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Abstract 
The Limpopo River basin (LRB) is known for its vulnerability to floods, high 
rates of evapotranspiration, and droughts that cause significant losses to the 
local community. The present study aimed to perform simulations of flood 
events occurring in two Mozambican sub-basins of LRB, namely Chókwè and 
Xai-Xai from 2000 to 2015 with TOPography-based hydrological MODEL 
(TOPMODEL) and satellite remote sensing data. As input in TOPMODEL, 
data from two high-resolution global satellite-based precipitation products: 
Climate Prediction Center MORPHing technique (CMORPH) and Integrated 
Multi-Satellite Retrievals for the Global Precipitation Mission (GPM) algo-
rithm (IMERG), 8-day MOD16 evapotranspiration product and surface ru-
noff data estimated by Global Land Data Assimilation System (GLDAS) were 
used. The sensitivity tests of TOPMODEL parameters were applied using the 
Monte Carlo simulation. Calibration and validation of the model were per-
formed by the Shuffled Complex Evolution (SCE-UA) method and were eva-
luated with the Kling-Gupta Efficiency (KGE) index. The results indicated 
that simulations with the GPM-IMERG (KGE: 0.59 and 0.65) tended to un-
derestimate the stream flows, while with the CMORPH product the perfor-
mance was much better (KGE: 0.66 and 0.77) in both sub-basins. Thus, 
TOPMODEL can help to develop flood monitoring systems from satellite 
remotely sensed data in similar regions of Mozambique. 
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1. Introduction 

Mozambique is a developing country, with a climate predominantly humid to 
semi-humid, and in the estuary of several rivers, sharing nine (9) of the fifteen 
(15) international river basins in the Southern African Development Communi-
ty (SADC) [1] [2]. Due to these conditions, the country is extremely vulnerable 
to extreme weather events such as floods, cyclones, droughts, and other events, 
which tend to turn into calamities. Population growth and urbanization 
processes, in line with land use trends, the increasing impoverishment of the 
population, the uncontrolled use of technological systems, and inadequate sani-
tation systems, among others, are the factors that increase the vulnerability of 
the population to such extreme weather events [3] [4] [5] [6].  

A flood is a natural phenomenon with great destructive power that happens 
quickly and sometimes unexpectedly. It forms when intense rainfall causes an 
increase in the flow of water channels, which results in a rise in water levels and 
consequent leakage of the banks [7] [8]. The impacts of floods range from 
deaths, destruction of many types of infrastructures, the spread of diseases, and 
interdiction of roads. In the year 2000, floods associated with several cyclones 
had a particular impact on the lives of Mozambican populations [1] [9]. The 
LRB, with a total catchment area of approximately 411,000 km2, is known for its 
vulnerability to floods, high rates of evapotranspiration, and droughts that cause 
significant losses to the local community [8] [10]. Floods are the biggest problem 
in the LRB, particularly in the low-elevation areas across the coastal floodplain 
in Mozambique, a region that receives a large portion of the water from the up-
per basin [3] [6] [7] [8] [11] [12]. According to [13] a better understanding of 
the nature of rainfall extremes on the LRB is crucial for decision-makers, disaster 
managers, and seasonal forecasts of wet or dry seasons and in evaluating how the 
regional water cycle may behave in the future climate. However, as an alterna-
tive, hydrological models have been used [14].  

TOPMODEL, developed by Beven & Kirkby in 1979 [15], is classified as a 
semi-distributed and conceptual rainfall-runoff hydrological model based on the 
variable contribution area and has been the subject of numerous applications to 
a wide variety of catchments [15] [16] [17]. Parameters in the model are in-
tended to be physically interpretable and their number is kept to a minimum to 
ensure that values determined by a calibration exercise should be more easily 
identifiable, while still allowing mapping of the predictions back into the catch-
ment based on the pattern of a topographic index derived from an analysis of 
flow paths in the catchment [18] [19].  

Accurate rainfall measurements are required, usually over broad areas because 
of the natural variability of rain. Coverage of a large area can be achieved using 
many distributed point measurement techniques (e.g. rain gauges) or using re-
mote sensing (radars and satellites) to estimate rainfall over such an area [20]. 
The latest satellite-based precipitation products measure precipitation with very 
high spatial and temporal resolutions. To achieve those resolutions, they com-
bine infrared (IR) images with passive microwave (PMW) echoes to produce 
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precipitation estimates [21]. Two multi-satellite sensor precipitation products 
are used in this study: the Climate Prediction Center (CPC) MORPHing tech-
nique (CMORPH) [22] of US National Oceanic and Atmospheric Administration 
(NOAA) and the Integrated Multi-Satellite Retrievals (IMERG) [23] for the Global 
Precipitation Mission (GPM) of US National Aeronautics and Space Administra-
tion (NASA). Potential evapotranspiration (PET) data from the Moderate Resolu-
tion Imaging Spectroradiometer (MODIS) algorithm for Global Evapotranspira-
tion Project (MOD16) [24] and surface runoff data from the Global Land Data As-
similation System (GLDAS) [25] were also used in this study.  

The performance of conceptual rain-runoff (CRR) models depends on the ade-
quacy of the estimation of their parameters (calibration). Hence, the model must 
be able to identify appropriate values for its parameters [26] [27]. Model perfor-
mance criteria are often used during calibration and evaluation processes. Tradi-
tionally, the Nash-Sutcliffe efficiency (NSE) [28] is an often-used metric to sum-
marize model performance. Increasingly an alternative metric, the Kling-Gupta ef-
ficiency (KGE), is used instead [29] [30]. Research on automatic calibration me-
thods in the search for optimal parameter sets in CRR models has led to the de-
velopment of several methods [18] [26] [31] [32] [33]. A global optimization me-
thod known as the SCE-UA (Shuffled Complex Evolution method developed at 
the University of Arizona) has shown promise as an effective and efficient optimi-
zation technique for calibrating CRR models [31]. The use of interactive tech-
niques to optimize the parameters of a model must be preceded by a study of sen-
sitivity analysis and the importance of these model’s parameters [33] [34].  

Thus, this study aims to perform simulations of flood events occurring in two 
Mozambican sub-basins of LRB, namely Chókwè and Xai-Xai, from 2000 to 
2015 with TOPMODEL and satellite remote sensing data as input. In Section 
2, a brief description of the study area is presented. Then, is described the 
TOPMODEL hydrological model, used to perform simulations in both sub-basins. 
Different datasets derived from satellite-based techniques used to estimate pre-
cipitation, estimate surface runoff, and PET, are also described. Data from the 
Digital Elevation Model (DEM) from the SRTM mission (resolution ~90 m) 
were used to calculate the topographic index of the basin, TOPMODEL’s basic 
input for streamflow simulation. The calibration and validation of the model 
were performed by the SCE-UA method and were evaluated with the 
Kling-Gupta Efficiency (KGE) metric. The results of applications of those me-
thods are presented and discussed in Section 3, followed by the conclusions and 
recommendations in Section 4.  

2. Material and Methods 
2.1. Study Area 

The Limpopo River has a 411,000 km2 drainage area and is ~1760 km long with 
its outlet at the Indian Ocean (Figure 1). It is located between latitudes 20˚S - 
26˚S and longitudes 25˚E - 35˚E distributed in four riparian countries, South 
Africa (45%), Botswana (19%), Zimbabwe (15%) and Mozambique (21%) [10] 
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[11]. The LRB is one of the 63 transboundary basins in Africa and the fourth 
largest in southern Africa, smaller than Congo, Zambezi, and Orange basins [7] 
[8] [9] [13].  

This study focuses on two sub-basins where hydrological simulations were 
performed, namely, Chókwè and Xai-Xai, all of them with an outlet in Mozam-
bique (Figure 2). By Thornthwaite’s criterion, the climate of the Mozambican 
part of the basin varies from arid (E) near the border, semi-arid (D) in the cen-
tral region, and sub-humid dry mega thermal (C1) in the lower part of the basin 
[1] [10] [11].  

In the basin, the temperature is strongly related to the topography. The annual 
average in the Mozambican part ranges from 23˚C to 26˚C. Precipitation is 
highly seasonal and unevenly spatially distributed, with an annual average of 530 
mm, ranging from 400 mm in the hot and dry areas of the west and central to 
1600 mm in the central-southern fraction. Precipitation occurs mainly in the 
summer (October to March), with January the wettest month [6] [9]. Evapora-
tion ranges from 1700 to 2300 mm, a higher rate than precipitation. The average 
annual relative humidity varies between 65 and 70%. The high rates of evapo-
transpiration mean that most of the rain does not contribute to river flow or 
groundwater recharge [6] [9] [13]. The most important meteorological systems 
that determine precipitation volumes and patterns in LRB are the Inter-tropical 
Convergence Zone (ITCZ); Tropical-Temperate-Troughs (TTTs); cold fronts 
[6], and the tropical systems (cyclones, depressions, storms) of the South West-
ern Indian Ocean (SWIO) [1] [2] [4] [12] [35]. 

 

 
Figure 1. Map of the Limpopo River Basin in southern Africa with riparian countries. As 
indicated in the figure: basin boundaries (thick black line), main rivers (thin blue lines), a 
distance scale (km), geographic contours (light black). Longitudes are plotted on the 
x-axis and latitudes on the y-axis.  
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Figure 2. Delineation of Mozambican sub-basins in LRB. Geographic boundaries, main 
rivers (thin blue lines), distance scale (km), Xai-Xai sub-basin (red outline), and Chókwè 
sub-basin (green fill) are represented. Longitudes are plotted on the x-axis and latitudes 
on the y-axis.  

2.2. Database 

The database employed in this study includes two satellite-based precipitation 
estimates products: Climate Prediction Center MORPHing technique (CMORPH) 
[22] and Integrated Multi-Satellite Retrievals for the Global Precipitation Mis-
sion (GPM) algorithm (IMERG) [23]. Satellite-based potential evapotranspira-
tion estimation from the Moderate Resolution Imaging Spectroradiometer 
(MODIS) algorithm for Global Evapotranspiration Project (MOD16) algorithm 
[24] and surface runoff data from the Catchment Land Surface Model (CLSM/ 
GLDAS) model [25] are also used. A summary of the databases used is presented 
in Table 1.  

2.2.1. Precipitation 
GPM is a collaborative mission between the National Aeronautics Space Admin-
istration (NASA) and the Japan Aerospace Exploration Agency (JAXA). The two 
main GPM satellite sensors are the DPR and GMI, both derived from the acro-
nyms Dual-Frequency Precipitation Radar and the GPM Microwave Imager. 
The GMI (active sensor) is used to estimate the type and intensity of the preci-
pitation, while the DPR (passive sensor) is used to explore the internal structure 
of the storms under or within clouds [23] [36]. TRMM and GPM satellites were 
used to produce multi-satellite products, such as TMPA and IMERG. Input pre-
cipitation estimates calculated from the various passive satellite microwave sen-
sors are inter-calibrated to the GPM Combined Instrument product, then 
“transformed” and combined with geo-IR fields calibrated by microwave preci-
pitation, and fitted with precipitation data monthly surface meters (when availa-
ble) to provide precipitation estimates. The precipitation phase is diagnosed using  
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Table 1. List of remote sensing products used. First column: product name. Second col-
umn: estimated variable. Third column: spatial and temporal resolution. Fourth column: 
product references.  

Product Variable Resolution Reference 

GPM IMERG Final Precipitation 0.1˚ - 30 min [23] 

CMORPH_V1.0 Precipitation 8 km - 24 h [22] 

MOD16 Potential Evapotranspiration 500 m - 8 day [24] 

GLDAS-2.0, GLDAS-2.2 Surface runoff (0.25˚, 1.0˚), (3 h, 24 h) [25] 

 
temperature, humidity, and surface pressure analyses. In this study, data from 
the final execution of the IMERG (IMERG_F version 6) were used, with a spatial 
resolution of 0.1˚ and temporal resolution of 30 minutes, for the period of 2 
March 2003 to February 22, 2015. The database was available at  
https://disc.gsfc.nasa.gov/datasets/. 

The CMORPH is a technique that produces global precipitation estimates 
from PMW and IV data at high spatial resolution (approximately 8 km on the 
line of the equator) and temporal (30 minutes) [22]. Precipitation rates are ob-
tained from PMW from low orbit satellites and advected by winds derived from 
IR measurements from geostationary satellites. The CMORPH technique uses 
different satellite sensors to produce the best possible precipitation estimate [37] 
[38]. The result of this process is a spatial interpolated precipitation field tem-
porally generated by microwaves with high spatial and temporal resolution [39]. 
The results from several authors on the errors inherent in this rainfall estimate 
are satisfactory and allow for a more detailed analysis of tropical dynamics, es-
pecially where the surface observations are scarce [22] as is the case in the LRB 
region. The CMORPH_V1.0 product with 8km spatial resolution and temporal 
resolution 24 hours, selected for this study, is available at  
https://www.ncei.noaa.gov/access/metadata/landing-page/. 

2.2.2. Potential Evapotranspiration 
The Moderate Resolution Imaging Spectroradiometer (MODIS) for Global Eva-
potranspiration Project (MOD16) is a global ET estimation algorithm proposed 
for the first time by Mu et al. (2011) [24]. The algorithm (MOD16) is based on 
the logic of the Penman-Monteith equation which uses daily meteorological 
reanalysis data as inputs (incident solar radiation, average air temperature, av-
erage air temperature during the day, minimum air temperature, and water va-
por pressure) and remote sensing data from the MODIS database such as land 
use and land cover MCD12Q1, vegetation index MOD13Q, leaf area index 
LAI/FPAR MOD15A2 and albedo MOD43C1 at the spatial resolution of 0.05˚ 
[40] [41] [42]. The MOD16 dataset covers 109.03 million km2 of vegetation areas 
globally and is designed by the MODIS sensor onboard the Aqua and Terra 
platforms, with registration data from 2000 to the present day. The MOD16A2 
Potential Evapotranspiration data was used in this study set of 500 meters of 
spatial resolution and accumulated values of 8-days in sinusoidal projection 
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(MODIS/Terra Net Evapotranspiration Gap-Filled 8-Day L4 Global 500 m SIN 
Grid V006), for the period from January 18, 2000, to February 22, 2015. The data 
of MOD16A2 are provided by the NASA server (https://lpdaacsvc.cr.usgs.gov/).  

2.2.3. Surface Runoff 
The GLDAS [25] was developed through a partnership between the Goddard 
Space Flight Center (GSFC) of NASA and NOAA’s National Centers for Envi-
ronmental Prediction (NCEP) to produce a new generation of spatial and sur-
face-measured climate data [43]. GLDAS is a global model that uses advanced 
data modeling techniques for Earth surface and data assimilation to provide high 
spatial resolution reanalysis (0.25˚ to 1 km) from meteorological stations distri-
buted all over the planet and data from meteorological satellites. The data was 
acquired as part of the Earth Science Division Mission, archived and distributed 
by Goddard Earth Sciences (GES) Data and Information Services Center (DISC). 
Data from the Catchment Land Surface Model (CLSM) were used.  

Two components of NASA’s GLDAS Version 2 (GLDAS-2) were used: 
GLDAS-2.0, and GLDAS-2.2. The main purpose of GLDAS-2.0 is to create clima-
tologically consistent datasets using data from the Global Meteorological Forcing 
Dataset from Princeton University, covering 1948 to 2014. The GLDAS-2.2 com-
ponent dataset uses data assimilation, while the products GLDAS-2.0 and 
GLDAS-2.1 are “open loop” (i.e., no data assimilation). Time resolutions for 
GLDAS-2 products are three hours and daily, with spatial resolution of 0.25˚ 
and 1.0˚. In this study, two streamflow outputs (QS and QSb) of the component 
were used. GLDAS-2.0 (period from January 18th to March 28th, 2000) and 
GLDAS-2.2 (period from 2nd of March 2003 to February 22, 2015), were availa-
ble at: https://disc.gsfc.nasa.gov/datasets. Data from the 3 variables were 
processed, namely: QS, QSb and Qtotal = QS + QSb. In theory, the sum of these two 
variables of flow corresponds to the flow generated by each point (pixel). The 
data obtained for QSb was of only zero value for most of the selected period. 
Thus, the calibration of the TOPMODEL [15] was performed with only QS data, 
since in outputs of TOPMODEL, there is a separation of the streamflow (surface 
flow of the GLDAS and Runoff simulated by TOPMODEL). 

2.3. TOPMODEL 

According to Beven et al. (1984) [16] the physically-based computer model of 
basin hydrology presented here (called TOPMODEL from TOPography-based 
hydrological MODEL), was formulated by [15]. The TOPMODEL is a variable 
contributing area conceptual model. Although conceptual, this model is fre-
quently described as a physically-based model in the sense that its parameters 
can be measured directly in situ [32]. It is premised upon two basic assumptions 
that: the dynamics of the saturated zone can be approximated by steady-state 
representations of the saturated zone on an area draining to a point on a 
hillslope and that the hydraulic gradient of the saturated zone can be approx-
imated by the local surface topographic slope, tanβ [18]. These assumptions lead 
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to simple relationships between catchment storage (or storage deficit below sa-
turation) in which the main factor is the Kirkby topographic index (λ), the only 
spatially distributed parameter [Equation (1)] [44]. The λ represents the propen-
sity of any point in the catchment to develop saturated conditions [18]. 

( )0ln tani i ia Tλ β=                       (1) 

where iλ  is topographic index class; ia  is the area of the hillslope per unit 
contour length [m2] that drains through point i; T0 is local saturated transmis-
sivity [m2·h−1] and tan iβ  is local surface topographic slope [m·m⁻1].  

TOPMODEL is based on the storage principle of Darcy flow equation [18] 
[32] [45] and consists of a series of interconnected reservoirs with different 
times constant (Figure 3). The distribution of downslope transmissivity T0 with 
depth can be simulated by an exponential function, Equation (2):  

0e iD m
iT T −=                          (2) 

where Ti is transmissivity at point i [m2·h−1] and m is decay of transmissivity 
with depth; Di is the local saturation deficit. The m parameter acts as a controller 
of the effective depth of the soil profile and, together with T0, determines the ac-
tive zone of the soil where subsurface runoff occurs [45] [46].  

The series of reservoirs in TOPMODEL represents the mean soil saturation 
response in a homogeneous sub-basin. The dominant source in the generation of 
runoff (Q) is rain (R). Part of the net precipitation can be lost by evapotranspira-
tion in the root zone storage (SRZ) and another part in the gravity drainage zone 
storage (SUZ) [18] [32]. Actual evapotranspiration (ETa) losses, are controlled by 
potential evapotranspiration (ETp) and the maximum root zone storage (Srmax) 
[47]. The topography of a catchment is analyzed using Digital Elevation Model 
(DEM) data through a Geographic Information System (GIS). The DEM data 
from the Shuttle Radar Topography Mission (SRTM, approximately 90 m reso-
lution) was used to generate the spatial distribution of λ [16] [32] [45] [48]. 
From the λ values the distribution relative to the percentage of area in the basin 
is obtained, which is the basic input of TOPMODEL to simulate the streamflow 
of the basin [46]. 

2.4. Calibration and Validation Evaluation 

To calibrate TOPMODEL’s parameters the Shuffled Complex Evolution (SCE-UA) 
method was used. The SCE-UA method was developed at the University of Arizona 
and is a global optimization algorithm, initially developed by Duan et al. (1992) 
[26] for the calibration of CRR models. SCE-UA searches for the global opti-
mum of a function by evolving clusters of samples drawn from the parameter 
space, via a systematic competitive evolutionary process [27].  

The calibration and validations were evaluated through Kling-Gupta efficien-
cy metric (KGE) [29]. The KGE, Equation (3), is based on a decomposition of 
NSE [Equation (4)] into its constitutive components (correlation, variability bi-
as, and mean bias), addresses several perceived shortcomings in NSE, and is in-
creasingly used for the CRR model calibration and evaluation:  
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Figure 3. Schematic diagram of prediction of saturated area using increments of the topographic index distribution in 
TOPMODEL. Where D —mean saturation deficit; Q—subsurface flow; R—effective recharge rate; ETp—potential evapotranspi-
ration; SRZ—root zone storage; Srmax—Maximum root zone storage deficit; SUZ—unsaturated zone storage; SSZ—saturated zone 
storage; Di—local saturation deficit; D—water table depth; T0—local saturated transmissivity and T—transmissivity of saturated 
surface soil layer. Adapted from [18].  
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where r is the correlation between observed and simulated values; σ represents 
the standard deviation; μ represents a time series average; n is the number of 
time steps; t is the time step in days; Qsim is the simulated value; Qobs is the ob-
served value; and obsQ  is average streamflow observed. Like NSE, KGE = 1 in-
dicates perfect agreement between simulations and observations; KGE > 0 is in-
dicative of “good” model simulations, whereas KGE < 0 are considered “bad”; 
KGE = 0 indicates threshold between “good” and “bad” performance [29] [30].  

3. Results and Discussions 

In this current section, we present and discuss the results of our analysis ob-
tained using the R statistical programming packages and Q-GIS. Five flood 
events that occurred in the two Mozambican sub-basins, namely, Chókwé and 
Xai-Xai basins between 2000 and 2015 were chosen to carry out simulations with 
the TOPography-based hydrological MODEL (TOPMODEL). The first event 
(Event 1) selected, took place between January 18 and March 28 of 2000 (71 days 
of duration); the second one (Event 2), lasting 26 days, occurred between March 
2nd and 27th, 2003; the third (Event 3) from December 7, 2011, to March 29, 
2012 (85 days); the fourth (Event 4) took place from January 10 to February 14, 
2013 (36 days duration); the fifth (Event 5) and last (71 days of duration) took 
place between December 14, 2014, to February 22, 2015. The selection of flood 
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events was based on the preliminary analysis of the hydrometric data series pro-
vided by the National Directorate of Water Resources Management of Mozam-
bique (DNGRH), which is the authority responsible for water management.  

In Section 3.1, the results of the application of the Monte Carlo simulations 
are presented, with both precipitation datasets: Climate Prediction Center 
MORPHing technique (CMORPH) and Integrated Multi-Satellite Retrievals for 
the Global Precipitation Mission (GPM) algorithm (IMERG). The MC method 
was used to generate the TOPMODEL’s parameter values randomly in the 
sub-basins, with 5000 iterations for each flood event. Calibration and validation 
of TOPMODEL were performed by the Shuffled Complex Evolution (SCE-UA) 
method and evaluated by Kling-Gupta efficiency (KGE) metric. Events 1, 2, and 
4 were selected for the calibration stage, with a total duration of 133 days. As for 
the validation stage, Events 3 and 5 were selected, with a total duration of 156 
days. The simulations were performed with a temporal resolution of 24 hours 
and can be seen in Section 3.2.  

3.1. Sensitivity Analysis 

The sensitivity of TOPMODEL’s parameters can be visually perceived in the pa-
rameters that relate the parameter values with the value of the KGE metric. The 
parameters of soil permeability (lnTe), decay of transmissivity with depth (m) 
and average vertical hydraulic conductivity of the surface (k0), showed signifi-
cant variations in the simulation results, with both sets of precipitation data 
(CMORPH and IMERG). Figure 4 is presented the variations of those parame-
ters’ values for the Chókwè sub-basin and in Figure 5 the variations for the 
Xai-Xai sub-basin. The calibrated parameters in each sub-basin are shown in 
Table 2.  

 
Table 2. Calibrated parameters of TOPMODEL for Chókwè and Xai-Xai with CMORPH 
and IMERG data sets. 

Parameter 
Chókwè Xai-Xai 

CMORPH IMERG CMORPH IMERG 
1

0 m hsq − ⋅   9.52 × 10−3 1.04 × 10−1 1.10 × 10−2 2.78 × 10−2 

2 1ln m heT − ⋅   7.52 × 100 8.37 × 100 7.73 × 100 8.73 × 100 

[ ]mm  1.26 × 100 1.61 × 100 1.51 × 100 4.22 × 100 

[ ]0 mrS  3.54 × 10−7 7.10 × 10−7 2.54 × 10−7 1.21 × 10−7 

[ ]max mrS  1.14 × 10−4 5.36 × 10−5 1.15 × 10−4 5.40 × 10−5 
1h mdt
− ⋅   1.22 × 10−4 2.99 × 10−5 4.02 × 10−5 3.66 × 10−5 

1m hCHv − ⋅   2.24 × 103 6.84 × 103 2.25 × 103 2.79 × 104 

1m hrv − ⋅   7.06 × 104 1.71 × 105 1.42 × 105 6.73 × 104 

1
0 m hk − ⋅   8.36 × 10−1 3.90 × 10−1 2.84 × 100 2.44 × 100 

[ ]mdc  6.60 × 100 1.47 × 100 1.58 × 100 4.96 × 101 
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Figure 4. Monte Carlo test of the TOPMODEL parameters that showed sensitivity (m, 
lnTe and k0) for Chókwè with CMORPH (blue) and IMERG (red). Parameter values are 
shown on the x-axis. Kling-Gupta Efficiency is presented on the y-axis. 

 
According to Hollanda et al. (2015) [44], the parameter m is the most impor-

tant in the TOPMODEL for controlling the hydrological response. Hence, it in-
fluences the areas of contribution and the share of precipitation that will become 
surface runoff. The predominant soils in the Mozambican sub-basins derive 
from the volcanic sediments of the Karroo, Cretaceous, and Upper Tertiary [10] 
[11] and are generally constituted by a vast sandy cover of small thickness and a 
significant amount of clay accumulated in the subsurface layers. These soil cha-
racteristics can justify the m values found and their importance in the simula-
tions of flood events.  

On the other hand, during the rainy season, the soils of the Mozambican 
sub-basins remain periodically wet at small depths (from 60 cm), thus having 
low or very low hydraulic conductivity. This may explain the low values of the 
parameters lnTe and k0, obtained in the calibration process concerning the values 
used in the initial estimate of TOPMODEL.  
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Figure 5. Similar to Figure 4 except for Xai-Xai.  

3.2. Simulations 

The results of the simulation to flood events for the Chókwè subbasin showed 
that the CMORPH dataset had better performance in the calibration process 
(KGE = 0.68) about the validation process (KGE = 0.57). Details of these two 
processes can be seen in Table 3. Both datasets showed tendencies to overesti-
mate the stream flows, in most of the maximum peaks of flood events. The peak 
corresponding to the first 50 days was overestimated (Events 1 and 2) and in x = 
110 days (Event 4) was severely underestimated by the IMERG dataset (Figure 
6). Therefore, during the simulations, the CMORPH dataset presents a similar 
behavior during the calibration period (Figure 7). 

For the Xai-Xai subbasin, CMORPH and IMERG datasets showed similar be-
havior, with a good result in the calibration and unsatisfactory in the validation 
processes (Table 3). In the calibration period, the CMORPH dataset obtained 
better results (KGE = 0.77) compared to IMERG (KGE = 0.65), but the calcu-
lated hydrograph presented an amplitude error (overestimated the stream flows) 
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and phase error (delayed and advanced the peak of some events; Figure 8). With 
the IMERG dataset, the simulations presented higher performance in validation 
processes (KGE = 0.59) in relation to CMORPH (KGE = 0.54). The calculated 
hydrograph overestimated the stream flows corresponding to Events 1 and 4 
(Figure 9). This fact may be related to the drainage area of the sub-basin, which 
is larger than the previous ones (Chókwè). Therefore, the performance of 
TOPMODEL in both regions was good (KGE > 0.5).  

 
Table 3. KGE values for TOPMODEL simulations with CMORPH and IMERG datasets 
in Chókwè and Xai-Xai subbasins.  

Subbasin 
CMORPH IMERG 

Calibration Validation Calibration Validation 

Chókwè 0.68 0.57 0.62 0.64 

Xai-Xai 0.77 0.54 0.65 0.59 

 

 
Figure 6. Streamflow (m3·s−1) time series for Xai-Xai subbasin with IMERG dataset. Ob-

served (blue line) and simulated (red line) data. River stage level thresholds (flood) are 

indicated by brown dashed lines.  

 

 

Figure 7. Similar to Figure 6 except for the CMORPH dataset.  
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Figure 8. Similar to Figure 6 except for the Xai-Xai subbasin.  

 

 

Figure 9. Similar to Figure 6 except for the Xai-Xai subbasin with CMORPH dataset.  

4. Conclusions 

The main objective of this study was to carry out simulations of flood events that 
occurred in the Chókwè and Xai-Xai sub-basins (Mozambican portion of the 
LRB), between 2000 and 2015 with the TOPMODEL hydrological model using 
satellite remote sensing data as input. Were used as input data in the model of 
two satellite-based precipitation estimates products, CMORPH from NOAA and 
IMERG from NASA. Potential evapotranspiration data from the MOD16 algo-
rithm and surface runoff data from the CLSM/GLDAS model are also used. 

Two of the five flood events (Events 1 and 4) described and selected for the si-
mulations with TOPMODEL, were the ones that produced the highest amounts of 
rain in the LRB region, both with the CMORPH and IMERG datasets. It was 483.6 
mm for CMORPH and 550.8 mm for IMERG during Event 1 in 2000. For Event 4, 
in 2013, the total precipitation amounts were 242.8 mm (CMORPH) and 233.9 
mm (IMERG).  

To understand the influence of each TOPMODEL parameter in simulations of 
flood events, sensitivity tests were applied using Monte Carlo Simulations. The 
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parameters that showed significant variations in the simulation results were: m, 
k0 and lnTe. The great sensitivity to the m parameter is mentioned by several 
authors who performed sensitivity tests with this hydrological model [14] [45] 
[46] [49] [50]. The parameter k0, affects both the interflow regime and the flow 
exchange rate between the unsaturated and saturated zones. During the rainy 
season, the soils of the Mozambican sub-basins remain periodically wet at small 
depths, thus having low or very low hydraulic conductivity.  

CMORPH showed better performance in the calibration process (0.68 < KGE 
< 0.77) compared to the IMERG that was better in the validation processes (0.59 
< KGE < 0.64). This situation may be related to the physics of rainfall produc-
tion processes in the region, which can be better detected by the CMORPH algo-
rithm. Overall, the two satellite-based precipitation estimates products show 
great potential to simulate the streamflow in the LRB region.  

Thus, with the results presented in this paper, the TOPMODEL hydrological 
model can be used in watersheds with similar characteristics in Mozambique; it 
can also help to develop flood monitoring systems from remotely sensed data; 
can increase the technical capacity of LRB’s water resources managers as well as 
provide communities with rural areas prior warning of flood events that may 
occur during the rainy season.  
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