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Abstract 
The temporal dynamics of the edge dislocation (ED) was studied in this work 
using the inhomogeneous dissipative sine-Gordon (SG) equation. The con-
sideration was carried out for the force action levels both less and more criti-
cal. By SG equation numerical calculations it is shown that at the external 
force value below a critical one the ED takes a shape close to a semicircle. 
This shape was used as an initial condition for describing the ED temporal 
dynamics in the FR source operating mode. A particular solution of the SG 
equation is proposed that describes the temporal dynamics of half the ED in 
the FR mode, which rests on a stopper at the origin. It is shown that the pro-
posed particular solution corresponds to the left Archimedes spiral displaced 
at π/2 counterclockwise relative to the azimuth angle equal to zero. It is noted 
that the temporal dynamics of the second half of the ED segment rested on 
the second stopper is described by the proposed particular solution, when it is 
mirrored relative to the problem symmetry axis and the center of the spiral is 
displaced to a point with a zero azimuthal angle and a radius equal to the dis-
tance between the stoppers. The axis of symmetry is a straight line that is 
perpendicular and halves the distance between the stoppers. A graphical de-
scription of the ED temporal dynamics was plotted in the Cartesian coordi-
nate system based on the proposed particular solution and its mirror and dis-
placed image. It is shown that the particular solution of the SG equation in 
the RF source operation mode involves two Archimedes spirals symmetrical 
relative to the problem symmetry axis with equal radii increasing linearly 
with time, which rotate: one (the spiral center coincides with the stopper at 
the origin) counterclockwise, the second (the spiral center coincides with the 
second stopper) clockwise. 
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1. Introduction 

The mechanism of continuous generation of dislocations in the slip plane was 
first proposed by Frank and Reed [1]. This mechanism is based on consideration 
of the displacement of the edge dislocation (ED) fixed at both ends at points O 
and O' under the external force action. Two immobile dislocations CO and DO' 
not lying in the slip plane, atoms of a dissolved substance or particles of precipi-
tates can be as fixation points of the dislocation. With a gradual increase in the 
external force action, the shear stress can reach a critical value at which the dis-
location begins to move in the direction of the force. 

We shall call the region into which the dislocation moves as frontal. The re-
quired shear stress 0τ  is determined by the following expression 0 bG Lτ = : 
where G—the crystal shear modulus, L—the ED length and b—the length of the 
Burgers vector. For a dislocation line in the form of a semicircle the applied 
stress is maximal, but after passing through this state the dislocation becomes 
unstable and continuously expands [2]. At any point of the dislocation line acts 
the same constant stress n bσ τ= , so its movement velocity at each point is also 
the same. Therefore, the dislocation line near the fixing points is twisted into 
two spirals rotating in opposite directions. Dislocation loops are formed at a 
stage when in the backside of the dislocation (the side opposite the frontal) the 
rotated spirals will touch one another. At the contact point the dislocations an-
nihilate due to the fact that the Burgers vector of each of them has an equal 
length but opposite direction. As a result a closed dislocation loop is formed, 
which continues to expand under the action of the applied stress. The remains 
spirals located between the contact point and the fixing points form again the 
initial ED under the action of the applied stress. When keeping the action of the 
external stress the above cycle repeats, the described process of the formation of 
dislocation loops is usually called the Frank—Reed source (FR). 

Thus, multiply repetition of the cycle described above generates an endless se-
ries of loops. This process will continue until the back stresses arising at the dis-
location interaction and counteracting the applied stresses balance the action of 
the external stress. 

Figure 1 shows the successive stages of the FR source action, which end with 
formation of a dislocation loop 4 from the ED. At that, a constant stress nσ  di-
rected along the normal acts on the dislocation line at each of its points (vectors 
of the stress nσ  are not shown in the figure). 

Visual representation of the FR source operation described in Figure 1 is 
based on quasistatic models based on the description of stress fields arising 
around the edge dislocation [3] [4] [5] [6] [7]. Using such models makes it 
possible to determine some static parameters of crystalline materials. However, 
these models are not applicable to describe the ED strain development in time. 

Let us briefly discuss the results of previous studies of the ED deformation in 
time in the FR source mode. 

Until the present time, no analytical description of such processes has existed.  
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Figure 1. Stages (2, 3, 4) of formation of the dislocation loop from the 
ED (1). The axis х is directed along the initial position of the ED, the 
axis у determines the deviation of the ED from the equilibrium position 
(х and у are measured in units of the lattice spacing b). 

 
Therefore the answer to this question was obtained by numerical simulation 
methods in a number of works. Numerical analysis of the ED deformation was 
carried out for partial differential equations of hyperbolic [8]-[14] or parabolic 
[15] [16] [17] type. 

However, the drawback of numerical calculations is that they do not deter-
mine the analytical dependence of the ED deformation on time and its characte-
ristic parameters, which complicates the understanding of the process physics. 

By numerical study of partial differential equations of a hyperbolic type the 
following results were obtained. 

In [14] within the framework of the dislocation string model (the Fren-
kel-Kontorova model [8]), the ED nonlinear dynamics under the effect of the 
external harmonic force was studied by numerical methods. 

The calculations have shown that at sufficiently high amplitude of the external 
harmonic force the oscillation amplitude of the dislocation string can be com-
parable with the lattice spacing. Under such conditions, the dislocation move-
ment is possible both in the direction of the climb force and in the opposite di-
rection. The resonant nature of the increase in the average kinetic energy of the 
string depending on the frequency of the external harmonic force was shown. 
The process considered in the work is indicative by using a partial differential 
equation of a hyperbolic type in the case of action of a time-periodic force. This 
example does not lead to the task of studying the FR source generation, but de-
scribes the generation of multi-soliton solutions on ED. 

In [18] it is shown that in a constant field of stresses the ED can form FR 
sources. At that, FR source operation is accompanied by an acoustic emission 
(AE). 

In the paper [19] a plane dislocation loop has been considered, which, as a re-
sult of the FR source operation, emits AE in a medium with a sufficiently large 
dislocation friction coefficient. It is shown that in the dipole approximation the 
loop expands under the action of a uniform external stress 0σ  up to the radius 

0R  and then it instantly stops at stoppers. The similar model of dislocation 
cluster formation is described in [12] and comes to an agreement with the con-
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clusion that the loop area at the stage of its leaving the source varies with time 
according to the quadratic law [18]. 

However, the above calculations do not specify the temporal dynamics of the 
loop shape change starting from the moment of its rotation relative to the stop-
pers. This information is of interest for understanding both the physics of the 
formation of the first loop and the following loops. 

Using partial differential equations of hyperbolic type to describe the ED 
temporal dynamics [15] [16] [17] changes the physics of the process from wave, 
when ED segments take part in wave motion, to diffusion, when ED segments 
displacement is subject to diffusion. In the latter case a numerical analysis of the 
position of the dislocation curve segment is based on its position obtained in the 
previous step. Although numerical calculations describe the formation of loops 
rather well, it is required to use smoothing factors (Gibbs phenomenon [20]) in 
the calculation algorithm in order to provide calculations for the entire range of 
physical parameters. 

The aim of this work is to obtain, within the framework of the ED string 
model, an analytical solution for ED temporal dynamics in the field of 
non-oscillating external stress in the FR source operation mode. 

The following steps were taken to solve the task of studying the ED strain in 
the FR source operating mode: 

1) The initial equation describing the process of ED shape change in time is 
selected and the process itself is divided into two stages: the first, when the ED 
takes a shape close to the semicircle, and the second, corresponding to ED oper-
ation in the FR source mode; 

2) Study of the first stage of the ED temporal dynamics, when the force effect 
is less than the critical level; 

3) Study of the ED temporal dynamics in the FR source operation mode. 

2. Initial Equation and Two Stages of the Temporal  
Dynamics of ED 

Following the Frenkel-Kontorova model we will consider the edge dislocation of 
a length L as a string that is located on the axis ох and its ends are fixed at points 
with coordinates { }0, L . The string displacements occur in the slip plane xy. In 
this geometry the displacement of the dislocation segment of the edge disloca-
tion ( ),w x t  is determined by the well-known inhomogeneous dissipative 
sine-Gordon equation (SG) [21] [22] [23]: 

( )
2 2

02 2

2sin ,P
w w w wm K b bF t

a tt x
σ δ∂ ∂ ∂  ′π

− + = −  ∂∂ ∂  
          (1) 

with boundary conditions at fixation points called stoppers: 

( ) ( )0, , 0,w t w L t= =                        (2) 

where: 
2

ln
4
b Lm

b
ρ   =    

  π
—effective mass of the dislocation length unit; ρ — 
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crystalline substance density; b—Burgers vector module;  

( ) ( )5 210  - 10 kg m sδ − −′ = ⋅  [13] [24] [25]—dislocation friction coefficient; 

0
mK G
ρ

= —dislocation linear tension coefficient; G—crystal shear modulus; 

( )4 210  - 10P Gσ − −= —Peierls characteristic stress; ( )410 - 10L b= —characte- 

ristic dislocation length; ( )F t —external stress. 

The characteristic parameters of a dislocation string can take the following 
values [26]:  

1610 kg mm −≈ ; 50 GPaG ≈ ; 1010 m
2 3
a b −= ≈ ; 

3 4
010 10P Gσ σ⋅ ≈ ⋅ ≈ ; ( )3 110  - 10P G− −≈ .             (3) 

Equation (1) is also used to describe the nonlinear dynamics of physical sys-
tems of various types (dislocations and crowdions in solids, domain boundaries, 
Josephson contacts, biological molecules, and crystal surfaces) [23]. 

The first and second terms of the right-hand side of Equation (1) describe the 
contribution of external stresses and internal dissipation, respectively. 

3. The First Stage of the Temporal Dynamics of ED When  
Taking into Account an External Stress  

For the dimensionless displacement value 2 wR
a

=
π  and in dimensionless va-

riables 0t tζ= , 0x xξ=  Equation (1) and boundary conditions (2) take the 
form: 

( ) ( )

( )

2 2

2 2

0

sin

0, , 0

R R RR

LR R
x

ζ δ
ζζ ξ

ζ ζ

∂ ∂ ∂
− + = Φ −

∂∂ ∂

 
= = 

 

              (4) 

where: a —crystal lattice constant; 2
0 2 P

a mt
bσ
⋅

π
= ; 0 0 0x s t= ; 2 0

0
K

s
m

= ; 

0tm
δδ
′

= ; ( ) ( )
P

F ζ
ζ

σ
Φ = .  

For ED parameters (3) the characteristic time 0t , distance 0x , and velocity 

0s  have the following order of magnitude: 12
0 4.6 10 st −× ; 8

0 ~ 1.3 10 mx −× ; 
3 1

0 ~ 2.9 10 m ss −× ⋅ . 
We consider that the external stress on the right side of Equation (4) is a suffi-

ciently large value, i.e. ( ) 1ζΦ ≥ . The stress action of this magnitude can 
create conditions under which the ED operates as a FR source. 

It is known that after passing the critical level of force action the ED takes a 
shape close to a semicircle and begins to expand [2]. Therefore, the ED temporal 
dynamics can be divided conventionally into two stages. At the first stage the ED 
takes a shape close to a semicircle. At the second stage the ED continuously ex-
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pands and begins to operate as the FR source. 
To analyze the nature of the ED displacement at the first stage of the external 

force action the numerical calculations were carried out. These calculations show 
that at ED displacement amplitudes smaller than the lattice spacing the semicir-
cle formation is observed. Figure 2 shows the swept ED surface from the view of 
which it can be concluded that the ED forms a curve close in shape to a semicir-
cle for the following parameters of Equation (4): ( ) 0.01ζ ζΦ = ⋅ , 0.1δ = . 

The analysis of the second stage of the ED temporal dynamics is based on us-
ing the ED shape close to semicircle as an initial one. 

Let us consider the ED temporal dynamics after passing the critical level of the 
force action, which describes the FR source operation. 

4. ED Temporal Dynamics in FR Source Operation Mode  

Let us consider the conditions under which the solution of Equation (4) de-
scribed the FR source can be realized.  

We divide the ED into two symmetric halves relative to the coordinate 

02FR L xξ = . We will seek a solution of Equation (4) in the half-plane І 
( FRξ ξ≤ ). In the half-plane ІІ ( FRξ ξ≥ ) the solution will be symmetric relative 
to FRξ ξ=  and such, that ( ) ( )I II, ,FR FRR Rξ ζ ξ ζ= ,  

( ) ( )II I2 0
, ,

FR FR FR
FRR R

ξ ξ ξ ξ ξ
ξ ζ ξ ξ ζ

≤ ≤ ≤ ≤
= − , where indices I and II indicate that 

the solution belongs to the region corresponding to the index. 
We find a solution to Equation (4) in region I with the boundary condition at 

the end of the string ( )0, 0R ζ = . But first, for computational convenience, we 

make the substitution on the right side of Equation (4) 
0

1R R
sζ ξ

∂ ∂
=

∂ ∂
, where 

0
0

0

x
s

t
= —the disturbance velocity on the ED.  

Such a substitution does not change the main form of the SG equation and 
follows from the identity obtained by dividing and multiplying the relative dis-
placement of neighboring atoms at small time intervals and coordinates, for 
which we can take 0t  and 0x . On the other hand, this substitution is equiva-
lent to the string continuity condition. 

To describe the ED motion at the FR source stage we consider the equation 

that follows from (4) after substitution 
R
ζ
∂
∂

 by 
0

1 R
s ξ
∂
∂

 and rearrangement of 

terms: 

( ) ( )
2 2

2 2
0

sin .R R R R
s
δζ

ξζ ξ
∂ ∂ ∂

− = Φ − −
∂∂ ∂

               (5) 

To find a solution to (5) we perform substitution of variable ξ :  

,
2
Lξ ϑ=
π

                          (6) 

where, 0 ϑ≤ —the angle at the point of ED fixing counted counterclockwise 
from the axis ox.  
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Figure 2. Formation of a semicircle from ED at the initial stage of the external stress. 
Units of the numbers on axis defines from (4). 

 
It is easy to see that the solution of Equation (5) is the function: 

( )0 ,R A Bζ ζ ϑ ζ= + +                      (7) 

where, 0, ,A B ζ —constants defined by the condition of the problem.  
The solution (7) describes the Archimedes spiral [27] and is valid under the 

condition 0 1Aζ   that corresponds to sufficiently high amplitudes of ED 
deviation from the initial position. This solution trivially satisfies the left side of 
Equation (5), and the right side determines the dependence of the external stress 
on the time: 

( ) ( ) ( )( )0 0
0

2 sin .A A B
Ls
δζ ζ ζ ζ ζ ϑ ζΦ = + − + +
π            (8) 

where, ,A B —constants. 

Under the condition 0
0

2 1A
Ls
δ ζπ

  the Peierls barrier is not a deterrent and 

the last term in the expression (8) can be omitted. 
Thus, from the form of the solution (7) we can conclude that at 0A >  the 

external force ( )ζΦ  is an increasing with time magnitude. So, we assume fur-
ther that the constant A is positive: 0A > . 

Let us describe the temporal dynamics of a spiral in the Cartesian coordinate 
system, assuming 0B < . To do this, we normalize (7) so, that the radius of the 
Archimedes spiral is equal to unity. 

( )0 0

.R Br
A A

ζϑ
ζ ζ ζ ζ

= = −
+ +

                 (9) 

At a zero time ( 0ζ = ) the curve r ϑ=  should be set in the form of a left 
spiral, since in this case the spiral shape within the interval 0 2 FRξ ξ≤ ≤  is close 
to the shape of a semicircle (see Figure 3). 

In parametric variables: 

cos , sin ,
2 2

X r Y rϑ ϑ   = − = − −  
π

 

π


 
             (10) 

The segment of the Archimedes spiral described the position of the ED at 
0ζ =  is presented in Figure 3. Here, the ED initial position is marked by the  
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Figure 3. ED operation in FR source mode. Units of the numbers on axis defines from (4) 
and (10). Curve 1—ED at time * 0ζ = , angle of spiral rotation * 0ϑ = ; curve 2— * 0.667ζ = , 
angle of spiral rotation *ϑ = π ; curve 3— * 1.5ζ = , angle of spiral rotation * 1.5ϑ = π . 

 
digit 1 and described by the left Archimedes spiral displaced counterclockwise 
relative to 0ϑ =  at an angle 2π . 

Over time the angle of spiral counterclockwise displacement increases and by 
the time ( )*

0 1ζ ζ χ χ= −  where, * 1χ ϑ α= π <  takes the value *ϑ  where, 
*0 2ϑ< < π . 

Figure 3 shows ED successive positions at different points of time *
0ζ ζ  

calculated for the values of constants: 0 1ζ = , 2.5α = .  
The transition to actual dimensions of the Archimedes spiral is carried out by 

multiplying the spiral (9) by a large factor ( )*
0A ζ ζ+ . 

Thus, in this section for the first time a particular solution of the SG equation 
is proposed, which describes the temporal dynamics of half the ED segment, 
counting from the stopper at the origin, in the FR source operating mode. Due 
to the symmetry of the problem a particular solution for the first half of the ED 
segment, which is mirrored relative to the axis of symmetry passed through the 
middle of the ED segment, describes also the behavior of the second half of the 
ED segment. For a horizontally located ED the proposed particular solution has 
the form of the left Archimedes spiral displaced counterclockwise by 2π  rela-
tive to the azimuth angle equal to zero. A graphic representation of the temporal 
dynamics of the found particular solution was plotted in the Cartesian coordi-
nate system. It is shown that the proposed particular solution of SG equation for 
ED at FR source stage involves two Archimedes spirals symmetrical relative to 
the ED symmetry axis with radii increasing linearly with time and rotating to-
wards each other relative to stoppers. 

5. Conclusions 

For the first time a particular analytical solution of the inhomogeneous dissipa-
tive sine-Gordon (SG) equation describing the ED temporal dynamics in the 
mode of FR source operation was obtained in this paper. 

To do this, it was proposed to divide the process of the external force action 
on ED into two stages, where in the first stage the level of force action was less 
than critical, in the second—more. 

At the first stage it is shown by numerical calculations of the SG equation that 
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the ED takes a shape close to semicircle for the external force value below the 
critical. 

At the second stage of the force action the obtained calculation result of the 
first stage was used qualitatively as the initial condition of the SG equation to 
describe the ED temporal dynamics in the FR source operation mode. At a spe-
cified choice of the initial condition a particular solution of the SG equation is 
proposed to describe the ED temporal dynamics in the FR source operation 
mode. This particular solution describes the temporal dynamics of half of the ED, 
which rests on a stopper at the origin. The proposed particular solution for the 
initially horizontally located ED corresponds to the left Archimedes spiral dis-
placed counterclockwise at 2π  relative to the azimuth angle equal to zero. 

The temporal dynamics of the half of the ED segment rested on the second 
stopper is described by the proposed particular solution, when it is mirrored rel-
ative to the problem symmetry axis and the center of the spiral is displaced to a 
point with zero azimuthal angle and radius equal to the distance between the 
stoppers. The symmetry axis is a straight line that is perpendicular and divides in 
half the distance between the stoppers. 

A graphic description of the ED temporal dynamics based on the proposed 
particular solution and its mirror and displaced image was plotted in the Carte-
sian coordinate system. It is shown that the particular solution of the SG equa-
tion in the RF source operation mode involves two Archimedes spirals symme-
trical relative to the problem symmetry axis with equal radii increasing linearly 
with time, which rotate: one (the center of the spiral coincides with the stopper 
at the origin)—counterclockwise, the second (the center of the spiral coincides 
with the second stopper)—clockwise. 
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