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Abstract 
The single-particle Schrödinger fluid model is designed mainly to calculate 
the moments of inertia of the axially symmetric deformed nuclei by assuming 
that each nucleon in the nucleus is moving in a single-particle potential which 
is deformed with time t, through its parametric dependence on a classical 
shape variable ( )tα . Also, the Nilsson model is designed for the calculations 
of the single-particle energy levels, the magnetic dipole moments, and the 
electric quadrupole moments of axially symmetric deformed nuclei by as-
suming that all the nucleons are moving in the field of an anisotropic oscilla-
tor potential. On the other hand, the nuclear superfluidity model is designed 
for the calculations of the nuclear moments of inertia and the electric qua-
drupole moments of deformed nuclei which have no axes of symmetry by as-
suming that the nucleons are moving in a quadruple deformed potential. 
Furthermore, the cranked Nilsson model is designed for the calculations of 
the total nuclear energy and the quadrupole moments of deformed nuclei 
which have no axes of symmetry by modifying the Nilsson potential to in-
clude second and fourth order oscillations. Accordingly, to investigate 
whether the six p-shell isotopes 6Li, 7Li, 8Li, 9Li, 10Li, and 11Li have axes of 
symmetry or not, we applied the four mentioned models to each nucleus by 
calculating their moments of inertia, their magnetic dipole moments, and 
their electric quadrupole moments by varying the deformation parameter β  
and the non-axiality parameter γ  in wide ranges of values for this reason. 
Hence for the assumption that these isotopes are deformed and have axes of 
symmetry, we applied the single-particle Schrödinger fluid model and the 
Nilsson model. On the other hand, for the assumption that these isotopes are 
deformed and have no axes of symmetry, we applied the cranked Nilsson 
model and the nuclear super fluidity model. As a result of our calculations, 
we can conclude that the nucleus 6Li may be assumed to be deformed and has 
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1. Introduction 

In the shell model, there is a core made up of paired nucleons. This core may be 
spherically symmetric in which case it gives rise to the spherical symmetric of 
the independent particle model or axially symmetric, as in the Nilsson model [1] 
which also be referred to as the deformed independent particle model. The anal-
ysis of nuclear spectra within the framework of the shell model is feasible only 
for relatively few nuclei: those which are close to magic numbers. The shell 
model has a limited range of useful applicability, covering nuclei in the vicinity 
of closed shells only. The complexity of nuclear spectra increases very rapidly as 
we go farther and farther away from closed shell [2]. The basic ideas concerning 
non spherical nuclei have been most completely described by A. Bohr and B. 
Mottelson [2]. A non-spherical nucleus is characterized by the moment of iner-
tia about the axis perpendicular to the symmetry axis of the nucleus, its magnetic 
dipole moment, and its electric quadrupole moment. The elongation of the nuc-
leus is related to the interaction between the surface and the nucleons outside 
closed shells. 

A description of deformed nuclei has been given by a model proposed and 
developed by A. Bohr and B. Mottelson [2]. The success of the independent- 
particle approximation for spherical nuclei near closed shells naturally suggests 
adopting a similar procedure for deformed nuclei. Thus, as a first guess for the 
deformed nucleus internal wave function, one must take an independent-particle 
wave function, generated from a deformed potential. One of the most successful 
models for generating realistic intrinsic single particle states of deformed poten-
tials is that first proposed by Nilsson [1]. This model was limited to nuclei with 
axially symmetric quadruple deformations. Positive values of the deformation 
parameter correspond to prolate deformation and negative values to oblate de-
formation. The success of the description of many nuclei by means of deformed 
potential can be taken as an indication that by distorting a spherical potential in 
this manner we automatically obtain the right combination of spherical eigen-
functions that makes the corresponding Slater determinant a better approxima-
tion to the real nuclear wave function [2]. From this point of view, the deformed 
potential is a definite prescription for a convenient mixing of various configura-
tions of the spherical potential. Considerable evidence has accumulated for rota-
tional structure for the p and s-d shell nuclei. The absolute values of the rota-
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tional energies or equivalently the moments of inertia require a knowledge of the 
fine details of the intrinsic nuclear structure. Consequently, the investigation of 
the nuclear moments of inertia is a sensitive check for the validity of the nuclear 
structure theories [3]-[11]. 

The investigation of the different characteristics of the deformed nuclei, 
whether having axes of symmetry or not, is a very interesting subject in the 
theory of nuclear structure. Many authors have used several models to deal with 
this problem [12]-[19]. A common feature of systems that have rotational spec-
tra is the existence of a deformation, by which is implied a feature of anisotropy 
that makes it possible to specify an orientation of the system. The moments of 
inertia require knowledge of the fine details of the intrinsic nuclear structure. 

The large quadrupole moments observed in some nuclei, which do not belong 
to closed shells, implied a collective deformation and thereby a rotational degree 
of freedom. The most central parameter of collective rotation is the quadrupole 
moment and the moment of inertia of deformed nuclei [4] [13] [14]. The study 
of the velocity fields for the rotational motion of the axially symmetric deformed 
nuclei led to the formulation of the Schrödinger fluid [4] [5] [6] [7] [8] [14] [15]. 
Since the Schrödinger-fluid theory is an independent particle model, the crank-
ing model approximation for the velocity fields and the moments of inertia play 
the dominant role in this theory. 

The single particle Schrödinger fluid is one of the very interesting models 
which is created directly from the time-dependent Schrödinger wave equation by 
a suitably chosen type of complex wave functions [14] [15]. The single particle 
Schrödinger fluid is a concept which is used to describe the collective motions of 
the nucleons in an axially symmetric deformed nucleus. This concept can be ap-
plied to study the rotational motion of a deformed nucleus. This model makes it 
possible to formulate the well-known equation of continuity, Euler's equation, 
and Navier-Stokes equations of fluid mechanics [20] as results from the separa-
tion of the real and the imaginary parts of the time-dependent Schrödinger wave 
equation. The single-particle potential that represents the residual interparticle 
interaction inside the nucleus is taken in the form of a three-dimensional aniso-
tropic oscillator. 

Until now, the best description of the nuclear moments of inertia can be ob-
tained within the framework of the so-called nuclear superfluidity model [16] 
[17] [18] [19]. The method adopted for the calculation of the eigenvalues and the 
eigenfunctions of the non-axial Hamiltonian makes it therefore possible to use 
the Belyaev formula for the determination of the nuclear moments of inertia. 

It is well known that the nucleons inside the nucleus occupy approximately 
1/50 of the volume of the nucleus. It is not surprising to find that nucleon prop-
erties are maintained inside the nucleus. In particular, this situation is responsi-
ble for the fact that the magnetic dipole moments of nucleons inside nuclei are 
the same as for free nucleons. In accordance with the above, we describe the mo-
tion of each nucleon individually in a common field. Because the surface of de-
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formed nuclei is distorted at some moment, the potential felt by the nucleons is 
not spherically symmetric [18] [19]. 

The next step was to include the effect of deformation on the single particle 
motion. Hartree-Fock calculations revealed that ground states of alpha-like nuc-
lei in the p-shell are axially deformed [2]. The Nilsson model was limited to 
nuclei with axially symmetric quadrupole deformations, where the deformation 
is measured by the deformation parameter β . 

In treating the internal motion in the nucleus, it is assumed that the individual 
nucleons move independently in a certain fixed non-spherical field of the nuc-
leus. The Hamiltonian of the internal motion can then be represented, as in the 
ordinary model, in the form of a sum of one-particle Hamiltonians. According 
to Nilsson’s model [1] the nucleons inside the nucleus are moving independently 
in an averaging field in the form of anisotropic oscillator, with x y zω ω ω= ≠ , 
added to it a spin-orbit term and a term proportional to the square of the orbital 
angular momentum of the nucleon. The nucleon energy eigenvalues and eigen-
functions are then obtained by solving the time-independent Schrödinger wave 
equation in spherical polar coordinates and applying the method of diagonaliz-
ing the matrices [9]. 

Because the surface is distorted at some moment, the potential felt by particles 
is not spherically symmetric, the particles will move in orbits appropriate to an 
aspherical shell-model potential. In the case of deformed nuclei, the theoretical 
question to be settled first is whether the nucleus has an axis of symmetry. His-
torically, several applications of the theory were made [5] [9] [11] on the as-
sumption that the deformed nucleus does have such an axis of symmetry. Most 
of the work in the heavier nuclei is made on this assumption. In a field with axial 
symmetry, only the component of the angular momentum along the axis of 
symmetry is conserved. Historically, much after the application of the axially 
symmetric-rotor model, a systematic attempt was made by several authors, espe-
cially Davydov and his collaborators [12] [19] to check the consequences of the 
general rotor Hamiltonian that has no axis of symmetry (usually called an 
asymmetric rotor). The total motion of the nucleons is thus composed of two 
parts: an internal motion with respect to the body-fixed reference frame, de-
scribed by an internal wave function, and the motion of the body-fixed reference 
frame itself. The nuclear superfluidity model [17] [18] [19] and the cranked 
Nilsson model [13] provide us with powerful methods for calculating the nuclear 
moment of inertia, the electric quadrupole moment, and other characteristics of 
deformed nuclei which have no axes of symmetry. 

Accordingly, it is important to know whether the nucleus is deformed and has 
an axis of symmetry or not in order that we can choose the suitable model which 
produces correct values for its deformation characteristics, such as its moment 
of inertia, magnetic dipole moment, and electric quadrupole moment, which are 
in good agreement with the corresponding well-known experimental values. 

In this paper, we carry out the derivations of the four models: the Nilsson 
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model, the single-particle Schrödinger fluid model, the Cranked Nilsson model, 
and the nuclear superfluidity model, which are different in their structures and 
therefore in their applications, and accordingly clarify how the moments of iner-
tia, the magnetic dipole moment, and the electric quadrupole moment of a de-
formed nucleus can be obtained in framework of these models. Our choice of the 
six lithium isotopes; 6Li, 7Li, 8Li, 9Li, 10Li, and 11Li, is due to the fact that their 
complete deformation structures are not yet completely known. Accordingly, we 
applied the above mentioned four models to the six lithium isotopes in order to 
calculate their moments of inertia, their magnetic dipole moments and their 
electric quadrupole moments. The variations of these moments with respect to 
the deformation parameter β , which describes the deviation from the spherical 
case, the non-axiality parameter γ , which shows that the nucleus does not have 
an axis of symmetry, and the non-deformed oscillator parameter 0

0ω , are also 
given in this paper. 

2. The Nilsson Model 
2.1. Formulation of the Model 

In the Nilsson model [1], all nucleons are assumed to move in the field of the 
following potential: 

( )2 2 2 2 2 2 2

2 x y z
MV x y z C Dω ω ω′ ′ ′= + + + ⋅ +s 

            (2.1) 

where: 

2 2 2
0

21 ,
3x yω ω ω δ = = + 

 
                    (2.2) 

2 2
0

41
3zω ω δ = − 

 
                      (2.3) 

In Equation (2.1), M is the nucleon mass,   is its orbital angular momentum 
vector, and s  is its spin vector. Hence, the single particle Hamiltonian in the 
Nilsson model is given by: 

( )0 2H H C D= + ⋅ +s                      (2.4) 

where: 

( ) ( )
2

0 2 2 2 2 2 2 2

2 2 x y z
MH x y z

M
ω ω ω′ ′ ′ ′= − ∇ + + +

 ,          (2.5) 

In Equations (2.2) and (2.3) 0ω  is given by 

( )
1
62 2 0 2 3

0 0 0
4 161
3 27

ω ω δ ω δ δ
−

 = = − −  
             (2.6) 

where δ  is the deformation parameter. The parameter δ  is related to 
well-known deformation parameter β  by the relation: 

3 5 0.95
2 4

δ β β= ≅
π

                     (2.7) 
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Transforming to the dimensionless variables 

0 0 0; ;
M M M

x x y y z z
ω ω ω′ ′ ′= = =
  

            (2.8) 

we get: 

( ) ( )0 2 2 20 0 21 1 3cos
2 2 3

H r
ω ω

δ θ = − ∇ + + −  

            (2.9) 

We rewrite Equation (2.9) as follows: 
( ) ( ) ( )0 0 0

0H H Hδ= +                      (2.10) 

where: 

( )0 2 20
0 2

H r
ω  = − ∇ − 
 ,                  (2.11) 

and 

( ) ( ) ( )0 2 2 20
0 2,0

1 161 3cos 0,
3 3 5

H r r Yδ
ω

δ θ ω δ φπ
= − − = −



 .    (2.12) 

Finally, we have 
( ) ( )0 0 2
0H H H C Dδ= + + ⋅ +s                  (2.13) 

Schrödinger wave equation for the unperturbed Hamiltonian ( )0
0H  is given 

by: 

 ( ) ( )0 0 0
0

o
N N NH Eψ ψ= , (2.14) 

with solutions [4] [10] 

 ( ) ( )0
, ,N NN R r Yψ θ φΛ= Λ =

 

 ,  (2.15) 

 ( )0
0

3
2NE N ω = + 

 
   (2.16) 

where: 

0,1,2,N =  , 
0 is even

, 2, 4,
1 is odd

N
N N N

N


= − − = 


  , 

  , 1, ,0,1, , 1,Λ = − − + −        (2.17) 

From the state N Λ  we construct the function N ΛΣ , as usual, in the 

form ( ) ( ) ,,Nl l sN R r Y θ φ χΛ ΣΛΣ = . For Fermions, like nucleons,  

1 1,
2 2

s = Σ = ± . The nuclear state has definite values of the parity π, even or odd 

value of  , and Ω, where: 

 Ω = Λ +Σ   (2.18) 

For the ground state, jm j= Ω = , which is positive so that Ω is not a negative 

value. Hence, the least possible value of this quantum number is 1
2

Ω = . Finally, 

applying the variational method to the perturbed Hamiltonian ( )0Hδ , with re-

spect to the nuclear state N ΛΣ  we obtain the final energy eigenvalues and 
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eigenfunctions. 

2.2. The Magnetic Dipole Moment 

Using the total spin vector = +j s  and the total rotational vector = +I j R  
we can write the magnetic dipole moment as [1] 

 ( ) ( ) 21
1 s R Rg g g g g I

I
µ  = − ⋅ + − ⋅ + +

s I J I
 

  (2.19) 

The complete method of calculating the magnetic dipole moment is given by 
Nilsson [1]. 

2.3. The Electric Quadrupole Moment 

Assuming a charge distribution in accordance with the Thomas-Fermi statistical 
model applied to the oscillator potential, one obtains, for the case of the axially 
symmetric nuclei, the intrinsic quadrupole moment, to the second order in the 
deformation parameter δ [1] 

 2
0

20.8 1 ,
3

Q ZeR δδ  = + 
 

  (2.20) 

where Z is the number of protons and R is to be taken equal to the radius of 
charge of the nucleus. The relation between the measured quadrupole moment, 
denoted by SQ , and 0Q  is given by: 

 ( )
( )( )

2

0

3 1
,

1 2 3S

K I I
Q Q

I I
− +

=
+ +

  (2.21) 

where I is the spin-quantum number of the specified nuclear state and K is its 
component along the body-fixed z-axis. Calculating the charge radius of the 
nucleus, the measured quadrupole moment for a nucleus with an axis of sym-
metry is then obtained as function of the deformation parameter δ. 

3. The Single-Particle Schrödinger Fluid 
3.1. Formulation of the Model 

Let us consider a nucleus consisting of A nucleons. We assume that each nucle-
on in this nucleus (proton or neutron) has mass M and is moving in a sin-
gle-particle potential ( )( ),V a tr , which is deformed with time t, through its 
parametric dependence on a classical shape variable ( )tα . Here, ( )tα  is as-
sumed to be an externally prescribed function of t. Thus, the Hamiltonian for 
the present problem is given by [4] [7] [14] [15] 

 ( )( ) ( )( )
2

2, , , .
2

H a t V a t
M

= − ∇ +r v r   (3.1) 

The single-particle time-dependent wave function ( )( ), ,t tαΨ r  which satis-
fies the time-dependent Schrödinger wave equation that describes the motion of 
a nucleon, is defined as 

 ( )( ) ( )( ) ( )( ), , , , , , .H t t t i t t
t

α α α∂
Ψ = Ψ

∂
r v r r

  (3.2) 
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To obtain a fluid dynamical description of the wave function ( )( ), ,t tαΨ r , 
we use the polar form of the wave function. We first isolate the explicit time de-
pendence in the form: 

 ( )( ) ( )( ) ( )( )
0

, , , exp d ,
tit t t t tα ψ α α ′ ′Ψ = − 

 ∫r r


   (3.3) 

where   is the energy density which depends on the time through the parame-
ter ( )tα . Then, we write the complex wave function ( )( ), tψ αr  in the fol-
lowing polar form: 

 ( )( ) ( )( ) ( )( ), , exp , ,iMt t S tψ α α α = Φ − 
 

r r r


  (3.4) 

where ( )( ), tαΦ r  and ( )( ),S tαr  are assumed to be real functions of r  and 
( )tα . Finally, we assume that the function ( )( ), tαΦ r  is positive definite. In the 

case of rotation, the parameter ( )tα  becomes the angle of rotation, tθ = Ω , 
where Ω is the angular velocity. Substituting Equations (3.1), (3.3) and (3.4) into 
(3.2) and separating the real and the imaginary parts we get, when multiplying 
by 2Φ, a pair of coupled equations for Φ and S as follows: 

 1
2

SH M S S
t

 ∂  − − ∇ ⋅∇ Φ = Φ  ∂  
 .  (3.5) 

and 

 
2

2 2 2S S
t

∂Φ
Φ ∇ +∇Φ ⋅∇ =

∂
,  (3.6) 

We may call Equation (3.5) a modified Schrödinger equation because it differs 
from the usual time-independent Schrödinger equation HΦ = Φ  by an added 
term which we refer to as the “dynamical modification potential”: 

 ( ) ( )1 .
2dyn

SV M S S
t

∂ = − − ∇ ⋅ ∇ ∂ 
  (3.7) 

Hence, we obtain two equations the first is: 

 ,
t
ρρ ρ ∂

∇ ⋅ + ⋅∇ = −
∂

v v   (3.8) 

where v  is the irrotational velocity and ρ  is the density. This equation is the 
well-known equation of continuity in fluid mechanics [20]. It can be rewritten in 
the form: 

 ( ) ,
t
ρρ ∂

∇ ⋅ = −
∂

v   (3.9) 

where 2ρ = Φ  and S= −∇v . 
The second equation is: 

 ( ) ,dynH V+ Φ = Φ   (3.10) 

which is a modified Schrödinger equation with: 

 21 .
2dyn

SV M v
t

∂ = − − ∂ 
  (3.11) 
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Equation (3.4) can be written simply as exp MSiψ  = Φ − 
 

, so that: 

 *ln
2
iS
M

ψ
ψ
 

=  
 

 .  (3.12) 

and 
*

* .
2
iS
M

ψ ψ
ψψ

 ∇ ∇
= −∇ = − 

 
v   

Therefore, 

 * *
2 .

2
i

M
ψ ψ ψ ψ

ψ
 = ∇ − ∇ v    (3.13) 

The current of the single particle state is defined by ρ=j v  [14], so that: 

 
2

* *
22

i
M

ψ ψ ψ ψ
ψ

Φ
 = ∇ − ∇ j  ,  (3.14) 

where 2ρ = Φ , and we finally get the current density: 

 * * .
2
i
M

ψ ψ ψ ψ = ∇ − ∇ j    (3.15) 

Euler’s equation for the non-viscous fluid flow is given by [20] 

 ( ) ,p
t ρ

∂ ∇
+ ⋅∇ = −

∂
v v v   (3.16) 

where p is the pressure on the fluid at a point ( )P r  at an instant of time t. For 
an ideal fluid, p∇  is related to the enthalpy per unit mass, w, of the fluid by the 
following manner: 

 .p w
ρ
∇

= ∇   (3.17) 

Therefore, Euler’s equation can be rewritten as 

 ( ) .w
t

∂
+ ⋅∇ = −∇

∂
v v v   (3.18) 

After integration and using s= −∇v  we get 

 21 ,
2

S v w
t

∂
− =

∂
 (3.19) 

so that 

 ( )21 ,
2

S S w
t

∂
− ∇ =

∂
  (3.20) 

where S is the velocity potential for v, and we can write: 

 ( )21
2dyn

SV M S Mw
t

∂ = − − ∇ = − ∂ 
,  (3.21) 

So that the modified Schrödinger equation takes the form 

 ( ) ,H Mw− Φ = Φ   (3.22) 
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where w is now the “enthalpy” of the single-particle Schrödinger fluid [14] [15]. 
Hence, we have a set of fluid dynamical equations completely analogous to those 
which describe a classical fluid. 

For the modified potential we take the anisotropic oscillator, as proposed by 
Nilsson [1] with angular frequencies given by: 

 2 2
0

41 ,
3zω ω δ = − 

 
  (3.23) 

 2 2 2
0

21 .
3x yω ω ω δ = = + 

 
  (3.24) 

The parameter 0ω  depends on the deformation parameter δ  in the fol-
lowing way [1] [9] 

 ( )
1
60 2 3

0 0 0
12 161
9 27

ω ω δ ω δ δ
−

 = = − − 
 

, (3.25) 

where 0
0ω  is the value of ( )0ω δ  for 0δ = . The deformation parameter δ  is 

related to the well-known deformation parameter β  by (2.7). 
The parameter β  can vary in the range 0.5 0.5β− ≤ ≤ . 
Also, we assume that the adiabatic approximation is valid for this fluid, that is 

the angle of rotation θ  is constant of time. Hence, the collective kinetic energy 
T of the nucleus is given by [14] [15] 

 ( )1 d ,
2 T TT M ρ= ×⋅∫ v r rΩ   (3.26) 

where Tρ  is the total density distribution of the nucleus and Tv  is the total 
velocity field: 

 .K Kocc
T

Kocc

ρ
ρ

= ∑
∑

v
v   (3.27) 

3.2. Moments of Inertia from Fluid Dynamical Viewpoint 

We now examine the cranking moment of inertia in terms of the velocity fields. 
Bohr and Mottelson [2] showed that for harmonic oscillator case at the equili-
brium deformation, where: 

 ( )1

d 0,
d x y zn n ni i

E
δ =

=∑   (3.28) 

the cranking moment of inertia is identically equal to the rigid moment of inertia: 

 2 2
1 .cr rig i ii M y z
=

ℑ = ℑ = +∑   (3.29) 

In terms of expression (3.19) involving the velocity fields, this result asserts 
the equality of the collective kinetic energy of the Schrödinger fluid and that of 
rigidly rotating classical fluid: 

 ( ) ( )221d d ,
2 2 2T T rig T
M Mρ τ ρ τ× = ℑ Ω = ×⋅∫ ∫v r rΩ Ω   (3.30) 

at the equilibrium deformation. We emphasize that the above equations hold for 
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any number of nucleons occupying any set of single particle harmonic oscillator 
states at the deformation defined by equilibrium condition (3.28). It holds for a 
one particle state. For this case, Equation (3.30) becomes: 

 ( ) ( )2d d ,
2 2K K K
M Mρ τ ρ τ× =⋅ ×∫ ∫v r rΩ Ω   (3.31) 

at the equilibrium deformation of the single particle state 

 .x y zi n n n≡   (3.32) 

Equation (3.31) is a remarkable identity. The scalar product of Kv  and 
( )rΩ×  which occurs on the left side is replaced on the right side, by the abso-
lute square of ( )rΩ× . It forces one to inquire whether the irrotational field Kv  
is equal to ( )× rΩ . The answer, of course, is no. For, Kv  posses compressible 
line vortices. It could be impossible to equal the velocity field for rigid rotation 

rig = ×v rΩ , which has no singularity and is everywhere incompressible and ro-
tational. Despite this qualitative difference between Kv  and the other velocity 
in Equation (3.31), this shows that, as regards their effects under the integral 
upon the overall kinetic energy (or the internal parameter), these two velocity 
fields are equivalent at the equilibrium deformation. We note that the cranking 
moment of inertia crℑ  and the rigid moment of inertia rigℑ  are equal only 
when the harmonic oscillator is at the equilibrium deformation. At other defor-
mations, they can, and do, deviate substantially from one another [14]. 

The following-expressions for the cranking moment of inertia, crℑ , and the 
rigid-body moment of inertia, rigℑ , hold [14] [15]: 

 ( ) ( )
1
3 2

2
0

1 1 11 1 ,
6 2 1cr

E q qσ σ
σ σ σω

+    ℑ = + + −    + −    
  (3.33) 

 ( ) ( )
1
3

2
0

1 1 1 1 ,
6 2 1rig

E q qσ σ
σ σω

+  ℑ = + + −     + −  
  (3.34) 

where E is the total nuclear ground-state energy defined by 

 ( ) 11 ,
2x x y z zoccE n n nω ω  = + + + +    

∑     (3.35) 

and q is the ratio of the summed single particle quanta in the y-and z-directions: 

 

1
2 .
1
2

yocc

zocc

n
q

n

 + 
 =
 + 
 

∑

∑
  (3.36) 

The quantity q is known as the anisotropy of the configuration. 
σ is the deformation of the potential [14] [15]. Concerning the magnetic di-

pole moment of an axially deformed nucleus, we can apply the same method as 
given by [21]. 

4. The Cranked Nilsson Model 
It is well known that nearly all fully microscopic theories of nuclear rotation are 
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based on or related in some way to the cranking model, which was introduced by 
Inglis [18] [19] in a semi classical way, but it can be derived fully quantum me-
chanically, at least in the limit of large deformations, and not too strong 
K-admixtures ( K I ). The cranking model has the following advantages [13]: 

1) In principle, it provides a fully microscopic description of the rotating nuc-
leus. There is no introduction of redundant variables, therefore, we can calculate 
the rotational inertia parameters microscopically within this model and get a 
deeper insight into the dynamics of rotational motion. 

2) It describes the collective angular momentum as a sum of single-particle 
angular momentum. Therefore, collective rotation as well as single-particle rota-
tion, and all transitions in between such as decoupling processes, are handled on 
the same footing. 

3) It is correct for very large angular momenta, where classical arguments apply. 
A simple and widely used way to describe the change of the single-particle 

structure with rotation is given by the cranked Nilsson model (CNM) [11] [13]. 
It is the method of calculating the shell correction energy that made it possible to 
do large-scale calculations where the nuclear potential-energy surface was ex-
plored in detail as a function of different deformation degrees of freedom. Im-
portant achievements in this field include the prediction of super deformed 
high-spin states and terminating bands. 

4.1. The Single-Particle Hamiltonian 

The single particle Hamiltonian in this model assumes the form [13] 

 ( ) ( )0 1
xH H H jω= + − ,  (4.1) 

where: 

 ( ) { }
2

0 2 2 2 2 2 21
2 2 x y z
pH M x y z
M

ω ω ω= + + + .  (4.2) 

Here, the oscillator parameters ,x yω ω  and zω  assume the form [13] 

( )0
5 2, 1 cos

4 3xω ω β γ β γ
   π = − −     π     

, 

 ( )0
5 2, 1 cos

4 3yω ω β γ β γ
   π = − +     π     

,  (4.3) 

( ) ( )0
5, 1 cos

4zω ω β γ β γ
  

= −   π   
, 

where β (or ε) and γ are the quadrupole deformation degrees of freedom. The 
second term in the right-hand side of Equation (4.1) is given by: 

 ( )1 2
0 4 4

42
9

H V Vω ρ επ ′= + ,  (4.4) 

where the stretched square radius 2ρ  is written in the form 
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 { }2 2 2 2 2 2 2
x y z

M x y zρ ω ω ω= + +


,  (4.5) 

The hexadecapole potential is defined to obtain a smooth variation in the 
γ-plane so that the axial symmetry is not broken for 120 , 60 ,0γ = − −    and 
60 . It is of the form [13]: 

 ( ) ( )4 40 4,0 42 4,2 4, 2 44 4,4 4, 4V a Y a Y Y a Y Y− −= + + + + ,  (4.6) 

where the 4ia  parameters are chosen as 

( )2
40

1 5cos 1
6

a γ= + , 42
1 30 sin 2

12
a γ= − ,  

2
44

1 70 sin
12

a γ= . 

and 

 ( ) ( )( ){ }2 2
0 2o

t t t N
V N s Nκ ω µ⋅′ = − + −    .  (4.7) 

In Equation (4.7) t refers to the stretched coordinates xx Mξ ω=  , etc., 
and 4ε  in Equation (4.4) refers to the hexadecapole deformations degree of 
freedom. 

4.2. Derivations 
4.2.1. The Hamiltonian H(0) 
The angular frequencies, Equations (4.3), can be simplified to 

 
( )

( )

0
21 cos cos120 sin sin120
3

1 cos 3 sin
3

xω ω ε γ γ

ε γ γ

 = − +  
 = + −  

,  (4.8) 

 
( )

( )

0

0

21 cos cos120 sin sin120
3

1 cos 3 sin
3

yω ω ε γ γ

εω γ γ

 = − −  
 + +

= 

,  (4.9) 

 0
21 cos
3zω ω ε γ = −  

.  (4.10) 

Taking the squares of these equations and adding we get 

 

( )

( )

( )

2 2 2 2 2 2

2 2 2 2 2 2 2 2
0 0 0

2 2
2 2 2 2 2 2 2 2

0 0

2
2 2 2 2

0

2 2cos 1 3cos 3 sin sin cos 2
3 3

cos 1 3cos 3 sin 2 sin cos 2
9 9

3sin 1 cos .
9

x y zx y z

r r r

r r

r

ω ω ω

ω ε γ ω θ ε γ ω θ ϕ

ε εγ ω θ γ ω θ ϕ

ε γ ω θ

+ +

= + − −

+ + −

+ −

 (4.11) 

Accordingly, the Hamiltonian ( )0H  takes the form 
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( )

( )

( )

2
0 2 2 2 2 2

0 0 2,0

2 2
0 2,2 2, 2

2
2 2 2

0 2,0

2
2 2 2

0 2,2 2, 2

2
2 2 2

0 2,0

1 2 16cos
2 2 2 3 5

2 83 sin
2 3 15

16cos 2
2 9 5

83 sin 2
2 9 15

163sin 2
2 9 5

MH M r r Y
M

M r Y Y

M r Y

M r Y Y

M r Y

ω ε γ ω

ε γ ω

ε γ ω

ε γ ω

ε γ ω

−

−

 π
= − ∇ + −   

 
 π

− +  
 
  π

+ +      
 π

− +  
 

 π
+ −





.
 
    

  (4.12) 

The two deformation parameters ε  and δ  are equal and they are related to 
the well-known deformation parameter β  by the following relation: 

 3 5
2 4

ε δ β β= = ≅
π

.  (4.13) 

Hence, the Hamiltonian ( )0H  takes to the first order in β  the form: 

( ) ( )
2

0 2 2 2 2 2 2 2
0 0 2,0 0 2,2 2, 2

1 2cos sin
2 2 2

H m r m r Y m r Y Y
m

ω β ω γ β ω γ−= − ∇ + − − +
 . (4.14) 

4.2.2. The Hamiltonian H(1) 
Direct substitution for the different quantities in the operator 2ρ  gives: 

 

( )

( )

( )

2 20

2 2

20
2,0 2,2 2, 2

1 cos 3 sin
3

21 cos 3 sin 1 cos
3 3

16 81 cos 3 sin .
3 5 3 15

M
x

y z

M
r Y Y Y

ω ερ γ γ

ε γ γ ε γ

ω ε π εγ γ −

 = + − 
 

   + + + + −      

 π
= −





− + 












  (4.15) 

4.2.3. The Term V

π 2
0 4 4

42
9

ω ρ ε  

Substituting for 2ρ  and 4V  in this term, we obtain 

( ) ( )

( ) ( )

( ) ( )

( )

2
0 4 4

2 2 2
0 4 4,0 4,2 4, 2

2 2
4,4 4, 4 2,0 4,0

2
4,2 4, 2 4,4 4, 4

2,2 2, 2

42
9

16 1 15cos 1 30 sin 2
9 6 12

1 16 170 sin cos 5cos 1
12 3 5 6

1 130 sin 2 70 sin
12 12

8 13 sin 5c
3 15 6

V

M r Y Y Y

Y Y Y Y

Y Y Y Y

Y Y

ω ρ ε

ω ε γ γ

εγ γ γ

γ γ

ε πγ

−

−

− −

−

π

π = + ± +
 π + + × − × +  

± + + + 

− + ×



( )2
4,0os 1 Yγ +

 

https://doi.org/10.4236/ojm.2023.134006


K. A. Kharroube 
 

 

DOI: 10.4236/ojm.2023.134006 83 Open Journal of Microphysics 
 

 ( ) ( )2
4,2 4, 2 4,4 4, 4

1 130 sin 2 70 sin .
12 12

Y Y Y Yγ γ− −
± + + + 

  (4.16) 

4.3. The Single Particle Energy Eigenvalues and Eigenfunctions 

The method of finding the energy eigenvalues and eigenfunctions of the Hamil-
tonian H can be summarized as follows: 

(i) Solving the Schrödinger’s equation 

 ( ) ( ) ( ) ( )0 0 0 0
0 i i iH Eψ ψ= ,  (4.17) 

exactly. 
(ii) Modifying the functions ( )0

iψ  to become eigenfunctions for the solutions 
of the corresponding equation for ( )0

0H V ′+ . 
(iii) Using the functions obtained in step (ii) to construct the complete func-

tion ψ , the eigenfunction of the Hamiltonian H, in the form of linear combina-
tions of the above functions, as basis functions, with given total angular mo-
mentum j and parity π . 

(iv) Constructing the Hamiltonian matrix H by calculating its matrix elements 
with respect to the basis functions defined in step (iii). 

(v) Diagonalizing the Hamiltonian matrix H to find the energy eigenvalues 

nE  and eigenfunctions nψ  as functions of the non-deformed oscillator para-
meter 0

0ω  and the parameters of the potentials. 

4.3.1. The Solutions of Equation (4.17) 
The solutions of the equation ( ) ( ) ( ) ( )0 0 0 0

0 i i iH Eψ ψ= , are given, with the usual no-
tations, by [8] [9] [10] [11] 

 ( ) ( ) ( )0 ,i NN R r Yψ θ ϕΛ≡ Λ =
 

 ,  (4.18) 

 ( ) ( )0 0
0

3
2i NE Nε ω δ = = + 

 
 ,  (4.19) 

where ( ),Y θ ϕΛ  are the normalized spherical harmonics with  
, 1, ,0, , 1,Λ = − − + −       and   is the nucleon orbital angular momentum 

quantum number. 
The radial wave functions ( )NR r



 are given by 

 ( ) ( )
2 13

222 2
0

2

22
2 e

3
2

N N

N

R r a L
N

ρ

ρ ρ
+− −

−

− + Γ 
 =

+ + Γ 
 





 





,  (4.20) 

where 
0

r
a

ρ = , 
( )0

0

a
Mω δ

=


 and the number of quanta of excitation N is 

related to the orbital angular momentum quantum number   by  
, 2, ,0N N= −   or 1. 

The last function in the right-hand side of Equation (4.20) is the associated 

Laguerre polynomial. Since the nucleon has spin 1
2

 and intrinsic spin wave 

https://doi.org/10.4236/ojm.2023.134006


K. A. Kharroube 
 

 

DOI: 10.4236/ojm.2023.134006 84 Open Journal of Microphysics 
 

functions sχ Σ , where 1
2

Σ = ± , the single particle wave functions of the Hamil-

tonian ( )0H  are, then, given by 

 ( ) ( ) ( )0 ,i N sN R r Yψ θ ϕ χΛ Σ≡ ΛΣ =
 

 .  (4.21) 

4.3.2. The Eigenfunctions of the Hamiltonian ( ) ′H V+0
0  

Wave functions with given values of the number of quanta of excitations N, the 
orbital angular momentum quantum number  , the total angular momentum 
quantum number J, and the parity π can be constructed from the functions 
(4.21), in the usual manner [8] [9] [10] [11], as follows: 

 1, |
2

N J J Nπ
Λ+Σ=Ω

 = Λ Σ Ω ΛΣ 
 

∑   .  (4.22) 

The functions N Jπ  are used as basis functions for the construction of the 
single particle nuclear wave functions with given total angular momentum J and 
parity π, in the usual manner, as follows: 

 1, |
2NNJ C J Nπ

Λ+Σ=Ω

 = Λ Σ Ω ΛΣ 
 

∑ ∑




  .  (4.23) 

Accordingly, we obtain 15 wave functions, states, namely: 

1 3 5 7 9 11 13 1 3 5 7 9 11 13, , , , , , , , , , , , ,
2 2 2 2 2 2 2 2 2 2 2 2 2 2

+ + + + + + + − − − − − − −

 

and 15
2

−

. 

The matrix elements of the Hamiltonian ( )0
0H V ′+  with respect to the func-

tions (4.23) are given by: 

( )

( )

( )( ) ( )( )

( )( )

0
0 , , ,

0 , , , ,

0
0 , , 1, 1,

1, 1, , ,

1 1, | ,
2 2

3
2

2 1 1

|

1 .

N N

N N N N

N N

J H V J J J

C C N

π π

ω δ δ δ δ δ

χ ω µ δ δ δ δ

δ δ δ δ

′ ′ ′Λ Σ Λ Σ

′ ′ ′ ′ ′Λ Λ Σ Σ Ω Ω

′ ′ ′ ′Λ Λ Σ Σ Λ+ Λ Σ− Σ

′ ′ ′ ′Λ− Λ Σ+ Σ Ω Ω

  ′ ′ ′ ′+ = Λ Σ Ω Λ Σ Ω  
  

 × +  
− ΛΣ + + + −Λ + Λ +

+ + Λ −Λ +  

∑


 

 



    

 

 (4.24) 

4.4. The Hamiltonian Matrix Elements 
4.4.1. The Matrix Elements of the Operator r2 
The matrix elements of the operator r2 with respect to the basis functions 

N ΛΣ  are given, with the usual notations [8] [9] [10] [11], by 

 

( )

2 2
0 , ,

, , ,

3 1
2 2

31 ,
2

N N N Z N

N Z N

N r N a N n n

n n

δ δ

δ δ δ

′ ′−

′ ′ ′+ Λ Λ Σ Σ

   ′ ′ ′ΛΣ Λ Σ = + + + +   
   

 + + + +  
  

  



  (4.25) 
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where 
( )

2
0

0

a
mω δ

=


 and 2N n= +  . 

4.4.2. The Matrix Elements of the Operator ( )LMY ,θ ϕ  

The matrix elements of the spherical harmonics ( ),LMY θ ϕ  with respect to the 
basis functions N ΛΣ  are given by [9] 

( )2 1
,

2 11
0 0 04LM

L LLN Y N
M

δ+
′Σ Σ

  +′ ′ ′ΛΣ Λ Σ = −   ′−Λ Λπ   



   

  .  (4.26) 

From the condition that 1 2 3m m m+ = −  to be satisfied by the 3j-symbols in 

Equation (4.26), 1 2 3

1 2 3

j j j
m m m
 
 
 

, we get: 

 ( )2 1
2,0 ,

2 251
0 0 0 04

Y δ+
′Λ Λ

  ′Λ Λ = −   ′−Λ Λπ   



   

  ,  (4.27) 

 ( )2 1
2,2 2,

2 251
0 0 0 24

Y δ+
′Λ− Λ

  ′Λ Λ = −   ′−Λ Λπ   



   

  ,  (4.28) 

 ( )2 1
2, 2 2,

2 251
0 0 0 24

Y δ+
′− Λ+ Λ

  ′Λ Λ = −   ′−Λ − Λπ   



   

  .  (4.29) 

4.5. Total Nuclear Quantities 

We define the total quantities [13] 

 sp i i iocc occ occE e e mω ω= = +∑ ∑ ∑ ,  (4.30) 

 ioccI m= ∑ ,  (4.31) 

with the summation over the occupied orbitals in a specific configuration of the 
nucleus. The shell energy is now calculated from [13] 

 ( ) ( ) ( )shell sp spE I E I E I= − ,  (4.32) 

where ( )spE I  is the smoothed single-particle sum evaluated according to the 
Strutinsky prescription. The detailed formulas for ( )spE I  are discussed for 

0I =  and 0I ≠  in [13]. 
The pairing energy is an important correction that should decrease with in-

creasing spin and become essentially unimportant at very high spins. To obtain 

an ( 0I = ) average pairing gap ∆, which varies as 
1
2A

−
, the pairing strength G is 

chosen as [13] 

 ( ), 0 1 MeV1
p n

N ZG g g
A A

− = ± 
 

,  (4.33) 

with g1/g0 ≈ 1/3. Furthermore, the number of orbitals included in the pairing 
calculation should vary as Z  and N  for protons (p) and neutrons (n), 
respectively. 

The total nuclear energy is now calculated by replacing the smoothed sin-
gle-particle sum by the rotating-liquid-drop energy and adding the pairing cor-
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rection, 

 ( ) ( ) ( ) ( ), , , ,tot shell RLD pairE I E I E I E Iε ε ε ε= + + ,  (4.34) 

or 

 ( )
2

2,
2tot sp LD

rig

E I E A E BIε = − + − +
ℑ
   (4.35) 

where ( )4, ,ε ε γ ε= , LDE  is liquid drop energy, ( )spA E I=  and B is the 

smooth moment of inertia factor, 
2

2 strut

B =
ℑ
 . The shell and pairing energies 

are evaluated separately for protons and neutrons at 0I = , while the renorma-
lization of the moment of inertia introduces a coupling when evaluating shellE  
for 0I > . In the computer program, pairE  is included only for 0I = . The 
protons and neutrons are also coupled through the requirement that the shape 
of the respective potentials and the rotational frequencies are identical. 

In the liquid drop model [3] [13], the nuclear mass is given by: 

 ( )
22 2 2 2

. .
3 51
5 6L D V V c

c c

N Z e Z dE a A B
A R R

κ ε
    − π   = − − + −             

  (4.36) 

 ( )
2

2 3

12 odd odd nuclei
1 0 odd even nuclei

12 even even nuclei
s s s

A
N Za A B

A
A

κ ε

+ −
  − + − + −        − −

  (4.37) 

In this formula, ( ) ( ) ( )0c coul coulB B Bε ε ε= =  and  
( ) ( ) ( )0s surf surfB B Bε ε ε= = , are the surface and Coulomb energies of a nuc-

leus with a sharp surface in units of their corresponding values for spherical 
shape. The second term in the Coulomb energy is a (shape-independent) dif-
fuseness correction with d being the diffuseness. The Coulomb energy constant 
is often defined as ( )( )23 5c ca e R= . When calculating the nuclear mass, one 
should note that the average pairing energy should be subtracted from pairE . 

The calculation of the Coulomb correction in particular, is somewhat in-
volved: the original six-dimensional integral can be simplified only to four di-
mensions [13]. Furthermore, the use of stretched coordinates leads to compli-
cated expressions. The radius expressed as a function of the angles in the 
stretched-coordinate system is obtained by requiring a constant value for the 
potential in (4.1) (neglecting the xV jω′−  term): 

 
( ) ( )

2

20 22 2 2 4 4

1
2 4 1 41 cos sin
3 5 92

Y Y Y V
ρ

ε γ γ ε γ−

∝
π π − − + + 
 

,  (4.38) 

where the spherical harmonics are functions of the angles tθ  and tϕ  and the 
harmonic-oscillator part of the potential is expressed in ε  and γ . From the 
definition of the stretched coordinates, it is straightforward to express the angles 

tθ  and tϕ  in the corresponding angles in the spherical system, θ  and ϕ . 
Because of the incompressibility of nuclear matter, the nuclear volume is kept 
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constant when the nucleus is deformed. This is achieved by varying the fre-
quency ( )0 4, ,ω ε γ ε  from its value for a spherical shape, 0

0ω . The integration 
of the nuclear volume is most easily performed in the stretched-coordinate sys-
tem and then multiplied with the corresponding Jacobian, a constant propor-
tional to 3

0x y zω ω ω ω . From the single-particle wave functions, the electric (or 
mass) quadrupole moment may be calculated as 

 2 2i i ioccQ p qω ωχ χ= ∑ ,  (4.39) 

where 1ip =  for protons and 0 (or 1) for neutrons. However, as we go further 
away from closed shells some new, very simple and systematic features start to 
show up for some nuclei. This is true for nuclei with mass number A in the 
range 155 185A< < , for A > 225, for nuclei in the s-d shell 19 25A≤ ≤  and 
for p shell nuclei in 9 14A≤ ≤ . Odd-A nuclei in these regions are characterized 
by exceptionally large positive quadruple moments, even-even nuclei in the same 
region all have a rather low-lying first excited state with 2J +=  and electric 
quadruple radiation are strongly enhanced. 

5. The Nuclear Superfluidity Model 
5.1. Single Nucleon in a Deformed Nucleus 

For a nucleus with quadruple deformation, one can write the nuclear radius as 
[2] [3] 

 ( )0 2 21 ,R R Yµ µµα θ φ = + ∑   (5.1) 

where 0R  is the radius of the sphere having the same volume and 2Y µ  are the 
spherical harmonics. Since the body-centered frame was selected as the principal 
axes, we have for the set of 2µα  in this frame 2,1 2, 1 0α α −= =  and  

2,2 2, 2α α −= . 
The Hamiltonian of single nucleon in this average field is given by [18] 

[19] 

 ( ), ,H T V rβ γ= +   (5.2) 

where: 

 ( ) { }2 2 2 2 2 2 2
20 0 22 2 2

1, ,
2

V r M r M r Y Y Yβ γ ω ω α α −= − + +     (5.3) 

 
2

2

2
T

M
= − ∇

   (5.4) 

The single-particle Hamiltonian then becomes: 

 { }
2

2 2 2 2 2 2 2 2
20 0 22 2 2

1
2 2

H M r M r Y Y Y
M

ω ω α α −= − ∇ + − + +  
   (5.5) 

The coefficients 2µα  can be expressed, for x y zω ω ω≠ ≠ , as 

 0 cosα β γ= , 2,2 2, 2
1 sin
2

α α β γ−= =   (5.6) 

The frequencies ,x yω ω  and zω  are connected with the deformation para-
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meters β  and γ  by [9] 

 0
5exp cos

4 3xω ω β γ
 π  = +  π    

,  (5.7) 

 0
5exp cos

4 3yω ω β γ
 π  = −  π    

,  (5.8) 

 0
5exp cos

4zω ω β γ
  = − 

π  
.   (5.9) 

The single particle Hamiltonian then becomes: 

 
( )

( ) ( )( )

2
2 2 2 2 2

0 0 2,0

2 2
0 2,2 2, 2

cos ,
2 2

2 sin , ,
2

MH r M r Y
M

M r Y Y

ω ω β γ θ ϕ

ω β γ θ ϕ θ ϕ−

= − ∇ + −

= − +



  (5.10) 

This Hamiltonian does not produce the experimental single-particle energy 
levels so that we add to it two terms, suggested by Nilsson [1], proportional to 
the spin-orbit term and the square of the orbital-angular momentum vector of 
the nucleon as follows: 

 
( )

( ) ( )( )

2
2 2 2 2 2

0 0 2,0

2 2 2
0 2,2 2, 2

cos ,
2 2

2 sin , ,
2

MH r M r Y
M

m r Y Y C s D

ω ω β γ θ ϕ

ω β γ θ ϕ θ ϕ−

= − ∇ + −

= − + + ⋅ +



 

  (5.11) 

The constants C and D are given by [1] 

 0
02C χ ω= −  , 0

0D µχ ω= −  ,  (5.12) 

The Hamiltonian (5.10) then becomes: 

 0 1H H H H ′= + +   (5.13) 

with 

 
2

0 2 2 2
0

1
2 2

H M r
M

ω− ∇ +=
   (5.14) 

 ( )1 2 2 0 0 2
0 2,0 0 0cos , 2H m r Y sω β γ θ ϕ χ ω µχ ω= − − ⋅ −    .  (5.15) 

 ( ) ( )( )2 2
0 2,2 2, 2

2 sin , ,
2

H m r Y Yω β γ θ ϕ θ ϕ−′ = − +   (5.16) 

The solutions of the Schrödinger equation corresponding to the Hamiltonian 
H0

 are given, with the usual notations, by: 

 ( ) ( ),N sN R r Y Xθ ϕ∧ ΣΛΣ ≡
 

 ,  (5.17) 

 0
0

3
2N Nε ω = + 

 
 .  (5.18) 

In Equation (5.17), sX Σ  are the single-particle spin eigenfunctions with 
1
2

Σ = ± , ( ),Y θ ϕΛ  are the normalized spherical harmonic functions with 
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, 1, ,0, , 1,Λ = − − + −      , and the radial wave functions ( )NR r


 are given 
by (4.20). 

The Schrödinger wave equation 

 i i iHϕ ς ϕ= ,  (5.19) 

can then be solved by applying the perturbation method [9] to obtain the per-
turbed energy eigenvalues iς  and the corresponding eigenfunctions iϕ , to the 
second order of the approximation for H ′  as follows: 

 
2

ij
i i j i

i j

H
E

E E
ς

≠

′
= +

−∑ ,   (5.20) 

 
( )( )

ij is js
i i j jj i j i s i

i j i s i j

H H H
E E E E E E

ϕ ψ ψ ψ
≠ ≠ ≠

′ ′ ′
= + +

− − −
∑ ∑ ∑   (5.21) 

5.2. Calculations of the Moment of Inertia 
5.2.1. Even-Even Nuclei 
In the calculations, the chemical Potentials nλ  and pλ  are determined from 
the relation [9] 

 
( )

,
,2 2

,

1 i p N
p Ni

i P N

N
ς λ

ς λ

 
− − = 

 − + ∆ 

∑   (5.22) 

The expression for the moment of an even-even nucleus is given by [9]: 

 
( )( )

2 2
2

. . , 1x i k
s f i k

i k i k

i J
E E E

k
E

ς λ ς λ − − + ∆ = − 
+   

∑H   (5.23) 

where iE  is given by the relation: 

 ( )2 2
i iE ς λ= − + ∆   (5.24) 

The only non-vanishing matrix elements xi J k  are: 

( )( )11 1 1
2x xN J N N J NΛΣ Λ − Σ = Λ − Σ ΛΣ = + Λ −Λ +        (5.25) 

5.2.1. Odd-Mass Nuclei 
It is known that moments of inertia for the odd-mass nuclei are almost larger 
than that of neighboring doubly even nuclei. The odd-mass nucleus may be 
represented as a superfluid doubly even core plus the residual unpaired nucle-
ons. In the present work, the moment of inertia . .s fH  of the odd-mass nuc-
leus is obtained as: 

 . . 1 2s f = +H H H   (5.26) 

1H  is the superfluid core contribution and 2H  is the unpaired nucleon con-
tribution. Of course, the contribution of even-even nuclei is not identical with 
that of the equivalent doubly even nucleus. This is clear since the unpaired par-
ticle will occupy one of the available levels [9]. Such partially filled levels corres-
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pond to unfilled ones with respect to the doubly even equivalent nucleus: 

 
( )( )

2 2
2

1 . ,

1 1
2

x i k
EE i k

i k i k

i J
J

E E E E
k ς λ ς λ − − + ∆ = = − 

+   
∑H   (5.27) 

The unpaired nucleon contribution 2H  was calculated with the help of the 
cranking model [9] 

 
( ) ( )

2
2

2 2 x
i

Pi J
E i E P

=
−∑H   (5.28) 

5.3. Calculations of the Electric Quadrupole Moment 

For the non-axial case, the intrinsic quadrupole moment of a nucleus consisting 
of Z protons is given by [11] 

 0 1 ,Z
iiQ Q

=
= ∑   (5.29) 

where the single-particle operator iQ  is given by 

 ( ) ( )
2 2

2,0
16 , d .

5
i

i i i iQ e r Yπ θ φ τ
Ω

π
= Ψ∫   (5.30) 

Carrying out the integration in Equation (5.30) with respect to the wave func-
tions πΩ  which is evaluated in terms of the functions ΛΣNl , one then ob-
tains 

 2
2,0,

16 .
5

i i
iQ e C C N l r N l l Y lα β α α β β α α β βα β

π
= Λ Λ∑   (5.31) 

Filling the single-particle wave functions πΩ  for the given nucleus in its 
ground-state it is then possible to calculate the quadrupole moment by calculat-
ing the necessary matrix elements of Equation (5.31) and evaluating the expan-
sion coefficients of the functions πΩ  in terms of the functions ΛΣNl  as 
obtained from the variational and the perturbation methods. 

6. Results and Discussions 

According to previous works [9] [10] [11], the Nilsson model parameters ,χ µ  
and β  are allowed to take on the values 0.05,0.06,0.07χ =  and 0.08, 0µ = , 
for 0,1N =  and 2; and 0.35µ =  for 3N = , β  takes values in the interval 

0.50 0.50β− ≤ ≤  with a step 0.01. Accordingly, the magnetic dipole moments 
and the electric quadrupole moments for the six p-shell nuclei 6Li, 7Li, 8Li, 9Li, 
10Li and 11Li are calculated. 

By assigning suitable values for the quantum numbers ,x yn n  and zn , in ac-
cordance with the Nilsson model, we constructed the ground states of the six 
p-shell nuclei 6Li, 7Li, 8Li, 9Li, 10Li and 11Li by filling their ground states with suc-
cessive single-particle states as given by Equation (3.32). For more details con-
cerning this filing, see Appendix-1 in ref. [8]. Accordingly, the ground state in 
each nucleus is filled with the corresponding wave functions. As a first result, 

crℑ  and rigℑ  are calculated for each nucleus. The corresponding reciprocal  
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moments of inertia 
2

2 crankℑ
  and 

2

2 rigidℑ
  are calculated. 

In Figures 1-6, we present the calculated values of the reciprocal moments of 
inertia according to the cranking model and the rigid-body model as functions 
of the deformation parameter β  for the nuclei 6Li, 7Li, 8Li, 9Li, 10Li and 11Li, 
respectively. 

 

 
Figure 1. Reciprocal moments of inertia of the nucleus 6Li. 

 

 

Figure 2. Reciprocal moments of inertia of the nucleus 7Li. 
 

 

Figure 3. Reciprocal moments of inertia of the nucleus 8Li. 
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Figure 4. Reciprocal moments of inertia of the nucleus 9Li. 
 

 

Figure 5. Reciprocal moments of inertia of the nucleus 10Li. 
 

 

Figure 6. Reciprocal moments of inertia of the nucleus 11Li. 
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In Table 1, we present the calculated values of the reciprocal moments of in-
ertia of the nuclei 6Li, 7Li, 8Li, 9Li, 10Li and 11Li, which are in good agreement with 
the corresponding experimental values [22]. The experimental moments of iner-
tia are also given in this table. The values of the nondeformed oscillator parame-
ter 0

0ω , for the six nuclei, are given. The values of the deformation parameter 
β  are also given in this table. 

It is seen from Table 1 that the calculated values of the cranking-model reci-
procal moments of inertia are in better agreement with the corresponding expe-
rimental values rather than the other values. The disagreement between the val-
ues of the rigid-body reciprocal moments of inertia and the corresponding expe-
rimental values are due to the fact that the pairing correlation is not taken in 
concern in this model [9] [11]. 

For the comparison between the calculated values of the magnetic dipole 
moments for the cases of axial symmetry and nonaxial (asymmetrical case), we 
only consider one nucleus as a sample case. For this purpose, we present in Ta-
ble 2, the calculated values of the magnetic dipole moment of the nucleus ⁶Li, for 
both symmetric and asymmetric cases. Experimental values are also given. 

For the electric quadrupole moments, we also did the same as for the magnetic 
 

Table 1. The calculated values of the reciprocal moments of inertia of the nuclei 6Li, 7Li, 
8Li, 9Li, 10Li and 11Li which are in good agreement with the corresponding experimental 

values are given. The values of 0
0ω  and β  are also given in this table. 

Nucleus β  
0
0ω  MeV 

2

2 crankℑ
  KeV 

2

2 rigidℑ
  KeV 

2

2 experℑ
  KeV [22] 

6Li 
−0.29 
0.26 

9.594 
489.34 
493.44 

843.12 
716.04 

500 

7Li 
−0.18 
0.21 

11.543 
712.22 
687.14 

1621.34 
1588.34 

650.00 

8Li 
−0.16 
0.16 

13.21 
 

747.17 
773.01 

1140.84 
1075.15 

750.00 

9Li 
−0.17 
0.17 

14.14 
 

872.85 
909.16 

1133.23 
1064.51 

900.00 

10Li 
−0.35 
0.31 

12.02 
722.63 
697.41 

786.12 
695.55 

715.72 

11Li 
−0.21 
0.20 

12.77 
 

298.20 
293.90 

668.94 
627.87 

297.71 

 
Table 2. The magnetic dipole moment of ⁶Li. 

Case γ  β  
0
0ω  (MeV) µ  (NM) 

Axially Symmetric 0˚ 0.26 9.594 0.826 

Asymmetric 30˚ 0.28 9.594 0.939 

Experimental --- 0.20 - 0.26 --- 0.822 [23] 
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dipole moments. Accordingly, the calculated values of the electric quadrupole 
moment of 6Li (in e m barns) are given in Table 3 for the axially symmetric case 
( 0γ =  ) and for the non-axial case corresponding to 30γ =  . 

In Table 4, we present the calculated values of the reciprocal moment of iner-
tia of the nucleus ⁶Li by using the concept of the single-particle Schrödinger flu-
id, for axially symmetric case, for both cranking-and rigid-body models, and the 
nuclear superfluidity model for the non-axial case. Also, we present in Table 4 
the corresponding experimental value. The values of the deformation parameter 
β , the non-axiality parameter γ  and the oscillator parameter 0

0ω  are also 
given in Table 4. 

In Table 5, we present the calculated values of the magnetic dipole moments 
of the six nuclei by applying the Nilsson model. 

In Table 6, we present the calculated values of the electric quadrupole mo-
ments of the six nuclei by applying the cranked Nilsson model. 

It is seen from Figures 1-6, and Table 1 that each nucleus has two values of 
the deformation parameter β  which produce good agreement between the 
calculated and the corresponding experimental reciprocal moments of inertia for  

 
Table 3. The electric quadrupole moment of ⁶Li. 

Case γ  β  
0
0ω  (MeV) QS (e m barns) Qexp (e m barns) [23] 

Symmetric 0˚ −0.06 9.594 −0.078 −0.083 

Asymmetric 30˚ −0.12 9.594 −0.074 −0.083 

 
Table 4. Reciprocal moment of inertia of ⁶Li. 

Case γ  β  
0
0ω  (MeV) 

2

2ℑ


 (KeV) 

Cranking 0˚ 0.27 9.594 493.44 

Rigid body 0˚ 0.24 9.594 716.04 

Superfluidity 25˚ 0.28 9.594 548.58 

Experimental --- 0.20 - 0.26 --- 500.0 [22] 

 
Table 5. Calculated values of the magnetic dipole moments of the six nuclei by applying 
Nilsson model. The calculated values are also given [23] [24]. 

Nucleus calcµ  (NM) expµ  (NM) [23] [24] 

6Li 0.826 0.822 
7Li 3.323 3.2565 
8Li 1.683 1.6534 
9Li 3.465 3.4391 
10Li 2.555 2.5345 
11Li 3.744 3.668 
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Table 6. Calculated values of the electric quadrupole moments of the six nuclei by apply-
ing the cranked Nilsson model. The calculated values are also given [23] [24]. 

Nucleus QS (e m barns) Qexp (e m barns) 

6Li −0.082 −0.083 
7Li −3.964 −4.06 
8Li 3.023 3.17 
9Li 2.452 2.53 
10Li 3.211 3.25 
11Li −3.332 −3.1 

 
the cranking model. Concerning the rigid-body model, the calculated values are 
not in good agreement with the corresponding experimental values, a result 
which always occurs with this model for most of the deformed nuclei [9]. 

Finally, we see that the single particle Schrödinger fluid has been applied suc-
cessfully to the six p-shell nuclei 6Li, 7Li, 8Li, 9Li, 10Li and 11Li with a suitable 
choice and filling of the single-particle anisotropic harmonic oscillator states es-
pecially for the cranking-model moments of inertia of deformed p-shell nuclei. 

Concerning the calculation of the magnetic dipole moments of the six nuclei, 
it was found that the Nilsson model is an accurate framework for calculating 
these moments. The Cranking Nilsson model is the right model for the calculation 
of the electric quadrupole moments of the six nuclei. Furthermore, the nuclear 
superfluidity model also produced good results for the calculation of the nuclear 
moments of inertia for the nuclei which do not possess axes of symmetry. 

According to the obtained results for the deformation characteristics, the as-
sumption that the nucleus 6Li is deformed and has an axis of symmetry seems to 
be the more reliable assumption, a result which has been also obtained for some 
nuclei in the s-d shell [6] [11]. 

7. Conclusion 

To show that whether a nucleus is deformed and has an axis of symmetry, it is 
important to calculate its deformation properties, such as its moment of inertia, 
its magnetic dipole moment, and its electric quadrupole moment. These proper-
ties depend on the correct choice of the nuclear model which upon its applica-
tion provides us with results in good agreement with the corresponding experi-
mental values. For this reason, we choose in the present paper the well-known 
four models of deformed nuclei; two of them assume that the nucleus does have 
an axis of symmetry and the others assume that the nucleus does not possess an 
axis of symmetry. The six lithium isotopes 6Li, 7Li, 8Li, 9Li, 10Li and 11Li are not 
known to have axes of symmetry or not. Accordingly, it was our goal to choose 
these isotopes and apply the four well-known models of deformed nuclei: the 
single-particle Schrödinger fluid model, the Nilsson model, the cranked Nilsson 
model, and the nuclear superfluidity model to decide whether these nuclei have 
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axes of symmetry or not. According to our calculations, the nucleus 6Li is the 
only nucleus which has an axis of symmetry. 
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