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Abstract 
We discuss novel advanced concepts suitable for the practical design of 
gamma-ray sources of directed energy. One concept is based on the self- 
channeling of a powerful optical laser in a gas within a metal tube. Another 
concept employs a direct excitation of a quadrupole nuclear level by a po-
werful optical laser. The third concept is based on the process of a high- order 
harmonic generation by an x-ray laser. All three concepts can be used for de-
signing gamma-ray lasers that would have significant advantages over x-ray 
lasers. First, missile defense systems employing gamma-ray lasers would be 
weather independent. Second, the gamma-ray laser radiation can penetrate 
through the sand, which could be suspended in the air in a desert either na-
turally (due to strong winds) or artificially (as a protective “shield”). Besides, 
the first out of the three concepts can beemployed for creating non-laser 
gamma-ray sources of directed energy to be used for detecting stored radioac-
tive materials, including the radioactive materials carried by an aircraft or a sa-
tellite. Last but not least: these concepts can be also used for remotely de-
stroying biological and chemical weapons as a preemptive strike or during its 
delivery phase, as well as for distinguishing a nuclear warhead from decoy 
warheads. Thus, the defense capabilities of the proposed gamma-ray lasers 
can save numerous lives. 
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1. Introduction 

Powerful x-ray lasers have been developed quite long ago [1]. They have found 
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various civil applications [1], as well as limited military applications. The latter 
application are limited because x-rays do not penetrate through the clouds in the 
atmosphere, thus making weather-dependent any possible missile defense sys-
tem based on them. Also, x-rays do not penetrate through the sand, which could 
be suspended in the air in a desert either naturally (due to strong winds) or arti-
ficially (as a protective “shield”). 

In distinction, the radiation of gamma-sources of directed energy, including 
gamma-ray lasers, would be free from these drawbacks. First, missile defense 
systems employing gamma-ray lasers would be weather independent. Second, 
the gamma-ray laser radiation can penetrate through the sand suspended in the 
air in the desert. 

Besides, non-laser gamma-ray sources of directed energy can be used for de-
tecting stored radioactive materials, including the radioactive materials carried 
by an aircraft or a satellite. Such sources can be designed for specific energies of 
gamma-quanta to cause a resonant nuclear photoexcitation of stored radioactive 
materials and to enable observing a characteristic time-delayed response of the 
stored media. 

Also, gamma rays can penetrate through containers where biological or 
chemical weapons are stored and make these weapons ineffective. For biological 
weapons, the effect of gamma-rays is based on the fact that, when it kills one cell 
in a biological medium, all the neighboring cells will also die (A weak gamma- 
radiation is already used for preserving corpses: it stops all cellular decay 
processes, just as it would stop all cellular reactions). For chemical weapons, 
gamma rays can change the nuclear charge the nuclei inside the molecules of the 
chemical weapon. This change of the chemical formula can be such chosen that 
the new chemical substance would not be lethal. 

Advanced gamma-ray directed energy sources can also destroy biological and 
chemical weapons during its delivery phase. Last but not least: these advanced 
sources can be designed such as to distinguish a nuclear warhead from decoy 
warheads, by causing a resonant nuclear photoexcitation in the warhead and 
observing a characteristic time-delayed response. 

Concepts of gamma-ray sources of directed energy (including gamma-ray las-
ers) considered in the past were based ither on the Moessbauer effect or on the 
isomer scheme. However, these schemes were rather exotic and very far from 
practical implementations [2] [3] [4]. In the present paper we bring up more 
advanced concepts suitable for the practical design of gamma-ray sources of di-
rected energy. 

2. Self-Channeling of a Powerful Optical Laser in a Gas  
within a Metal Tube 

The propagation of a powerful radiation of an optical laser in a gas of light 
atoms (H, He, …) creates a plasma out of it and leads to the phenomenon of 
“self-channeling” [5]. The ponderomotive force of the laser beam quickly re-
moves free electrons from the channel area. The remaining ions start repelling 
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each other. Due to the cylindrical symmetry, there begins the radial outflow of 
ions where the ions can reach energies up to tens of MeV inside the channel. The 
idea is to create this kind of the situation inside the metal tube and to use these 
accelerated ions as the projectiles to bombard metal atoms having short-lived 
(collective) excited states in their nuclei. The excitation mechanism is the well- 
known Coulomb collisions. 

We consider, as an example, the nucleus 140Ce, where the first quadrupole lev-
el 2+ (belonging to the first rotational band) of the energy 2.522 MeV would 
serve as the upper level for the gamma-lasing and the first octupole level 3– of 
the energy 2.464 MeV would serve as the lower level for the gamma-lasing. The 
level 3– has a very low population rate by the Coulomb collisions from the 
ground state, because the latter is the dipole transition. Thus, these levels are 
well-suited for the gamma-lasing at the energy ΔE = 2522 keV – 2464 keV = 58 
keV. 

By employing an optical laser of the energy 1 - 10 J in a pulse of 1 - 100 fs and 
using a Ce-tube of the inner radius ~0.1 mm and the outer radius ~ 0.2 mm, the 
length of the tube being L ~ 1 cm, one should be able to demonstrate the gam-
ma-lasing gain g = 3 cm−1 and the gain-length product gL = 3. 

Let us now compare the effect of such gamma-ray laser with the effect of a 
nuclear bomb explosion. The latter yields up to 1028 gamma-quanta (assuming 
103 kg of the active medium in the nuclear bomb where each nucleus produces 
one gamma-quantum). This means that at the distance of 1 km, the nuclear 
bomb explosion creates the radiation density about 1017 gamma-quanta per cm2, 
integrated over time. 

In comparison, the radiation density of our gamma-ray laser will be about 109 
gamma-quanta per cm2 in a pulse of about 1 ns. Thus, the gamma-ray power 
density of our gamma-ray laser will be significantly higher than in the nuclear 
bomb explosion. This gamma-ray laser could have a repetition rate up to 10 kHz 
depending on the pumping source. 

Let us now evaluate how far this gamma-ray beam can propagate without a 
significant divergence. This distance can be estimated as 

L ~ kd2                               (1) 

where k is the wave number of the gamma-radiation and d is the diameter of the 
gamma-ray beam. For the gamma-quanta of the energy ~ 1 MeV in the beam of 
the diameter ~ 0.1 mm, we get L ~ 100 km. 

Thus, our gamma-ray laser not only would produce the gamma-ray power 
density than in the nuclear bomb explosion, but would also deliver this power 
density to significantly greater distances than the nuclear bomb explosion. Con-
sequently, it could serve as a much better defensive destroyer than the nuclear 
weapon, for remotely destroying any biological weapon and to convert chemical 
weapons into non-lethal chemical substances. It would be also able to penetrate 
into warheads and make it possible to distinguish the nuclear warheads from 
decoys. 
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The same design can be employed for creating non-laser gamma-ray sources 
of directed energy to be used for detecting stored radioactive material, including 
those carried by an aircraft or a satellite. In this case, it would be necessary to 
have specific energies of gamma-quanta to cause the resonant nuclear photoex-
citation of the stored radioactive materials and to enable observing a characteris-
tic time-delayed response of the stored media. For this purpose the pumping la-
ser could be of a significantly smaller energy than for the corresponding gamma- 
ray laser: a standard laser of the energy ~ 100 mJ in a 100 fs pulse would be suffi-
cient. 

3. Gamma-Lasing in the Process of the High-Order Harmonic 
Generation (HHG) by an X-Ray Laser 

The HHG resulting from the irradiation of a gas by a powerful optical laser has 
become a commonly accepted alternative to creating x-ray lasers (see, e.g., 1, [6] 
[7] [8]. As the harmonic number increases, the harmonic intensity first decreas-
es, but the reaches a “plateau”, extending to harmonic numbers as high as ~ (40 - 
50). Thus, the HHG is the way to increase the frequency of the output laser radi-
ation (compared to the input laser radiation) by almost two orders of magnitude 
without too much loss of the intensity. In papers [9] [10] the authors found a way 
to further advance the process of the HHG by employing so-called “dipole media”. 

Many mappers were devoted to explaining the plateau and other features of 
the HHG spectrum. Some authors used numerical solutions of the time-dependent 
Schrödinger equation [11], while others employed simpler analytical models 
(see, e.g., [12]-[20]). 

Most theoretical works on the HHG considered the situation where diagonal 
matrix elements of the dipole moment operator are zeros. In other words, it was 
assumed that the atom does not possess Permanent Dipole Moments (PDMs). 
However, it was shown in a number of papers [20]-[28] that the response of a 
quantum system (atom/ion/molecule) to the external electromagnetic field can 
be significantly modified if the system possesses PDMs. 

One of the examples of such systems is certain types of polar molecules (see, 
e.g., [22]). Another example is an atom/ion possessing PDMs induced by a static 
electric field. 

In papers [9] [10] the authors focused at studying the dependence of the HHG 
spectrum on PDMs for a two-level atom interacting with a laser field tuned to a 
multiquantum resonance with the atomic transition. Two-level systems are ex-
tensively used in calculations of the HHG because these systems are simple and 
can give physical and mathematical insights of the problem, despite they cannot 
give the correct behavior of all the features of the emission. The HHG in a 
two-level system possessing no PDMs was studied, for example, in [12] [13] [15] 
[18]. A distinctive feature of the works [9] [10] is the application of the aver-
aging method by Krylov-Bogliubov-Mitropolskii [28] [29] while solving the 
Schrödinger equation for an atom interacting with the laser field. 

The authors of paper [9] [10] showed that the HHG by PDM systems results 
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in a significant extension of the plateau to higher frequencies and to a slower de-
cline of intensities at the frequencies greater than the end of the plateau. Moreo-
ver, there occurs a substantial growth of the total, summary intensity of all 
components of the scattering spectrum. 

The above important features can be physically interpreted as follows. The 
wave function of a two level atom possessing PDMs and subjected to the driving 
laser firl, is modulated in time in such a way that the modulation has both 
low-frequency component and high-frequency components. The temporal mod-
ulation of the wave function leads to the temporal modulation of the averaged 
dipole moment D(t). Two factors can cause the high-frequency modulation of 
D(t). The first factor (existing also for atoms/ions possessing no PDMs) is the 
oscillatory nondiagonal matrix element of the interaction with the driving field. 
The second factor (specific only for atoms/ions possessing PDMs) is the oscilla-
tory difference of the diagonal matrix elemens of the interaction. For sufficiently 
large values f the PDMs, the second factor can dominate and cause both the ex-
tension of the plateau to higher frequencies and the slower decline of the intensi-
ties at frequencies greater than the end of the plateau. 

The above advances make it possible to consider the following concept of a 
gamma-laser. Let an x-ray laser irradiate a plasma medium. Due to the process 
of the HHG, the output laser radiation would have a frequency about two orders 
of magnitude greater than the x-ray frequency, thus corresponding to the gam-
ma-ray range. The efficiency of the HHG in this case can be also significantly 
enhanced by using the methods suggested in papers [9] [10]. 

Compared to the HHG under an optical laser radiation, there are several nov-
el features of this design, as follows. 

1) In the conventional design, the ratio of the size r of the atomic scatterer to 
the laser wavelength λ was r/λ << 1. In distinction, in the present design, this ra-
tio could be in the range 0.1 ≤ r/λ < 1. Therefore, in the latter design, the elec-
tric-quadrupole radiation should be taken into account in addition to the dipole 
radiation. 

2) For the same reason (0.1 ≤ r/λ < 1), the propagation of the radiation n the 
scattering medium can differ from the conventional HHG. 

3) It is known that the plateau in the harmonic spectrum ends at the energy  

E ≈ I + 3.17U                             (2) 

where I is the ionization potential of the scatterers and U is the ponderomotive 
energy of electrons in the laser field. Therefore, there are two ways to increase 
the cutoff energy E and thus the efficiency of the HHG in this design: 

1) To use scatterers of a high nuclear charge Z ~ 90 for increasing I; 
2) To work with scatterers of smaller values of Z (1 ≤ Z < 30), but to employ a 

higher power of the input laser for increasing U. 

4. Direct Excitation of a Quadrupole Nuclear Level by a  
Powerful Optical Laser 

In this concept, the idea is a circularly-polarized radiation of a powerful optical 
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laser to produce a collective excitation of a quadrupole nuclear level. In this case, 
the nucleus can be thought of as receiving an additional dipole moment. There-
fore, it could be interpreted as a so-called “giant resonance” [30]. 

For widely available intensities of the optical lasers, the quadrupole nuclear 
excitations would be possible if the nonharmonic part of the nuclear potential is 
relatively small. Therefore, the best candidates would be nuclei having quasi- 
equidistant spectra of the lowest quadrupole states, such as, for example, 128T. 
However, experimentally it would be better to deal with a gas rather than a met-
al. Nuclei of gaseous media, having quasi-equidistant spectral of the lowest qu-
drupole states, are 40Ar, 132Xe, and 134Xe. 

The most prospective candidates are 132Xe and 134Xe. Indeed, the 2+ qudrupole 
state of these nuclei have energies ΔE = 668 keV and ΔE = 847 keV, respectively. 
By employing a Nd-laser of the energy ~1 J in a pulse of ~ 1 ps, thus producing 
the power density ~ 1018 W/cm2, one could excite N ~ 2 × 106 of 132Xe or N ~ 1 × 
106 of 134Xe nuclei per shot. Each excited nucleus emits one gamma quantum of 
the corresponding energy. Therefore, the total number of gamma-quanta coin-
cides with the above values of N. The angular distribution is expected to be 1 + 
cos2θ, where θ is the angle between the wave vector of the optical laser and the 
direction of the observation. 

We note that currently there few optical lasers producing the power density ~ 
1021 W/cm2 – see, for instance, paper [31] references therein. The employment of 
such driving laser in the above design would produce the gamma-ray output by 
several orders of magnitude higher than in the above estimates.  

5. Conclusions 

We discussed novel advanced concepts suitable for the practical design of gam-
ma-ray sources of directed energy. One concept is based on the self-channeling 
of a powerful optical laser in a gas within a metal tube. Another concept employs 
a direct excitation of a quadrupole nuclear level by a powerful optical laser. The 
third concept is based on the process of a high-order harmonic generation by an 
x-ray laser. All three concepts can be used for designing gamma-ray lasers that 
would have significant advantages over x-ray lasers. First, missile defense sys-
tems employing gamma-ray lasers would be weather independent. Second, the 
gamma-ray laser radiation can penetrate through the sand, which could be sus-
pended in the air in a desert either naturally (due to strong winds) or artificially 
(as a protective “shield”). Besides, the first out of the three concepts can be em-
ployed for creating non-laser gamma-ray sources of directed energy to be used 
for detecting stored radioactive materials, including the radioactive materials 
carried by an aircraft or a satellite. Last but not least: these concepts can be also 
used for remotely destroying biological and chemical weapons as a preemptive 
strike or during its delivery phase, as well as for distinguishing a nuclear war-
head from decoy warheads. Thus, the defense capabilities of the proposed gam-
ma-ray lasers can save numerous lives, by preventing biological and nuclear 
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weapons from being delivered and from causing the mass destruction of the civil 
population. All of this signifies the research importance of the present paper. 

For the further reading we recommend papers [32] [33] [34] [35] and refer-
ences therein. 
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