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Abstract 
A PT-symmetric Hamiltonian associated with a trigonometric Razhavi po-
tential is analyzed. Along the same lines of the general quasi-exactly solvable 
analytic method considered in the [1] [2] [3], three necessary and sufficient 
algebraic conditions for this Hamiltonian to have a finite-dimensional inva-
riant vector space are established. This PT-symmetric 2 2× -matrix Hamil-
tonian is called quasi-exactly solvable (QES). 
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1. Introduction 

In quantum physics, one of the main mathematical problems consists in con-
structing the set of eigenvalues of a linear operator defined on a suitable domain 
of a Hilbert space. In most cases, this type of problem cannot be explicitly 
solved, that is to say that the spectrum of the Hamiltonian cannot be found al-
gebraically. However, in few cases, some of which turn out to be physically fun-
damental, the spectrum can indeed be computed explicitly. These cases are so 
called completely solvable (or exactly solvable). The example of this kind is the 
harmonic quantum oscillator. 

In the last few years, the intermediate class between exactly solvable operators 
and non solvable operators has been discovered. This class is called quasi-exactly 
solvable. It means that a finite part of eigenvalues associated to this type of oper-
ators can be found algebraically [1]-[10]. 

Another concept that we consider throughout this paper is the PT-symmetric 
operator. It means that this operator is invariant under the combination of the 
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parity operator P and the time-reversal operator T. Note that the Hamiltonian 
we analyze is both QES and PT-symmetric. 

This paper is organized as follows:  
In Section 2, based on the Ref. [1] [2] [3], we briefly recall the general QES 

analytic method used to investigate the quasi-exact solvability of 2 2× -matrix 
Hamiltonians.  

In Section 3, we show in details that the non hermitian Razhavi Hamiltonian 
is invariant under the combined PT-symmetry. 

In Section 4, along the same lines as in the Refs. [1] [2] [3], we apply the QES 
analytic method in order to prove the quasi-exact solvability of the 2 2× -matrix 
Hamiltonian depending on the PT-symmetric potential. Three necessary and 
sufficient QES conditions for the 2 2× -matrix trigonometric Hamiltonian to 
have a finite dimensional invariant vector space will be established for two cases: 

( )1, cos t
n np xqψ −=  and ( )1 cos , t

n np x qψ −= . 

2. QES Analytic Method 

Taking account to the same lines as in the Refs. [1] [2] [3], we recall a general 
method to check whether a 2 2× -matrix differential operator H (in a variable x) 
preserves a vector space whose components are polynomials.  

Consider the 2 2× -matrix Hamiltonian of the following form [1] [2] [3]: 

( )

( )

2

112

2

222

d
d

d
d

V x x
xH

x V x
x

δ

δ ′

 
− + 
 =
 

− + 
 

              (1) 

where  

( ) ( )
( )

11

22

V x x
V x

x V x

δ

δ ′

 
=   
 

, 0,1,2δ = , 1δ δ′ = − , ( )12V x xδ= , ( )21V x xδ ′=  

( )V x  is the potential associated to the Hamiltonian H given by this above 
relation (1). 

A gauge transformation and a change of variable on the Hamiltonian H lead 
to the following Hamiltonian called the gauge one 

1H Hφ φ−=                          (2) 

which can be written in his components as follows 

1 0 1H H H H−= + +    .                     (3) 

More precisely, the diagonal components of 1H  are differential operators 
and the off-diagonal components ( )1 12

H  and ( )1 21
H  are respectively propor-

tional to xδ  and xδ ′ . The operators 0H  and 1H−
  have lower degrees in all 

their components than the corresponding components in 1H . 
Note that the invariant vector space of the Hamiltonian H  has the following 

form [1] [2] [3]: 
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n

n

p
W

q
   =   
   

, 1m n δ= − +  and ,n m∈Ν .               (4) 

In order to obtain the QES conditions for H , the generic vector of the above 
vector space is of the form 

1
0 1

1
0 1

n n

n n

x x
x xδ δ

α α
ϕ

β β

−

− + −

 +
=  

+ 
,                       (5) 

where ( ), 0,1i i iα β =  are complex parameters. As a consequence the 2 2×
-matrices 1 1 0, ,M M M  are defined by 

( ) 01 20
1 11

00

,
n

n n
n

x
H diag x x M

x
δ

δ

αα
ββ

+ − +
− +

   
=   

  
 , 

( )
1

111
1 1

11

,
n

n n
n

x
H diag x x M

x
δ

δ

αα
ββ

−
− +

−

   
=   

  
  , 

( ) 010
0 01

00

,
n

n n
n

x
H diag x x M

x
δ

δ

αα
ββ

− +
− +

   
=   

  
 .             (6) 

The three necessary and sufficient QES conditions for H  to have an inva-
riant vector space are 

1) 0
1

0

0
0

M
α
β
   

=   
  

, 

2) 0
1

0

0
0

tM
β
α
−   

=   
  

 , 

3) 0 0 0

0 0

1 1
M β β

α α

   
   = Λ   
   
   

.                     (7) 

In the next step, we will apply in a systematic lines of this QES analytic me-
thod in order to construct a 2 2× -matrix QES Hamiltonian associated to a 
PT-symmetric and trigonometric potential. 

3. PT-Symmetric and Trigonometric QES Potential 

In this section, we consider the PT-symmetric and trigonometric 2 2× -matrix 
Hamiltonian [1] [2]: 

( )

( )

2
2

122

2
2

21 2

d cos 2
d

d cos 2
d

x iM A H
xH

H x iM A
x

ρ

ρ

 
− + − + 
 =
 

− + − + 
 



,  (8) 

where , , , ,A A M M ρ   are free real parameters.  
The non diagonal components of the Hamiltonian H (i.e. 12H , 21H ) are 

written as follows 

12 cosH C x= , 

12 cosH C x=  ,                         (9) 
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with C and C  are the coupling constants. 
Now, we can reveal the PT-symmetry property of the trigonometric non her-

mitian 2 2× -matrix potential associated to the above Hamiltonian given by the 
Equation (8) 

11 12

21 22

V V
V

V V
 

=  
 

, 

( )
( )

2

2

cos 2 cos

cos cos 2

x iM A C x
V

C x x iM A

ρ

ρ

 − +
 =
 − + 

 

         (10) 

In order to prove that this above potential V is invariant under the combined 
action of the parity operator P and the time-reversal operator T (i.e. the com-
bined PT-symmetry), the potential V has to satisfy the following relation [1] [2] 
[4]: 

PTV V=                           (11) 

Note that the time-reversal operator T reverses the sign of the complex num-
ber i: 

1TiT i− = −  

while the parity operator replaces x by 
2

xπ
−  leading to  

( )

( )

2

2

cos 2 cos
2

cos cos 2
2

PT

x iM A C x
V

C x x iM A

ρ

ρ

 π  π − + + −       =
 π   − π − + +      

 

    (12) 

with  

( ) ( ) 2
11 cos 2PTV x x iM Aρ= π− + +   , 

( ) ( )
( )

22
11

2

cos cos 2 sin sin 2

2 cos cos 2 sin sin 2 ,

PTV x x x

i M x x M A

ρ

ρ

= π + π

+ π + π − +
 

( ) 2 2 2
11 cos 2 2 cos 2PTV x x i M x M Aρ ρ= − − + , 

( ) ( )2
11 cos 2PTV x x iM Aρ= − + , 

( ) ( )11 11
PTV x V x= .                      (13) 

After the similar algebraic manipulations used in the previous equation, one 
can easily check that the other three components elements of the potential PTV  
given by the Equation (12) satisfy the following relations:                     

( ) ( )12 12
PTV x V x= , 

( ) ( )21 21
PTV x V x= , 

( ) ( )22 22
PTV x V x= .                      (14) 

Referring to the previous relations (13) and (14), we are allowed to write that 
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( ) ( )PTV x V x= .                        (15) 

Thus, taking account to this Equation (15), we can conclude that the potential 
( )V x  is invariant under the combined action of the parity operator P and the 

time-reversal operator T. In other words, the potential ( )V x  given by the Equ-
ation (10) is PT-symmetric. As a consequence, it is this PT-invariant symmetry 
property which explains the reality of some of the eigenvalues associated to the 
above trigonometric potential ( )V x  [1] [2] [3]. 

4. PT-Symmetric Hamiltonian and His Quasi-Exact  
Solvability 

In this section, we apply the QES analytic method established in the section 2 to 
prove that the PT-symmetric Hamiltonian given by the Equation (8) is qua-
si-exactly solvable.  

In order to reveal the quasi-exact solvability of the previous Hamiltonian H, it 
is therefore necessary to transform H with the gauge function as follows [1] [2] 
[3]:  

1H R HR−= , 

( )
( )

( )
( )

cos 2 cos 21 0 1 0
e e

0 1 0 1
x xz z z z

H H
z z z z

φ φε ε
θ θ

φ φε ε

−−
−

−−

   − −
   =
   − −   

 

 

 , (16) 

where the gauge function is written as follows 

( )
( )

( )
cos 2 1 0

e
0 1

x z z
R x

z z

φε
θ

φε

 −
 =
 − 





              (17) 

and the gauge Hamiltonian is of the following form 

11 12

21 22

H H
H

H H
 

=  
 

 



 

.                      (18) 

The next step is to perform the change in the variable z  

( )cos 2 1
2
x

z
+

=                        (19) 

in order to find the final form of the above gauge Hamiltonian. 
In the following, we will consider in details the cases 12 cosH C x=  and 

12 cosH C x=   which are the non diagonal elements of the matrix PT-symmetric 
Hamiltonian H given by the Equation (8).  

In this case, the possible values for the parameters , , ,ε ε φ φ  allow two cases 
for the wave function, ( )1 2, tψ ψ ψ=  which have the following forms: 

Case 1:  

( )1, cos t
n np xqψ −= ,                     (20) 

Case 2:  

( )1 cos , t
n np x qψ −= .                    (21)  
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If the parameter θ  of the gauge function of the Equation (17) is chosen as 

2
i ρθ = , the components of the gauge Hamiltonian ( )H z  are written as fol-

lows: 

( ) ( )

( ) ( ) ( )

2
2 2

11 2

d d4 1 2 2 1 4 1 4
dd

d 18 2 2 8 1 1 2 1
d 4

H z z z z z M
zz

MA i z z z z z
z

ε φ ρ

φε ε φ ρ ε φ

= − − + − − − + + −  

− + + + + − − + − − + −  



 

( )12 1 cosH z z C xφ φε ε −−= −




 , 

( )21 1 cosH z z C xφ φε ε −−= −




 , 

( ) ( )

( ) ( ) ( )

2
2 2

22 2

d d4 1 2 2 1 4 1 4
dd

d 18 2 2 8 1 1 2 1
d 4

H z z z z z M
zz

MA i z z z z z
z

ε φ ρ

φε ε φ ρ ε φ

 = − − + − − − + + − 

 −
+ + + + − − + − − + − 

 

 





   

  

(22) 

Taking account to the change in variable z given by the Equation (19), one can 
easily find that  

1
2cos x z= .                         (23) 

4.1. Case 1: ( )1,cos t
n np xqψ −=  

The function ψ  can be written as follows: 

1

1 0
0 cos

n

n

p
qx

ψ
−

  
=   
  

                     (24) 

Referring to the Equation (23), one can find that 

( )
( )

1 0 1 0
0 cos0 1

z z
xz z

φε

φε

 −    =     − 




 

only if  

 10,
2

ε φ φ ε= = = =

 .                    (25) 

Considering the relation (23) and replacing the parameters , , ,ε φ φ ε   re-

spectively by their values as 10,
2

ε φ φ ε= = = =

  and after some algebraic  

manipulations, the components of the gauge Hamiltonian given by the Equation 
(22) can be written in the following final form: 

( ) ( )

2 2
2 2 2

11 2 2

2

d d d d4 4 4 2
d dd d

d d8 8 4 1 2 1
d d

H z z z M A
z zz z

i z i z i M z i M
z z

ρ

ρ ρ ρ ρ

= − + + − + − +

− + − − + −



 

12H Cz= , 

21H C=  , 
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( ) ( )

2 2
2 2 2

22 2 2

2

d d d d4 4 8 6 1
d dd d

d d8 8 4 2 2 3
d d

H z z z M A
z zz z

i z i z i M z i M
z z

ρ

ρ ρ ρ ρ

= − + + − + − + +

− + − − + −

 

 

      (26) 

Referring to the Equation (3) of the QES analytic method, the above Hamilto-
nian given by the Equation (26) can be written as follows 

1 0 1H H H H−= + +     

where 

2

1
2

d 18 0
d 2

d 28
d 2

Mi z z
z

H
MC i z z

z

ρ

ρ

  −  −      =    − −      







 

( ) ( )

( ) ( )

2
2 2 2

2

0 2
2 2 2

2

d d4 4 8 2 1
dd

d d4 8 8 1 2 3
dd

z i z M A i M Cz
zzH

O z i z M A i M
zz

ρ ρ ρ

ρ ρ ρ

 
+ − + − + + − 

 =
 

+ − + − + + + − 
 





 

2

2

1 2

2

d d4 2 0
dd

d d0 4 6
dd

z
zzH

z
zz

−

 
− − 
 =
 

− − 
 

                 (27) 

Note that the action of these above three gauge components of H  given by 
the Equation (27) on the wave function ψ  given by the relation (20) leads to 
the following expressions:  

1

1 1

n n

n n

z z
H

z z

+

−

   
≅   

   
 , 

0 1 1

n n

n n

z z
H

z z− −

   
≅   

   
 , 

1

1 1 2

n n

n n

z z
H

z z

−

− − −

   
≅   

   
 .                     (28) 

After some algebraic manipulations, one can easily obtain the 2 2× -matrices 

1 1 0, ,M M M  respectively as follows [1] [2] [4]: 

( ) 010
1 11

00

,
n

n n
n

z
H diag z z M

z
αα
ββ

+
−

   
=   

  
 , 

( )
1

111
1 12

11

,
n

n n
n

z
H diag z z M

z
αα
ββ

−
−

−

   
=   

  
  , 

( ) 010
0 01

00

,
n

n n
n

z
H diag z z M

z
αα
ββ

−
−

   
=   

  
 .              (29) 

Replacing in the relations (29) respectively 1H  and 0H  by their expressions 
given by the Equation (27), one can easily deduce the final form of the three ma-
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trices 1 1 0, ,M M M  as follows 

1

18 0
2

8
2

Mi n
M

MC i n

ρ

ρ

  −  −      =    −    





, 

1

18 0
2

8 1
2

Mi n

M
MC i n

ρ

ρ

  +  −      =     − +      







, 

( )
( )

2 2 2

0 2 2 2

3 8 2 1

0 5 5 8 2 1

n n i n M A i M C
M

n n i n M A i M

ρ ρ ρ

ρ ρ ρ

 + − + − + + − −
 =
 + − − + − + + + 

 

. (30) 

Our purpose is to establish the three necessary and sufficient QES conditions 
for the gauge Hamiltonian given by the Equation (26) to have a finite dimen-
sional invariant vector space [1] [2] [3] [4]: 

1) The first QES condition is obtained as follows 

0
1

0

0
0

M
α
β
   

=   
  

, 

1det 0M = , 

18 0
2

det 0
8

2

Mi n

MC i n

ρ

ρ

  −  −       =   −    





, 

   
24 2 2
2 1

n nM nM
n M

− + −
=

− + −
                    (31) 

2) The second QES condition is of the following the form 

1det 0M = , 
24 6 2 2

2 2
n n nM MM

n M
− + + − −

=
− + +

 



                 (32)  

3) The third and final QES condition is found by the condition involving the 
matrix 0M  as follows 

0 0 0

0 0

1 1
M β β

α α

   
   = Λ   
   
   

,                     (33) 

where Λ  is a constant. 

Taking account to the first QES condition, the expression 0

0

β
α

 is obtained as 

follows 

0
1

0

0
0

M
α
β
   

=   
  
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0

0 8
2

C
Mi n

β
α

ρ

−
=

 
− 

 





                      (34) 

Replacing the expression (30) and (34) in the relation (33) and after some al-
gebraic manipulations, one can easily find the third QES condition as 

( )2 22 5 2 2
8

2

CCA n M M A i M M
Mi n

ρ
ρ

= − + + − + − − + −
 

− 
 



  



    (35) 

Taking account to three necessary and sufficient QES conditions given by the 
relations (31), (32) and (35), one can conclude that the gauge Hamiltonian H  
given by the equation (26) (therefore the extended Razhavi Hamiltonian H given 
by the equation (8)) is quasi-exactly solvable. In other words, a finite part of the 
eigenvalues associated to the gauge Hamiltonian can be found algebraically.  

4.2. Case 2: ( )1cos , t
n np x qψ −=  

Along the same lines used in the previous case (i.e. case 1), this case 2 can be 
studied. 

Taking account to the gauge Hamiltonian H  given by the Equation (22) and 
the change variable (23), the four components of H  are written as follows 

( ) ( )

2 2
2 2 2

11 2 2

2

d d d d4 4 8 6 1
d dd d

d d8 8 4 2 2 3 ,
d d

H z z z M A
z zz z

i z i z i M z i M
z z

ρ

ρ ρ ρ ρ

= − + + − + − + +

− + − − + −



 

12 ,H C=  

21 ,H Cz=   

( ) ( )

2 2
2 2 2

22 2 2

2

d d d d4 4 4 2
d dd d

d d8 8 4 1 2 1
d d

H z z z M A
z zz z

i z i z i M z i M
z z

ρ

ρ ρ ρ ρ

= − + + − + − +

− + − − + −

 

 

       (36) 

where 0φ ε φ= = =  and 1
2

ε = . 

Note that the other form of the gauge Hamiltonian given by the above equa-
tion (36) is as follows 

1 0 1H H H H−= + +                          (37) 

Applying these three components of the gauge Hamiltonian H  as  
1

1 1

n n

n n

z z
H

z z

−

+

   
≅   

   
 , 

1 1

0

n n

n n

z zH
z z

− −   
≅   

   
 , 
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1 2

1 1

n n

n n

z z
H

z z

− −

− −

   
≅   

   
 , 

one can easily write them as follows                       

( )

( )

2

1
2

d8 4 2
d

d0 8 4 1
d

i z i M z C
zH

i z i M z
z

ρ ρ

ρ ρ

 − − 
 =
 − − 
 





, 

( )

( )

2
2 2 2

2

0 2
2 2 2

2

d d d4 8 1 8 2 3 0
d dd

d d d4 4 8 2 1
d dd

z z M A i z i M
z zzH

Cz z z M A i z i M
z zz

ρ ρ ρ

ρ ρ ρ

 
+ + − + + − + − 

 =
 

+ + − + − + − 
 



  

 

2

1 2

d d4 6 0
d d

d d0 4 2
d d

z
z zH

z
z z

−

 
− − 
 =
 

− − 
 

                (38) 

After some algebraic manipulations, the 2 2× -matrices 1 1 0, ,M M M  can be 
computed as follows [1] [2] [4]: 

( )
1

010
1 1

00

,
n

n n
n

z
H diag z z M

z
αα
ββ

−
+   

=   
  

 , 

( )
2

1 11
1 11

1 1

,
n

n n
n

z
H diag z z M

z
α α
β β

−
−

−

   
=       

  , 

( )
1

010
0 0

00

,
n

n n
n

z
H diag z z M

z
αα
ββ

−
−   

=   
  

 .             (39) 

And these above three relations (39) lead respectively to these following three 
matrices: 

( )
( )1

4 2

0 8 4 1

i n M C
M

i n i M

ρ

ρ ρ

 − 
 =
 − − 



, 

( )
( )1

8 1 4
0 4 1 4

i n i M C
M

i n i M
ρ ρ

ρ ρ
 − − 

=  − − 




, 

2 2 2

0 2 2 2

4 4 1 8 2 2 0
4 8 2 2

n n M A i n i M i
M

C n M A i n i M i
ρ ρ ρ ρ

ρ ρ ρ ρ
 − + + − + − + +

=  
+ − + − + −   

 

Referring to the same lines of the case 1 (i.e. studied in the previous step), one 
can easily find the following three necessary and sufficient QES conditions for 
the gauge Hamiltonian given by the Equation (36) to have a finite dimensional 
invariant vector space [1] [2] [3]: 

1) The first QES condition is 

( )24 2 1
2

n n M M
M

n M
+ − −

=
−

                      (40) 

2) The second QES condition is as follows 
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( )24 6 2 1 2
1

n n M n
M

n M
− + + − −

=
− + +





                   (41) 

3) The third and the final QES condition is 

( ) ( )2 2 24 2 4 8 2 1 1i n M n M A i n i M
C

C

ρ ρ ρ ρ − − − − + − + − − +    =
 

      (42) 

Taking account to the three necessary and sufficient QES conditions given by 
It means that the gauge Hamiltonian H  has a finite dimensional vector space 
which is invariant under its action. The relations (40), (41) and (42), one can 
conclude that the gauge Hamiltonian H  (therefore H) given by the Equation 
(36) is quasi-exactly solvable.  

5. Conclusion 

In this paper, we have applied the general QES analytic method established in 
the Ref. [1] in order to prove that the PT-symmetric 2 2× -matrix Razhavi Ha-
miltonian is quasi-exactly solvable. It means that a finite part of eigenvalues as-
sociated to this Razhavi Hamiltonian can be computed algebraically. We have 
considered two cases for the wave function: ( )1, cos t

n np xqψ −=  and  
( )1 cos , t

n np x qψ −= . The three necessary and sufficient QES conditions for the 
PT-symmetric 2 2× -matrix trigonometric Hamiltonian to have a finite vector 
space invariant under its action are found algebraically. 
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