a) Optimal conjunctive water use withdrawal rates of surface water and 
groundwater sources; (b) Performance of the ROA conjunctive use management model; 
(c) ROA optimal percentages of contribution of surface and subsurface water sources to 
the expected total optimal conjunctive use. 
 
in different optimal solutions and, hence, different expected total conjunctive 
use objective function values. The expected total optimal conjunctive use with-
drawal rates obtained were then evaluated over 500 realizations for three runs 
and averaged. Figure 7(b) shows the performance of the ROA conjunctive use 
management model with cluster sampling evaluated over 500 realizations. 

From Figure 7(b), the Retrospective Optimization Approximation (ROA) 
expected total optimal conjunctive use withdrawal volume rate converged to its 
maximum mean withdrawal rate value of 4.35 × 104 m3/day within 7 to 8 itera-
tions of which, surface water source contributed 36356.40 m3/day that is about 
58 percent of the expected total optimal conjunctive use withdrawal rate and the 
remaining 7143.60 m3/day (i.e., 42 percent) was contributed by the groundwater 
source. Figure 7(c) presents ROA optimal percentages of contribution of surface 
and subsurface water sources to the expected total optimal conjunctive use 
withdrawal rate in a pie chart view. 

Also, Figure 7(c) indicates that the overall percentages of contribution of sur-
face and subsurface water sources to the total volume water withdrawal rate re-
quirement were about 58 percent and 42 percent, respectively. This implies that if 
Retrospective Optimization Approximation (ROA) technique would be adopted 
for used in the study area, groundwater source can optimally (sustainably) be able 
to contribute up to 42 percent of the expected total optimal withdrawal rate. This 
is an increase of about 29 percent from the existing un-optimized groundwater 
source percentage (i.e., 13 percent) of contribution while the surface water 
source contribution would be reduced by 29 percent from the existing un-opti- 
mized surface water source percentage (i.e., 87 percent) of contribution. 
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4. Conclusion 

Retrospective Optimization Approximation (ROA) methodology was applied to 
solve a real-world conjunctive water use stochastic simulation-optimization prob-
lem. ROA procedure solves and evaluates a sequence of optimization sub-problems 
in an increasing number of realizations. Results indicated that if ROA approach 
would be adopted for use in the study area, the existing groundwater source 
percentage of contribution to the total water requirement could increase up to 
29 percent (i.e., from 13 to 42 percent) while the surface water source percentage 
of contribution could be reduced by 29 percent (i.e., from 87 to 58 percent). This 
implies that currently the river basin surface water storage system is water 
stressed and hence, reduction of 29 percent from the existing surface water 
source contribution could reduce stress on surface water storage system. This 
further demonstrates that ROA conjunctive water use management technique 
has potential to ensure sustainability of the limited water resources of river ba-
sins. Moreover, it has been revealed that through ROA method the expected to-
tal optimal conjunctive use objective function value converged to its maximum 
value within a relatively few iterations (6 to 8 iterations) in about 2.30 Hrs com-
putational time. In conclusion, results demonstrated that the ROA-stochastic 
simulation-optimization approach is a promising technique for use in managing 
regional aquifers conjunctive water use under hydrogeological uncertainty con-
ditions. 
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