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Abstract 
This paper deals with S-matrix, born first approximation, amplitude, and dif-
ferential cross-section (DCS), using Volkov function and Taylor series expan-
sion in laser field, scattering. Equation (30) copes-with DCS and Equation 
(36) deals with S-matrix, with different parameters, moreover, both equations 
contain real and imaginary parts. The DCS increases with increasing angle 
and polarizabilities, constant with dipole distance for both emission and ab-
sorption of single-photon. The DCS for both emission and absorption is re-
sponded to low incidence energy (30 eV - 60 eV) and photon energy (15 eV) 
while at high energy only emission and absorption are responded for DCS. 
The DCS between absorption and emission of a photon with angle variation, 
dipole distance, and atomic polarizabilities was found 1.098 a.u.2 and at high 
incidence, energies were found 0.1 a.u.2. 
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1. Introduction 

Mjjller in June 1947 give birth to S-matrix will make it possible to distinguish 
between true and false singularities. Nowadays false singularities are used for all 
potentials with exponential fall-off. The crossed-channel singularities are ob-
tained from relativistic field theories. Heisenberg summarized a finite S-matrix 
theory of elementary particles, in 1946. The S-matrix theory was still a very gen-
eral scheme that had rather limited predictive power [1]. The S-matrix for inte-
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racting electromagnetic field and half-spin particle field is considered. Particle 
field quantization is carried out according to a scheme suggested in the works of 
(Green, 1953) and (Volkov, 1959). The conventional theory of S-matrices allows 
a simple generalization of the quantization [2]. Hamdolahi et al. study the im-
pact of excess pion inside the nucleus on electron scattering and found the DCS 
variable with presence of pion inside the nuclues [3]. 

Dipole Approximation is valid, with the wavelength of the laser field being 
large compared with the size of the atomic system. The Gordon-Volkov wave 
function is an exact solution of the TDSE for describing the motion of a free, 
charged particle in a plane-wave electromagnetic field. Volkov wave function has 
plenty of applications in calculating ionization of atoms, excitation in band-gap 
semiconductors, and scattering of a charged particle. The appropriate correc-
tions to the Volkov solution were done in presence of the atomic potential be-
sides the plane-wave field [4] [5] [6] [7]. The wave functions of a non-relativistic 
free electron moving in a homogeneous external field (dipole approximation) 
were used as the basis for the perturbation method to calculate the cross-section 
of inverse as well as induced multiphoton bremsstrahlung process (Bergou, 
1980). Similar problems were touched on earlier (Denisov and Fedorov, 1967; 
Brehme, 1971; Ehlotzky, 1978) for non-relativistic [8].  

Born approximation (Strutt/Born/Neumann etc. series) is valid for a small 
perturbation to any linear operator for linear scattering theory and Jaco-
bian’s/radiative perturbations. The cross-sectional area of a nucleon is about 
10−30 fm2 or 10−26 cm2, the unit 1 barn ≡ 10−24 cm2 = 100 fm2 which is 100 times 
the area of a nucleon and quite large to nuclear scale. A very simple radiating 
element study is an ideal dipole called Hertzian dipole and infinitesimal dipole 
by Sean Victor Hum in 202. 

Calculate of energy for dipole oriented with θ in the electric field at equili-
brium position is equal to the work done in bringing the dipole from infinity to 
the equilibrium position. If the negative charge is displaced along the field by an 
additional distance a, the work done is equal to qEa pE− = − , which is the po-
tential energy of the dipole in equilibrium. An infinitesimally small current ele-
ment is called the Hertz Dipole reported by Kumar in 2019. The electric dipole 
of two equal magnitudes, oppositely charged particles separated by distance d, is  

given as 3

2kqdE
z

=  and electric dipole moment is defined as q=p d , and for 

large distance ( z d ), 3

2kpE
z

= . A neutral atom has no dipole moment, to  

begin with, but some molecules (polar molecules) have a permanent dipole mo-
ment, even without the external electric field. In one dimension the Born ap-
proximation for the scattering amplitude is given by [9], 

( ) ( )1 2d eD i r
Bf rV r ωω

+

−

∞

∞
= ∫                    (1) 

In three dimensions with a potential depending only on r, the Born integral 

( )e di V r− ⋅∫ q r r  is equal to 
( ) ( ) 2

0

sin4 d
qr

V r r r
q r

∞   π
−   
   

∫  and is hence real [10]. 
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Strong-field approximation (SFA) in nonhomogeneous, evolution equation 
with the inhomogeneous term which determines the departure of the approx-
imate by the exact ab initio time-dependent Schrödinger Equation (TDSE). A 
modification of the nonhomogeneous evolution equation making the inhomo-
geneous term smaller produces results for the photoelectron spectra which agree 
quantitatively well with the TDSE results for a system with the Coulomb interac-
tion [11]. In 1994 Reiss and Krainov give an approximation solution of Cou-
lomb-Volkov in strong fields which is well-known as Volkov wave function 
(Gordon, 1926 and Volkov 1935). The most significant contribution to the tran-
sition matrix element should be given by the region of small electron-nucleus 
distances because the atomic ground state is located there [12]. 

Series representation of a function. The main purpose of a series is to write a 
given complicated quantity as an infinite sum of simple terms; and since the 
terms get smaller and smaller, we can approximate the original quantity by tak-
ing only the first few terms of the series. In this section, we finally develop the 
tool that lets us do this in most cases: a way to write any reasonable function as 
an explicit power series. 

2. Method and Material 

Let ( )tα  representing classical oscillation of electron in field ( )tE  and  
2

0 0Eα ω= , then Volkov wave function,  

( ) ( ) ( ) ( )
3
2, 2 exp , dkiE it i i t t V t tχ −  = π ⋅ − ⋅ − − 

 
∫r k r k r

 

α       (2) 

Here, k is momentum, ( ) ( ) ( ){ }0 ˆ sin cosi jt e t e tα α ω ω= −  and  

0 0 0
0 2 2

1
2

eA eE E
mc m

α
ω ω ω

= = = . For first-order born approximation, the S-matrix 

element corresponding to the scattering of the electron is 

( )d ,
f i

iS t V tχ χ
−∞

+∞
= − ∫ k kr



                   (3) 

where 
f

χk  and 
i

χk  Volkov solution on subsuming in (3) 

( )
( ) ( )

( )

33 3

3

exp
2

exp d d

f

i

f f

k
i i

iEiS i i t t V
r

i
i i t t r t

α
+∞

−∞

  = − − − +    π  
 

×

⋅
⋅ ⋅

⋅ ⋅− − 
 

∫ ∫
k r Ek r k r

E
k r k







α

α

    (4) 

( )
( ){ } ( ) ( ){ }

( ) ( )

( )
( ){ } ( ) ( ){ }

( )

3

3

3

3
3 3

exp exp
2

exp d d

exp exp
2

exp d d

f i

f i

f i f i

f i f i

iS i i t

ti E E V r t

i i i t

ti E E r t
r

α

+∞

+

−∞

−

∞

∞

= − − − ⋅ − ⋅
π

 × − × 
 
−

+ − − ⋅ − ⋅
π

⋅   × − ×   
   

∫ ∫

∫ ∫

k k

k k

k k r k k

r

k k r k k

r E









α

α
      (5) 
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Let the momentum transfer of the scattered electron be i fq k k= −  then 

( )
{ } ( ){ } ( )

( )
( )

{ } ( ){ }

( )

3

3
3

3
3 3

exp exp exp
2

d d exp exp
2

exp d d

f i

f i

i tS i i t i E E

iV r r t i i t

ti E E r t
r

α

−∞

−

+∞

∞

+∞

 = − ⋅ − ⋅ × − 
 π

−
× + ⋅ − ⋅

π

⋅   × − ×   
   

∫ ∫

∫ ∫

k k

k k

q r q

q r q

r E









α

α    (6) 

The first part of Equation (6) is 

( )
{ } ( ){ }

( ) ( )

1 3

3

exp exp
2

exp d d
f i

iS i i t

ti E E V r t

−

+

∞

∞
= − ⋅ − ⋅

π

 × − 
 

∫ ∫

k k

q r q

r





α

           (7) 

( )
( ){ } ( )1 1 2 exp exp d

2 f i

i tS f i t i E E t
−

+∞

∞

 = − ⋅ − 
 π

∫ k kq




α       (8) 

Taking dot product, ( ){ } cosexp e i qi t α θ−− ⋅ =q α  and on using Taylor series 
expansion we have,  

( ) ( )

( ) ( )

2 3
cos

4 5

cos cos
e 1 cos

2! 3!
cos cos

4! 5!

i q q i q
i q

q i q

α θ α θ α θ
α θ

α θ α θ

− = − − −

+ − +

         (9) 

On taking the first two-term for the Taylor series we have,  
cose 1 cosi q i qα θ α θ− ≈ −  we have 1S  

( )
( ) ( )1 1 2 1 cos exp d

2 f i

i tS f i q i E E tα θ
−

+∞

∞

 = − − 
 π

∫ k k




      (10) 

On solving we get,  

( )
( )

( )1 1 2

1 cos

2 f i

i i q
S f E E

α θ
δ

−
= −

π
k k               (11) 

where ( ) ( ) 3
1

1 exp d
2

f i V r= − ⋅
π ∫ q r r  and the value is equal to 

e
4

qd
p

d
α −

−  for 

0q >  that is 1

e
4

qd
pf

d
α −

= −  [13]. Since we have, differential cross-section  

( )

2
2

4

d
d 2

f

i

km f
k

σ
=

Ω π
                     (12) 

where f is amplitude therefore with the help of 1f  the differential cross-section 
become  

( )

2
2

4
1

ed
d 42

qd
f p

i

km
k d

ασ −
  = − Ω  π

                 (13) 

Using Taylor series expansion on the exponential term we have 2e 1 2qd qd− ≈ − , 
therefore the cross-section becomes,  

https://doi.org/10.4236/ojm.2022.124006


B. Karki et al. 
 

 

DOI: 10.4236/ojm.2022.124006 109 Open Journal of Microphysics 
 

( )
( )

22

4 2
1

d 1 2
d 162

f p

i

km qd
k d

ασ  = − Ω  π
               (14) 

Again second part of Equation (6) is  

( )
{ } ( ){ }

( )

2 3

3
3 3

exp exp
2

exp d d
f i

tiS i i t

ti E E r t
r

α

−∞

−
= ⋅ − ⋅

π

⋅  × −  
  

∫ ∫

k k

q r q

r E





α

            (15) 

( )
{ } ( ){ } ( )

( ) ( )

2 03

* 3
3 3

exp exp exp
2

exp exp d d

f i

ti tS E i i t i E E

i t i t r t
r r

α

ω ω

−∞

−  = ∝ ⋅ − ⋅ − 
 π

 × − ⋅ − ⋅ 
 

∫ ∫ k kq r q

r r





α

 

  (16) 

Here, ( ) ( ) *0
3 33 3 exp exp

E
i t i t

r r
α α ω ω⋅  = ⋅ − − 

r E r   , now on taking the first 

integral term of Equation (16) as  

{ } ( ){ } ( )
( )

1 3 0

3
3

exp exp exp

exp d d

f i

t tI E i i t i E E

i t r t
r

α

ω

−∞

 = ⋅ − ⋅ − 
 

 × − ⋅ 
 

∫ ∫ k kq r q

r


α


     (17) 

{ } ( )

( ) ( )

3
1 3 0 3exp d 1 cos

exp exp
f i

t
I E i r i q

r
ti E E i t

α α θ

ω

−∞
= ⋅ ⋅ × −

 × − − 
 

∫ ∫

k k

rq r




          (18) 

Using Taylor series expansion similar as above that  
( ){ }exp 1 cosi t i qα θ− ⋅ = −q α  and in the presence of radiation field, the scat-

tered electron gain or lose energy equal to Nω , such that f iE E Nω= + . N is 
the net number of photons exchanged (absorbed or emitted) by the colliding 
system and the CP field. Therefore, the integration becomes,  

{ } ( )

( )( )

3
1 3 0 3exp d 1 cos

2 1
f i

I E i r i q
r

E E N

α α θ

δ ω

= ⋅ ⋅ × −

× π − − +

∫

k k

rq r

 


          (19) 

Replacing N by N − 1 and using integral value,  

{ } 3
3 2

2 cosexp d 2i r
iqr iq

θ⋅ π ⋅
⋅ = = − π∫

r qq r   , the integration becomes,  

( ) ( ) ( )2
1 3 0 22 1 cos

f i
I E i q E E N

q
α α θ δ ω⋅

= − π − − −k k
q

 

        (20) 

Also for the second integral part of the Equation (18),  

{ } ( )

( ) ( )

2 3 0

* 3
3

exp 1 cos

exp exp d d
f i

t
I E i i q

t ri E E i t r t
r

α α θ

ω

−∞
= − ⋅ × −

  × − ⋅  
  

∫ ∫

k k

q r




          (21) 

Become,  
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( ) ( ) ( )( )2
2 3 0 22 1 cos 1

f i
I E i q E E N

iq
α α θ δ ω⋅

= π × − × − − −k k
q



    (22) 

Using 

{ } { }
*

3 2
3 3 2

cosexp d exp cos d sin d d 2ri r iqr r r
r r iq

θ θ θ θ φ⋅ ⋅
⋅ = = − π∫ ∫∫∫

r qq r   ,  

therefore 

( ) ( ) ( )2
2 3 0 22 1 cos

f i
I E i q E E N

iq
α α θ δ ω⋅

= π × − × − −k k
q

 

       (23) 

Solve similar as 1I  and replacing N by N + 1, now on substituting 1I  and 

2I  in 2S  and solving we get,  

( )2 2
1

2 f i
S E E N fδ ω= − −

π k k                   (24) 

where, ( )2 3 0 2 1 cos cosf E q i i q
q

α α θ α θ⋅
= + + −

q  , since we have,  

( )

2
2

4

d
d 2

f

i

km f
k

σ
=

Ω π
                      (25) 

where f is amplitude, therefore, scattering becomes  

( )
( )

22
3 0

4
2

cosd 1 cos cos
d 2

f

i

k Em q i qi
k q

θασ α θ α θ  = + + − Ω  π

      (26) 

Now total differential cross-section is represented as  

1 2

d d d
d d d
σ σ σ   = +   Ω Ω Ω   

                     (27) 

On substituting the value from above we get,  

( )
( ) ( )

2 22
3 0

4 2

cosd 1 cos cos 1 2
d 162

f p

i

k Em q i qi qd
k q d

αθσ α θ α θ
α 

=  + + − + − 
Ω π   


 (28) 

Neglecting the imaginary part of the Equation (28) and putting 1=  (unity) 
solving we get,  

( )
( ) ( )

22 2 22
2 2 23 0

4 2 2

cosd 1 2 cos cos 1 2
d 162

f p

i

k Em q q qd
k q d

αα θσ α θ α θ
 

= + + + − 
Ω π   

(29a) 

Taking the imaginary part of the Equation (28) and putting 1=  (unity) 
solving we get,  

( )
( )( ){ }

( )

2 2 22
3 0

4

2

2

cosd 4 cos 2 1 cos 1 cos
d 2

1 2
16

f

i

p

k Em i q q
k q

qd
d

α θσ α θ α θ α θ

α


= + + −Ω π 


+ − 



 (29b) 

For elastic scattering, we have 

1
2

1
i

f

i k

k l
k E

ω 
= −  
 



,  
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( )
{

( )( )} ( )

1
2 2 2 22

0
4

2

cosd 1 4 cos
d 2

12 1 cos 1 cos 1 2
16

i

p

k

m El
E q

i q q qd
d

α θσ ω α θ

α θ α θ

  
= −   Ω π  

+ + − + − 



        (30) 

In atomic unit 1m = = , 15 a.u.ω = , 10θ = , 20 a.u.d = ,  

3 4.5 a.u.pα α= = , 0 0.1 a.u.E = , ( ) 10
2 2

1 0.004 a.u
15

E
α

ω
−= = = , 2 a.u.q =  

( )
{

( )( )} ( )

1
2 2 22

0
4

2

cosd 1 4 cos
d 2

12 1 cos 1 cos 1 2
16

i

p

k

El
E q

i q q qd
d

α θσ ω α θ

α θ α θ

  
= −   Ω π  

+ + − + − 

        (31) 

Also for S-matric from Equation (6) 

1 2S S S= +                            (32) 

( )
( )

( ) ( )1 22

1 cos 1
22 f i f i

i i q
S f E E E E N f

α θ
δ δ ω

−
= − + − −

ππ
k k k k       (33) 

On substituting the value of the amplitude 1f  and 2f , we get 

( )
( )

( )

( ) ( )

2

3 0 2

e1 cos
42

1 1 cos cos
2

f i

f i

qd
pi i q

S E E
d

E E N E q i i q
q

αα θ
δ

δ ω α α θ α θ

−−
= − −

π

⋅
+ − − + + −

π

k k

k k
q




   (34) 

( )
( )

( )

( ) ( )

2

3 0

ecos
42

1 cos 1 cos cos
2

f i

f i

qd
pi q

S E E
d

E E N E q i i q
q

αα θ
δ

θδ ω α α θ α θ

−+
= − −

π

+ − − + + −
π

k k

k k 

  (35) 

Unity for 1= , Neglecting imaginary term we have from Equation (30),  

( )
( )( )

2

3 0

cos e
16

cos
1 cos

2

f i

f i

qd
p q

S E E
d

E
E E N q

q

αα θ
δ

α θ
δ ω α θ

−

= − −
π

+ − − +
π

k k

k k 

        (36) 

Using ( ) ( ) [ ]1 2 1 2t t t t t t tδ δ δ− ∗ − = − − , ( )( ) ( )( )f g t g f t∗ = ∗ , convolution 
delta properties. The matching feature of the convolution is related to the con-
cept of an internal product between two real functions [14]. 

( ) ( )
( )( )

3 0
2

cos e cos
216

1 cos

f i f i

f

qd
p

k k

q E
S E E E E

qd

E N q

αα θ θ
δ δ

ω α

α

δ θ

−

= − − + −
ππ

∗ − +

k k

k 

     (37) 

Since inner product and dot product is the same at finite dimension, also 
convolution is an inner product, therefore,  
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( ) ( ) ( ) ( ) [ ]1 2 1 2 1 2t t t t t t t t t t tδ δ δ δ δ− ∗ − = − − = − − , this also follows commuta-
tive properties [15]. 

( )
( ) ( )( )

2

3 0

cos e
16

cos
1 cos

2

f i

f i f

qd
p

k k

q
S E E

d
E

E E E N q
q

αα θ
δ

θ
δ δ ω α θ

α

−

= − −
π

+ − − +
π

k k

k 

      (38) 

Now for elastic scattering S-Matrix, we have 
f ik kE E=  therefore,  

( )( )3 0
2

cos e cos
1 cos

216 f

qd
p q E

S E N q
qd

αα θ α θ
δ ω α θ

−

= − + − +
ππ k      (39) 

An imaginary and real part of the developed equation 
The representation and discussion in the result and discussion section are 

based on the real part of the Equation (31), which is calculated for elastic scat-
tering in the laser field. In this work, the imaginary part is a neglected equation 
is developed based on the Volkov function and Taylor series with born first ap-
proximation. The differential cross-section and S-matric are both calculated to 
study and both contain real and imaginary parts. For more simple calculations 
we also used the convolution delta function for the calculation of the S-matrix.  

3. Result and Discussion 

Differential Cross-Section vs Scattering Angle 
The differential cross-section (DCS) with absorption and emission of a pho-

ton in leaser field with energy greater (15 eV) than the threshold of hydrogen 
ground state atom. The DCS and S-matrix are calculated using Taylor series ex-
pansion with Volkov function in the material and method section. The nature of 
DCS with different angles of scattering is given below with absorption and emis-
sion of single-photon during scattering. The angle is taken in radian and DCS is 
taken in log term. DCS calculated has asymptotic for both emission and absorp-
tion of a photon in the field and from the field, respectively with the incidence of 
the electron with 30 eV. 

DCS is minimum at scattering angle 0.017 radian is about 9.66 a.u.2 when the 
photon is absorption from field and minimum when photon emitted to the field 
is about 10.76 a.u.2 at scattering angle. DCS is greater when a photon is absorbed 
by an electron than a photon emitted, the DCS is shifting during the absorption 
and emission of a photon. The shifting of DCS during emission and absorption 
is 1.099 a.u.2, which is quite constant. As the photon is absorbed by an electron, 
the electron goes on oscillation therefore these oscillations because the DCS are 
increased during the absorption phenomena. But when a photon is emitted to 
the field the energy of the electron goes decreases and hence the oscillation de-
creases which causes the decrease in DCS with increasing the angle of scattering. 
Dhobi et al study the differential cross-section in the presence of a weak laser 
field (visible and UV) in the case of inelastic scattering and found that DCS in-
itially decreases to a minimum and finally takes a maximum value, when the 
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target emits the energy of 5 eV, 10 eV, 13 eV, 16 eV, 20 eV, 25 eV, and 30 eV. In 
addition, the differential cross-section also increases with the scattering angle 
[16]. Also for the scattering of DCS in weak field Dhobi et al. design the hamito-
nian to study the DCS around the proton exchange membrane which is futre 
work for this team and work is in progress [17] Yadav et al. study the DCS with 
elliptically polarized beam e-H scattering in high intensity with target energy 
below eV in presence of coulomb potential. The DCS found increases with wa-
velength and decreases with electron energy within an elliptically polarized beam 
[18]. 

Differential cross-section vs incidence energy of electron beam  
DCS is high at low incidence electron energy with absorption energy from the 

field. At low incidence energy, a photon from the field has a high probability to 
absorb the electron, and hence the oscillation is high which causes an increase in 
DCS. Therefore here the DCS is high at low energy of incidence of the photon, as 
the incidence energy of electron increases the probabilities of the interaction of 
the electron with the absorption of photon from the field is almost zero that 
means no interaction therefore the DCS at high energy (above 60 eV) the DCS 
goes with almost constantly with a small difference with increased incidence 
energy. The maximum DCS is at 30 eV is about 1.44 a.u2. 

DCS goes increases with increasing sharply with increasing the incidence of 
energy electron in between 30 eV to 60 eV and then goes to constant beyond it 
with emission of a photon in the field. The DCS is less at low energy of incidence 
of the electron because the emission of energy causes the less oscillation and 
further increasing the increase of electrons interaction probabilities is almost 
zero therefore only emission and absorption play an important role for DSC. 

Hence in both cases, absorption and emission at low energy of incidence, both 
photon and incidence energy of electron play an important role to DCS but at 
high energy of incidence only emission and absorption play an important role 
because the electron has high energy and interaction between them is negligible 
(no interaction). So, the DCS for both absorption and emission at high energy is 
almost constant but the difference is about 0.1 a.u.2 at high incidence energy of 
the electron.  

Differential cross-section vs dipole distance  
The DCS for both absorption and emission with incidence energy of 30 eV is 

shown with dipole distance separation. Since both the incidence and photon 
energy is constant and the study was done corresponding to a dipole. The ob-
servation shows the DCS is independent of dipole separation that is constant for 
any dipole separation distance. The DCS in the emission case is higher than the 
absorption case, the difference between the DCS is 1.098 a.u.2.  

Differential cross-section vs polarizability  
The DCS for both absorption and emission with incidence energy of 30 eV is 

shown with Polarizabilities in the below Figure 4. The DCS increases with Pola-
rizabilities goes increases, but DCS for photon absorption case is higher than 
emission cases because after the absorption of the electron goes on oscillation 
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which causes stretch bond and hence his stretch bond increase in the DCS. This 
nature of polarizabilities with DCS for both cases is the same but the difference 
in DCS for both cases is 1.098 a.u.2. This is how the polarizabilities depend upon 
the DCS in presence of laser field with incidence electron energy.  

The observation of DCS with polarizability, dipole distance, energy of project 
partcles and scattering angle doesn’t shows destructive interference but shows 
superpostion of projected particles with laser field. Therefore, no intersection in 
Figures 1-4 was observed.  
 

 
Figure 1. Differential cross-section with scattering angle. 

 

 

Figure 2. Differential cross-section with incidence energy. 
 

 

Figure 3. Differential cross-section at 30 eV of incidence energy with dipole separation. 
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Figure 4. Differential cross-section with polarizabilities. 

4. Conclusion 

The development of the equation above equation in the material and method 
section for S-matrix and differential cross-section is studied with different pa-
rameters like field energy (photon), incidence energy of electrons, scattering an-
gles, polarizabilities, dipole separation, change in momentum. These parameters 
are calculated and interconnected using Taylor series expansion, born first Ap-
proximation, and Volkov function. The observation is shown in Figures 1-4. 
The observation shows that DCS increase with the increase in scattering angle 
and constant polarizabilities, and constant dipole separation, for both emission 
and absorption of a photon. Also, the DCS decreases with the absorption of 
photons from the field and interaction with low incidence energy while increas-
ing with emission of a photon with low incidence energy, sharply and asymptot-
ic. With large energy of incidence, the DCS for both cases is constant. The 
S-matrix calculated in Equation (36) and DCS in (30) has both imaginary and 
real parts with different parameters mentioned above. In this work, we only 
study the real part which is detail discussed in the result and discussion section.  
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