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Abstract 

Two types of α α−  potentials are given in the present paper. The two po-
tentials have Gaussian radial dependences. Such shapes of radial functions are 
suitable for using in the unitary scheme model. The first potential is given in 
the form of an attractive force and the second is given in the form of a super-
position of repulsive and attractive forces. The two potentials are used to cal-
culate the binding energy of the carbon nucleus 12C. For this purpose, we ex-
pand the ground-state wave function of carbon in a series of the bases of the 
unitary scheme model and apply the variational method. To calculate the ne-
cessary matrix elements required to obtain the binding energy of carbon, we 
factorized the unitary scheme model bases in the form of products of two 
wave functions: the first function represents the set of the A-4 nucleons and 
the second function represents the set of the last four nucleons by using the 
well-known four-body fractional parentage coefficients. Good results are ob-
tained for the binding energy of 12C by using the two potentials. 
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1. Introduction 

The ground states of nuclei with Z = N = magic number: 4He, 16C, etc. have 
spherical shapes with total angular momentum equals zero, spin angular mo-
mentum zero, and isotopic spin equals zero. In such nuclei, the nucleons are 
clustered into groups with similar features. This can be recognized from some 
phenomena of nuclear behavior. A conventional description of a nucleus is one 
in which there is a homogeneous distribution of protons and neutrons. Howev-
er, even at the inception of nuclear structure, it was known that conglomerates 
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of nucleons (nuclear clustering) were extremely important in determining the 
structure of light nuclei. The first and simplest nuclear model to consider such 
nuclear characteristics is the α-particle model [1]. The fact that two protons and 
two neutrons in the α-particle could strongly interact played an important role 
in calculating the binding energy of this nucleus. Thus, the nuclear ground states 
would be expected to favor such quasi-α particle configurations and, conse-
quently, exhibit large spatial symmetry. 

In general, phenomenological cluster-cluster potentials are of interest for ap-
plications to α-cluster models [1] [2] [3] [4] [5], for the correlation of experi-
mental α α−  scattering and for comparison with the results of theoretical stu-
dies of the interaction. These studies make use of the nucleon-nucleon forces 
and the resonating group structure method with the α-particles constrained to 
be in the ground state. 

Doma and El-Zebidy [5] obtained two Gaussian cluster-cluster potentials 
which are suitable for the calculations of the ground states of the four lithium 
isotopes, namely: 6Li, 7Li, 8Li and 9Li, by constructing the suitable clusters for 
these nuclei. One of these potentials is attractive and the other is a superposition 
of attractive and repulsive forces. The authors in [5] used the bases of the unitary 
scheme model (USM) [5]-[10] with the number of quanta of excitations N up to 
6, 7, 8 and 9 for the nuclei 6Li, 7Li, 8Li and 9Li, respectively. The USM achieved 
great success in describing the ground and the excited state characteristics of 
light nuclei [10]-[30].  

Furthermore, Abdel-Khalek [31] proceeded as in the work of the lithium nuc-
lei [5] to study the structure of the ground-state of the three beryllium isotopes: 
8Be, 9Be and 10Be by employing the same two different types of cluster-cluster 
potentials. 

All the carbon in the universe is created in red giant stars by two alpha par-
ticles (4He nuclei) fusing to create a short-lived 8Be nucleus, which then captures 
a third alpha particle to form 12C. But exactly how this reaction occurs initially 
puzzled physicists, whose early understanding of 12C suggested that it would 
proceed much too slowly to account for the known abundance of carbon in the 
universe. However, the precise arrangement of the protons and neutrons in the 
12C nucleus remains a matter of much debate. While some physicists feel that 12C 
is the best thought of as 12 interacting nucleons, others believe that the nucleus 
can be modelled as three alpha particles that are bound together. The rational for 
the latter model is that alpha particles are extremely stable and so are likely to 
endure within the 12C nucleus. Accordingly, the aim of the present paper is to 
investigate the behavior of the ground state of 12C as three α particles interacting 
according to an α α−  potential. Hence, we introduce in the present paper two 
α α−  potentials for the carbon nucleus. The first of which has one attractive 
Gaussian force and the second consists of repulsive and attractive Gaussian-forces. 
The methods of calculating the four-body orbital and spin-isospin fractional pa-
rentage coefficients (FPC) [7] [8] [13] [16] [17] [18] are used to construct the 
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ground-state nuclear wave functions of 12C in the form of sums of products of 
two wave functions. The first represents the set of the four-particles and the 
second represents the set of the other eight particles added to them the coordi-
nates, the spins, and the isotopic spins of the line joining the center of masses of 
the two systems. In these calculations, we have used the bases of the USM [7] [8] 
[9] [10].  

2. The Unitary Scheme Model Hamiltonian 

The Hamiltonian H  of a given nucleus consisting of A nucleons, interacting 
according to two-body interactions, can be written in the following form 
[7]-[18]:  

2
,1

1
2

A A
i i ji i jVm = <

= +∑ ∑pH                    (2.1) 

where ip  is the nucleon momentum, m  is its mass, and ,i jV  is the nucle-
on-nucleon interaction. The center of mass kinetic energy is given by: 

( )2

1

1
2

A
CM iiT

mA =
= ∑ p .                    (2.2) 

From the translational invariance properties of the Hamiltonian H , one can 
easily separate the center of mass motion from this Hamiltonian and as a result 
the Hamiltonian corresponding to the internal motion of the nucleons is given 
by:  

CMH T= −H                         (2.3) 

Adding and subtracting a harmonic oscillator potential referred to the center of 
mass of the nucleus, the Hamiltonian corresponding to the internal motion can 
be written in the form: 

( ) ( ) ( )2 2 02 2
1 1

1 1
2 2

A A
i ii iH H m m H Vω ω

= =
′= + − − − = +∑ ∑r R r R      (2.4) 

The unperturbed term in (2.4), ( )0H , is given by: 

( ) ( ) ( )2 20 2
1

1 1 1
2 2

A
i j i ji jH m

A m
ω

= <

 = − + −  
∑ p p r r ,         (2.5) 

and is known as the USM Hamiltonian. The second term in (2.4) 

( ) ( )
2 2

1 2
A

i j i ji j

mV V
A
ω

= <

 
′ = − − − 

 
∑ r r r r .             (2.6) 

is the residual two-body interaction.  
Schrodinger’s wave equation for the Hamiltonian ( )0H  is 

( ) ( ) ( ) ( )0 0 0 0
N N NH Eψ ψ=                        (2.7) 

The wave functions ( )0
Nψ  constitutes the bases of the USM states. The methods 

of classifying the states in the USM by using the group theoretical techniques 
were pro posed by Kretzschmar [6], and later by Vanagas [7] and Doma et al. [8] 
[9] [10] [11]. The energy eigenvalues and the total antisymmetric wave functions 
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of a nuclear state characterizing such Hamiltonian are given by [19] [22]-[29] 

( ) ( )0 3 1
2NE N A ω = + − 

 
 ,                    (2.8) 

{ }( )[ ]Γ L S TA AN f LM SM TMρ ν γ≡               (2.9) 

In Equation (2.9), the number Γ stands for the set of all orbital and spin-isospin 
quantum numbers characterizing the USM nuclear wave function. From the 
group structures of the function (2.9), the number of quanta of excitation N is an 
irreducible representation (irrep) of the unitary group ( )3 1AU − . Also, the repre-
sentation { } { }1 2 3, ,ρ ρ ρ ρ= , where 1 2 3 0ρ ρ ρ≥ ≥ ≥  and 1 2 3 Nρ ρ ρ+ + = , is 
related to Elliot symbol (λμ) [6] [7] by the relations 1 2λ ρ ρ= − , and 2 3µ ρ ρ= − . 
Furthermore, the representation { }ρ  is an irrep of the unitary group 1AU −  
and the unitary unimodular subgroup of three dimensions SU3, simultaneously. 
Moreover, the representation (ν) is an irrep of the orthogonal group 1AO − , [ ]f  
is an irrep of the symmetric group SA, and γ is a repetition quantum number of 
the irreps in the chain of groups which classify the nuclear state. The numbers L 
and ML stand for the orbital angular momentum and its z-component and are 
also irreps of the rotational groups SO3 and SO2, respectively. Finally, S, MS are 
the spin, its z-component and T, MT are the isospin, its z-component which are 
irreps of the direct product of the groups 2 2SU SU× . The basic functions (2.9) 
transform according to the following chain of groups [7]:  

( )

4 2 2

44

1 1

3 1

3 3 2

A A

A A A

A A A

A

SU SU SU
U U

U O S

U O S
U

SU SO SO

− −

−

⊃ ×
⊃ ⊃ ×

⊃ ⊃
⊃

× ⊃ ⊃
⊃ ×

⊃ ⊃

I             (2.10) 

Wave functions having definite total angular momentum quantum number J, 
its z-projection MJ, and isotopic spin T, and its z-projection MT are constructed 
from the functions (2.9) as follows [28] [29] 

( ) { }( )[ ],
L S J L S JMJ T L S TM MAJM TM AN f LM SM TMLM SM JM ρ ν α
+ =

=∑ , 

(2.11) 

where ( ),L S JLM SM JM  are the Clebsch-Gordan coefficients of the rotational 
group SO3.  

The fractional parentage coefficients (FPC) of separation of four particles 
from the nuclear wave function are given in terms of the FPC of separation of 
two particles as follows [3] [7] 

( ) [ ]

2 24 4 2 2,

2 4 2 4 2 2

4 2 2 2 4

4 ,4 2 ,2

2 4 ,2 4 2 ,2

; .

AA A A A

A A

A A f

A A A A

A A

U L L LL L L

−− −Γ Γ

− −

− −

Γ − Γ Γ = Γ − Γ Γ

× − Γ − Γ Γ Γ Γ Γ

× Λ

∑
 (2.12) 
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The first three factors on the right-hand side of Equation (2.12) are 
two-particles FPC for the sets of A, 2A− , and 4-particles, respectively. U is the 
Racah coefficient and [ ]fΛ  is defined by [3] 

[ ] ( )( )( )( )

1/2

, 3 1, 3 1, 2 , 2

, 3 1, 3 1, 2 , 2

6 ,
1 1 1 1

A A A A A A A A
f

A A A A A A A A

τ τ τ τ
τ τ τ τ

− − − − − −

− − − − − −

  Λ =  
+ + + +  

     (2.13) 

where ,i jτ  is the axial distance between the numbers i and j in the Young tab-
leau. ΓA is the set of all orbital, spin, and isotopic spin quantum numbers of the 
system consisting of A nucleons and similarly for the other systems.  

3. The Cluster-Cluster Potentials 

Our calculations depend on using two types of α α−  potentials having Gaus-
sian-radial dependence. The first consists of one attractive term of the form [5] 

( )
2

1
1 2

1

expa
a

RV V
Rαα

 −
=  

 
                     (3.1) 

where Va1 and Ra1 are the depth and the range parameters of the potential, re-
spectively. The second potential consists of a sum of attractive and repulsive 
forces of the form [5] 

( )
2 2

2
2 22 2

2 2

exp expa r
a r

R RV V V
R Rαα

   − −
= +   

  
              (3.2) 

where Va2 and Vr2 are the depth parameters of the attractive, and the repulsive 
terms, respectively. Ra2 and Rr2 are the corresponding range parameters, respec-
tively. In Equations (3.1), and (3.2) R is the inter-alpha distance defined by  

( ) ( )( )1 2

.
2

R
α α−

= =
R R

R                     (3.3) 

Here, ( )1
αR  and ( )2

αR  are the radius vectors of the centers of masses of the 
two clusters. 

4. The Four-Particle Matrix Elements 

The four-particle matrix elements of the potential ( )1Vαα , given by Equation (3.1), 
or the potential ( )2Vαα , given by Equation (3.2), with respect to the USM bases, 
Equation (2.8), are given by [5] 

( ) ( )( )( )

( )

4 4

1

, ,Γ

4 4 4

4 4 4 4 4 4

4 4 4

1 2

4

4 4 4 4

1 2 3
Γ

4!

4 ,4 Γ 4 ,4Γ

  0         0    
                 

4 , 4 4 ,4Γ
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A A

A A A A
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A A A A

L S J L S J
L J L J
L S J L S J

A V A

αα

α α

− ′Γ Γ

− −

− − − − − −

− − −

− − −
′Γ =

′ ′× Γ − Γ Γ − Γ

′  
  ′×   
  ′ ′ ′  

′× − Γ Γ − Γ

∑

     (4.1) 
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In Equation (4.1), 
1 1 1

2 2 2

12 12 12

L S J
L S J
L S J

 
 
 
 
 

 are the normalized 9 j−  symbols.  

For the evaluation of the two-particle operator ( )
2 2

1 2
A

i ji j

m
A
ω

= <

 
− − 
 

∑ r r , we  

the two-particle FPC [13] [14] [15]. Accordingly, the Hamiltonian matrix H, can 
be constructed as function of the oscillator parameter ω  and the potential 
parameters. Diagonalizing this matrix with respect to the oscillator parameter 
ω , which is allowed to vary in a wide range of values 8 30ω≤ ≤  MeV in order 

to obtain the best ground-state energy eigenvalue for 12C. Hence, the ground-state 
energy eigenvalue and eigenfunction are then obtained for this nucleus. 

5. Results and Discussions 

By varying the six parameters of the two potentials, Va1, Ra1, Va2, Ra2, Vr2 and Rr2, 
it was found that the suitable ranges of variations which may produce good re-
sults for the binding energy of the carbon nucleus 12C are: 1) the attractive depth 
parameter Va1 of the first potential is varied in the range −40.0 ≤ Va1 ≤ −20.0 
MeV with a step 0.5 MeV, and the corresponding attractive range parameter Ra1 
is varied in the range 1.0 ≤ Ra1 ≤ 4.0 fm with a step 0.001 fm; 2) the attractive 
depth parameter of the second type of potentials Va2 is allowed to vary in the 
same energy range as for Va1 with step 1.0 MeV and the corresponding attractive 
range parameter Ra2 is allowed to vary in the same range as for Ra1 with a step 
0.0005 fm; 3) the repulsive depth parameter Vr2 of the second type of potentials 
is varied in the range 10.0 ≤ Vr2 ≤ 50 MeV with a step 1.0 MeV, and the corres-
ponding repulsive range parameter Rr2 is varied in the range 2.0 ≤ Rr2 ≤ 5.0 fm 
with a step 0.05 fm. Several potentials resulting from the above ranges gave 
binding energy for the carbon nucleus in reasonable agreement with the corres-
ponding experimental value 92.15 MeV.  

In Figure 1, we present the variation of the attractive depth parameter Va1 
with respect to the corresponding attractive range parameter Ra1 for potentials of 
the first type which produced acceptable value for the binding energy of 12C. 
Among these parameters the resulting best α α−  potential for 12C is given by 

( )

( )

2
1

232.41exp
2.812

RVαα

 − = −  
  

                  (5.1) 

This potential produced binding energy of 12C equals 88.79 MeV. 
In Figure 2, we present the variation of the attractive range parameter Ra2 

with respect to the repulsive depth parameter Vr2 for the second type of poten-
tials. Similarly, the variation of the repulsive range parameter Rr2 with respect to 
the repulsive depth parameter Vr2 is shown in Figure 3. In Figure 4, we present 
the variation of the attractive range parameter Ra2 with respect to the attractive 
depth parameter Va2 for the second type of potentials. Also, in Figure 5, we 
present the variation of the repulsive range parameter Rr2 with respect to the re-
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pulsive depth parameter Vr2 for the second type of potentials. In Figure 6, we 
present the variation of the repulsive range parameter Rr2 with respect to the at-
tractive range parameter Ra2 for the second type of potentials. Finally, in Figure 
7, we present the variation of the repulsive range parameter Rr2 with respect to 
the attractive depth parameter Va2 for the second type of potentials.  

As seen from the figures it is always possible to find a potential of the form 
given by either of Equation (3.1) or Equation (3.2), in the considered ranges of 
values of the potential parameters, which gives rise to good agreement between 
the calculated value of the binding energy of 12C and the corresponding experi-
mental value. Among all the resulting potentials of the second type of potentials, 
the following potential gives the best agreement 

( )

( ) ( )

2 2
2

2 233.27exp 26.41exp
3.02 2.72

R RVαα

   
   = − − + −
   
   

         (5.2) 

This potential produces the value 91.98 MeV for the binding energy of 12C. 
 

 
Figure 1. The dependence of the attractive range parameter (Ra1) on the corresponding 
attractive depth parameter (Va1) for the first potential. 

 

 
Figure 2. The dependence of the attractive range parameter (Ra2) on the repulsive depth 
parameter (Vr2) for the second potential. 
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Figure 3. The dependence of the repulsive range parameter (Rr2) on the repulsive depth 
parameter (Vr2) for the second potential. 

 

 
Figure 4. The dependence of the attractive range parameter (Ra2) on the attractive depth 
parameter (Va2) for the second potential. 

 

 
Figure 5. The dependence of the repulsive range parameter (Rr2) on the repulsive depth 
parameter (Vr2) for the second potential.  
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Figure 6. The dependence of the repulsive range parameter (Rr2) on the attractive range 
parameter (Ra2) for the second potential.  

 

 
Figure 7. The dependence of the repulsive range parameter (Rr2) on the attractive depth 
parameter (Va2) for the second potential.  
 

Indeed, each cluster-cluster potential is a collection of nucleon-nucleon Gaus-
sian potentials arranged in some way in order to average the effects of their mu-
tual interactions in the whole nucleus.  

Concerning the calculated ground-state nuclear wave function of the nucleus 
12C, it results as a superposition of three S-states with symmetry type [444]. Oth-
er symmetry types are occurred in the total ground state nuclear wave function, 
such as: [4431], and [422]. 

6. Conclusion 

The unitary scheme model, which is formulated by a precise application of the 
group theoretical methods, achieved great success in describing the ground and 
excited states of light nuclei by using nucleon-nucleon interactions and 
three-body interactions. It is then of interest to investigate the behavior of the 
ground state of nuclei by using four-body interactions in the form of α α−  in-
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teractions. A nucleus consisting of multiples of α particles is then very interest-
ing to be investigated in the framework of the unitary scheme model by using 
α α−  interactions. Accordingly, our goal in the present paper is to investigate 
the behavior of the ground state of the carbon nucleus in the framework of the 
unitary scheme model by using α α−  interactions. Two types of these sug-
gested interactions are obtained. The first of which is an attractive Gaussian in-
teraction and the second is a superposition of repulsive and attractive Gaussian 
forces. The two potentials produced good results for the binding energy of the 
12C nucleus. 
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