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Abstract 
The basis functions of the translation invariant shell model are used to con-
struct the ground state nuclear wave functions of 3H. The used residual 
two-body interactions consist of central, tensor, spin orbit and quadratic spin 
orbit terms with Gaussian radial dependence. The parameters of these inte-
ractions are so chosen in such a way that they represent the long-range at-
traction and the short-range repulsion of the nucleon-nucleon interactions. 
These parameters are so chosen to reproduce good agreement between the 
calculated values of the binding energy, the root mean-square radius, the 
D-state probability, the magnetic dipole moment and the electric quadrupole 
moment of the deuteron nucleus. The variation method is then used to cal-
culate the binding energy of triton by varying the oscillator parameter which 
exists in the nuclear wave function. The obtained nuclear wave functions are 
then used to calculate the root mean-square radius and the magnetic dipole 
moment of the triton. 
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1. Introduction 

The nuclear shell model [1] [2] [3] has emerged as a useful description of the 
atomic nucleus as a many-particle system. Basically, it is perhaps the closest of 
all nuclear models to being unified, i.e., to describe all properties of all states of 
all nuclei. Unfortunately, even with the restriction to a shell structure, the num-
ber of possible states is often very large and there are few nuclei whose proper-
ties can be described without a prohibitive amount of computational labor. 
Thus, several sub-models of the shell model have been constructed to reduce the 
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number of states and hence also the computational difficulty. These sub-models 
describe many of the physical structures of states in terms of well-defined quan-
tum numbers. 

Simultaneous with the development of the shell model, several collective 
models have been developed [4]. While collective models consider the coherent 
motion of nucleons, the shell model takes their independent motion into con-
sideration. Both models are capable of describing qualitative features of nuclear 
energy levels in their simplest form; however, they are inaccurate in their quan-
titative descriptions. In the single-particle sub-model, the most extreme version 
of the shell model is that the orbit of the last odd nucleon defines the properties 
of states, estimates for electromagnetic transition probabilities and accordingly 
magnetic moments can be made. Although these estimates are often of the cor-
rect order of magnitude, they lack precision. On the other hand, the collective 
models (one based on the rotation of a nucleus deformed into a non-spherical 
shape) explained the observed approximate J (J + 1) dependence of bands of 
energy states of some nuclei and predicted the proportionality of the electro-
magnetic transitions with the square of a Clebsch-Gordan coefficient [5]. How-
ever, the moments of inertia and deformation characteristics must be considered 
as parameters [6]-[13]. With the development of both types of models, it soon 
became apparent that they may not be all that different after all. Introducing 
configuration mixing allows the shell model to go beyond its single-particle fea-
tures, while the rotational model gains some individual-particle features through 
the development of the rotating intrinsic state. The core principle underlying the 
shell model is that the interactions between all the nucleons are governed by an 
average single-particle potential. We initially assumed that this field was spheri-
cally symmetric. In practice, this field is rarely derived from any self-consistent 
reasoning but rather from the analysis of the physics involved in the problem. 
Thus, since the nucleons are bound together in a finite restricted region of space, 
the average field is predicted to be attractive within the nucleus’s confines and to 
vanish everywhere else. The lowest bound states of an A-nucleons nucleus are 
created by occupying the lowest energy orbits in the central well, following the 
Pauli exclusion principle. Each single-particle orbital state can be filled by a max-
imum of four particles due to the spin and isospin projections of each nucleon:  

with ( ) 1 1 1 1 1 1, , , , , ,
2 2 2 2 2 2s tm m      = − −     

     
, and 1 1.

2 2
 − − 
 

. 

If we are concerned only with the ground state characteristics of certain nuc-
leus, the single-particle orbits of the actual finite potential are like those of an 
appropriate infinite potential, e.g., the harmonic oscillator well [1]. The advantage 
of using harmonic oscillator functions is that they are more amenable to mathe-
matical manipulation. We can thus concentrate on the physical many-body aspect 
of the problem without additional complication in the mathematics. There exist 
two basic problems in the shell model: first, the introduction of the appropriate 
residual interaction. Second, finding the configurations of extra core nucleons 
which form the eigenfunctions. 
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The residual interaction is supposed to take account of the effects of the 
nucleon-nucleon interaction which have not been included in the average cen-
tral field. The effective residual interaction differs from the nuclear force be-
tween free nucleons for several reasons. The presence of other nucleons inhibits 
the final states which may result from any interaction-quite generally, this effect 
of the Pauli principle, causes the effective residual interaction to have a longer 
range than the free force [14]. The nucleons polarize other nucleons, so it may 
be considered that the interaction is taking place between quasi particles which 
are not real nucleons. Thus, one has some freedom in choosing the effective re-
sidual interaction which will lead to eigenfunctions possessing the observed fea-
tures of the lowest energy levels, e.g., energies, moments, transition probabilities, 
etc. 

The matrix elements of the nuclear Hamiltonian H are negligibly small be-
tween states transforming according to different representations of the trans-
formation group, G, of the nucleon motions inside the nucleus. looking for addi-
tional groups, it must still be remembered that these must always allow a simul-
taneous classification according to the rotational group in three dimensions R3, 
i.e., states must still have a definite angular momentum [5]. 

Nuclear forces are considered largely charge independent. Thus, nuclear states will 
transform according to the representations of the group SU2 of two-dimensional  
special unitary transformations (det = 1) between the two basic isospin compo-

nents 1
2tm = ±  (i.e., the proton and the neutron). Eigenfunctions can thus be  

labeled with the representation label the isospin T of SU2, and functions belong-
ing to the same representation will degenerate in energy. It is also to point out 
that functions of the same isospin T but different projections MT belong to nuc-
lei of the same mass number but different charges. Thus, at this stage, all nuclei 
of the same mass can be treated at the same time if we consider all possible isos-
pin components. 

For nuclear forces, the isospin classification is treated as an approximate 
symmetry. In actual nuclei, however, there exists the Coulomb repulsion be-
tween protons, which of course is not charge independent. In light nuclei it is 
usual to treat Coulomb force as a breaking-symmetry term [1]. Thus, states can 
still be classified according to isospin, but now states of the same isospin in dif-
ferent nuclei of the same mass number will not degenerate in energy. Isospin 
then is a broken symmetry. 

Another example of an approximate symmetry arises in the Wigner super-
multiplet theory [5]. In this case, it is assumed that nuclear forces are not only 
charge (isospin) independent but also largely spin independent, i.e., the domi-
nant part of the nuclear force operates only in orbital space. Nuclear eigenfunc-
tions can thus be considered to transform according to the representations of the 
group U4 of four-dimensional unitary transformations in charge and spin space. 
Functions which have a definite symmetry according to U4 also have a definite 
symmetry according to the group of permutations SA between the particle num-
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bers of charge-spin states. Remembering that the complete functions representing 
nuclear states must be totally anti-symmetric with respect to permutations of SA 
between particle numbers in the full charge-spin-orbit space, we shall find it per-
haps not hard to accept the fact that symmetry with respect to SA in charge-spin 
space automatically defines the symmetry in the orbital space. The symmetry of 
the orbital functions is said to be adjoint to the symmetry of the charge-spin func-
tions. All the orbital functions that transform themselves according to a definite 
representation of SA go together with the charge-spin functions of adjoint sym-
metry to form one totally anti-symmetric nuclear state. 

Our exposition will be based on the translation-invariant shell model (TISM), 
or sometimes called the unitary scheme model (USM) [15]-[23] which is indis-
pensable in considering the clustering effects in the p-shell nuclei. The use of os-
cillator functions allows us to treat freely the degrees of freedom of the cluster’s 
internal motion, but we pay for this freedom by having to be content with an 
incorrect asymptotic behavior of the functions used. This would require some 
modification of the wave-function tails at low and medium energies (of order 
100 - 500 MeV), but it may be acceptable at high energies (Ep ≥ 1 GeV) and at 
sufficiently high energies of knocked-out clusters, where the volume process 
dominates. 

The ground-state of the triton has total angular momentum 1
2

J = , isotopic 

spin 1
2

T =  and even parity, i.e. ( ) 1 1, ,
2 2

J Tπ
+ 

=   
 

. The nuclear wave function  

that represents the ground-state of triton can be expanded in series in terms of 
the basis functions of the TISM. The method of constructing this wave function 
and calculating the matrix elements of the nucleon-nucleon interaction is well 
explained in ref. [15]. 

Doma et al. [20], introduced two nucleon-nucleon interactions, each of which 
contains central, tensor, spin-orbit and quadratic spin-orbit terms with Gaussian 
radial dependence, which gave results for the ground-state characteristics of the 
deuteron nucleus in good agreement with the corresponding experimental val-
ues and the well-known theoretical results [24] [25] [26] [27]. In the calculations 
which have been carried out in [20], the ground-state wave function of the deu-
teron is expanded in series in terms of the basis functions of the TISM corres-
ponding to even values of the number of quanta of excitations N: 0 10N≤ ≤  
and orbital angular momentum   equals 0 for N = 0 and 0, 2 for the other val-
ues of N. 

In the present paper we derive nucleon-nucleon interactions with one, two, 
three, and four parameters which fit the ground-state characteristics of deuteron, 
namely: the binding energy, the D-state probability, the root mean-square ra-
dius, the magnetic dipole moment and the electric quadrupole moment. The pa-
rameters of the present nucleon-nucleon interactions are chosen in such a way 
that they can represent the long-range attraction and the short-range repulsion 
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of the nucleon-nucleon interactions. Moreover, we have constructed the ground- 
state nuclear wave function of triton in terms of the basis functions of the TISM 
corresponding to even values of N in the range 0 10N≤ ≤ . Accordingly, we ap-
plied the variation method to calculate the binding energy and the nuclear wave 
function of triton. Furthermore, we calculated the root mean-square radius and 
the magnetic dipole moment of the triton nucleus. 

2. Classification of States in the TISM 

In the nuclear shell model, the spurious states that correspond to the non-zero 
motion of the center of mass of the whole nucleus, exist and must be eliminated 
in the calculations. On the other hand, these spurious states, are eliminated from 
the very beginning in the formulation of the TISM-Hamiltonian by subtracting 
the center of mass kinetic energy from its Hamiltonian. Hence, the TISM Hamil-
tonian is free of spurious states. Accordingly, the TISM Hamiltonian describes the 
mutual motions of A nucleons in a nucleus and is of the form [15]-[19] 

 ( )
2 22

0
1 1 1

1 1 1
2 2

A A
i k i ki k k

AmH
m A A

ω
= = =

  = − + − 
 
 

 
   
   

∑ ∑ ∑p p r r , (2.1) 

where ir  and ip  are the coordinate and momentum operators of a qua-
si-particle i, m is the nucleon mass, and ω  is the oscillator frequency. Let us 
introduce the Jacobi’s transformations [5] 

 1

1

,

,

1, 2,3

, 1, 2, ,

A

A

i ik kk

i ik kk

x B

p B i k A

α α

α α

ξ α

π
=

=

= = 


= = 

∑
∑ 

, (2.2) 

where the transformation matrix B  satisfies the conditions 

 
1

1 , , 1, 2, ,A i
iA ki AkB B A i A

A
δ

=
= = =∑  . (2.3) 

Appling transformations (2.2) to equation (2.1) the result is 

 ( )
2

10 2 23
1 1

1
2 2

A
i ii

mH
m α αα

ωπ ξ−

= =

 
= + 

 
∑ ∑ . (2.4) 

Having the considerations of the second quantization space, we introduce the 
annihilation and creation oscillator quanta operators as [5]: 

 
,

2 2

2 2

k k k

k k k

m ia
m

m ia
m

α α α

α α α

ωξ π
ω

ωξ π
ω

+ = −

= +









 (2.5) 

These operators satisfy the commutation relations 

 , ,, , 0, , .i k i k i k i ka a a a a aα β α β α β α βδ δ+ + +     = = =       (2.6) 

The Hamiltonian operator (2.4) now takes the form: 

 ( ) ( )10 3
1 1

3 1
2i ii

AH a a Aα αα ω+
= =

− = + −  
∑ ∑  . (2.7) 
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It can be noticed that it is not so difficult to verify that the Hamiltonian oper-
ator (2.7) is invariant with respect to the transformations of the ( )3 1A−
-dimensional unitary group ( )3 1AU − . 

The eigenfunctions of the Hamiltonian (2.7) are: 

 
1 1 1 1 2 2

1 2
1

3
, , 1exp

2N N N N

A
i i i i i ii

mCa a aα α α α α εε

ωϕ ξ−+ + +
= =

 = − 
 

∑ ∑






, (2.8) 

and the corresponding eigenvalues are given by: 

 ( ) ( )0 3 1
2NE N A ω = + −  

 . (2.9) 

Since the functions (2.8) are symmetric with respect to permutations of any 
pair of their indices, they may be used as basis for irreducible representation (IR) 
of a symmetric tensor of the rank N. The Young Scheme {N} is useful for ob-
taining such IR. It is clear that the dimension of the representation {N} of the 
group ( )3 1AU −  is equal to the number of functions 

1 1 , , N Ni iα αϕ


. The basis func-
tions (2.8) are usually represented by [17]: 

 { }( ) [ ]( ); ;L S S T L S TA M M M AN f LM TM Mf Sρ ν α λµ  Γ Γ ≡  
 , (2.10) 

where Γ  and SΓ  are the sets of all orbital and spin-isospin quantum numbers 
characterizing the states, respectively. The total number of quanta N is the IR of 
the group ( )3 1AU − . The IR of groups U3 and UA−1 are set by the same symbols 
{ } { }1 2 3, ,ρ ρ ρ ρ= , where 1 2 3 0ρ ρ ρ≥ ≥ ≥  are any integers satisfying the re-
quirements 1 2 3 Nρ ρ ρ+ + = . The symbol (λμ) of the SU3 symmetry is deter-
mined by the relations 1 2λ ρ ρ= − , 2 3µ ρ ρ= − , which enables us to find the 
values of the total orbital angular momentum L, by using Elliott’s rule [5] [28]. 
According to this rule  

, 1, ,L K K K B= + +
; , 2, ,1K C C= − 

 or 0 for 0K ≠ , , ,1L B B= −  or 0 
if 0K = , where ( )min ,C λ µ=  and ( )max ,B λ µ= . 

The allowed Young Schemes [f] for the representation { }1 2 3, ,ρ ρ ρ  of group 
UA-1 may be found using the formalism of plethysm, which has been described in 
detail in [5] [29]. In (2.10) ML stands for the IR of the group SO2. The represen-
tation (ν ) is an IR of the group OA-1 and [f] is an IR of the symmetric group. 
The quantum numbers S, MS are the spin, its projection and T, MT are the isos-
pin, its projection which are IR of the direct product of the groups 2 2SU SU× . 
Among all the possible Young schemes [f], only those comprising not more than 
four columns should be selected. If, after that, the values S, T are to be taken for 
the conjugated Young diagrams f  

 , we shall obtain the total list of the TISM 
states with given quantum number N. 

Wave function with given total quantum numbers , , ,J TJ M T M  and parity π 
can be constructed from the functions (2.10) as follows [15] [17]: 

 ( ); , | ;
L S S

J T
J T L S J L S S TM MAJ M TM C LM SM JM A M M M

ππ
ΓΓ Γ

= Γ Γ∑ (2.11) 

where J TC
π

Γ  are the state expansion coefficients and ( ), |L S JLM SM JM  are 
Clebsch-Gprdan coefficients (CGC, s). 
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3. The Supermultiplet Model 

The supermultiplet functions can be built, disregarding the internal structure of 
the orbital wave functions of the nucleus. The supermultiplet model [5] is based 
on the properties of symmetric group and irreducible tensor spaces of the unita-
ry groups. The method of constructing the supermultiplet wave function of a 
nucleus is based on that simple position, which follows from the theory of sym-
metric group, according to the relations: 

 
[ ] [ ] [ ]( ) [ ] [ ]( )

[ ] [ ]( ) [ ]( )
, ,

1 ,A

A f f f

f

f

f f f

α δ

α δ 

′ ′× →



=

 ′ ′× → =  


 (3.1) 

The anti-symmetric representation 1A    is contained only in the direct 
product of the two conjugate representations [ ]f f ×  

 . Therefore, the an-
ti-symmetric wave function can be separated into orbital and spin-isospin func-
tions by the following simple form: 

 [ ]( )( ) [ ] ( ) ( ) [ ] [ ]
0 01

1
A

fs sf A

Af f
ff Cµµµ µ

ψ ψ
µ µ

  

     Ψ Γ Γ = Γ Γ     
∑










  (3.2) 

In (3.2), [ ]f µψ  designates orbital and 
f µ

ψ   




 spin-isospin functions charac-
terized by the collections of orbital 0Γ  and spin-isospin sΓ  quantum numbers 
and the CGCs of the symmetric group SA, where 

 { }( )[ ]0 LN f LMρ νΓ =  and s s Tf STM M Γ =  
 . (3.3) 

The totally anti-symmetric Young Scheme [ ]1 11 1A  =  
 (A-times) is the IR 

of the group J . Since [ ]1A f f   = ×   
  therefore, the IR of the group J  can 

be reduced to direct product of two unitary groups U3(A−1) and 
4AU  corres-

ponding to the orbital and spin-isospin functions. Let ( )S
AS  and ( )T

AS  be sym-
metric groups, which transpose respectively spin and isospin coordinates. Then, 
the spin function is characterized by the diagram 

 [ ] ,
2 2s
A Af S S ≡ + −  

, (3.4) 

and the isospin by the diagram 

 [ ] ,
2 2T
A Af T T ≡ + −  

, (3.5) 

The corresponding basis is symbolically denoted by 

 [ ] ( ) [ ] ( )
T Ts s s Tff M Mµµψ ψΨ =  (3.6) 

which is designated through sµ  and Tµ . [fS] designates both the IR of a group 
SA and IR of a group SU2, which assigns the nucleons. 

According to the chain of grpops: 

 1 2 1n nS S S S−⊃ ⊃ ⊃ ⊃ . (3.7) 

we have 
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1 1,
2 2s

A ASf S  − − = + −  
 

 2 2,
2 2s

A ASf S  − − = + −  
, etc. (3.8) 

Obviously, the spin-isospin function of the nucleus can be built via the bind-
ing of ideas [fS] and [fT] by the CGC,s of the symmetric group SA, so that 

 ( ) [ ] ( ) [ ] ( ) [ ][ ]
T Ts ss T

S T
s S Tff

S T
f

ff f
M M Cµµµ µµ

α
ψ ψ

µ µ µ
  

  Ψ Γ = ∑










 (3.9) 

With the aid of formulas (3.2) and (3.9) we actually achieved the construction 
of the supermultiplet wave function of the nucleus, and for this purpose it is suf-
ficiently enough to use only two types of CGC,s of the group SA satisfying the re-
lations 

 [ ] 1Af f   × →   
 , (3.10) 

and 

 [ ] [ ]S Tf ff α  × →  

  (3.11) 

Subsequently, the supermultiplet wave function of the nucleus is designated 
by: 

 [ ] [ ][ ]( )( )( )0 1A
S T S Tf f f M Mfα    Ψ = Ψ Γ   

  (3.12) 

Let us further consider that the states of nuclei must be described by quantum 
number J of the total angular momentum = +J L S . Hence, it follows that the 
collection Γ0 must include the quantum number of the total orbital angular mo-
mentum L and of its projection ML. Therefore, if we replaced Γ0 in (3.12) with 
new collection 0 LLMΓ  and to connect the momenta L and S in J, then the su-
permultiplet wave function of the nucleus with the most complete characteristic 
takes the following form: 

 [ ] [ ][ ]( )( )( )0 1A
S T J Tff f f JM Mπ α    Ψ Γ   



  (3.13) 

In (3.13), the quantum number π, determins the parity of the orbital wave 
function of the nucleus. 

We find f  
 , together with the representation of a group SA, also does de-

signate IR of a group SU4, and this IR is given in the chain of groups: 

4 2 2 ,SU SU SU⊃ ×  
which in turn does lead to quantum numbers S, MS and T, MT. This sense ac-
quires and bringing [ ] [ ]S Tf ff α  × →  

 , which with the use of transformation 
properties of group SU4 should be written in the form: 

 [ ][ ] [ ][ ]( )[ ][ ]
S T S T S Tf f f f f ff fα   = ⊃   ∑ 

 , (3.14) 

here α  is the number of repetitions of identical [ ]Sf , [ ]Tf  in f  
 . It can 

be, in abbreviated form, designated by: 
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 ( )[ ], .STf f ST S Tα   = ⊃   ∑ 

  (3.15) 

All possible values of S and T belonging to the diagram f  
  are obtained in 

the brackets [S, T]. 

4. The Nuclear Hamiltonian and the Nucleon-Nucleon  
Interactions 

The internal Hamiltonian of a nucleus consisting of A nucleons can be written in 
terms of the relative coordinates of the nucleons, in the form [15] [17] [21] 

 ( ) ( )0 'H H V= +  (4.1) 

where 

 ( ) ( ) ( )
2

20 2
1

1 1
2 2

i jA
i jiH m

A m
ω

=

 −
 = + −
 
 

∑
p p

r r , (4.2) 

is the TISM-Hamiltonian and 

 ( ) ( ) ( )
2 2

1 2i j i ji j
A' mV V

A
ω

= <

 
= − − − 

 
∑ r r r r . (4.3) 

is the two-body residual interaction. 
For the two-nucleon states with orbital angular momentum  , spin momen-

tum s and isotopic spin t, our two-nucleon interaction has the form [20]: 

 ( ) ( ) ( ) ( ) ( ){ }ts
12 12C T LS LLV r X V r V r S V r s V r L= + + ⋅ +

 (4.4) 

The central, tensor, spin-orbit and quadratic spin-orbit terms are standard. 
The operator ts X  has the form 

 ( ) ( ) ( )1 1 1ts 1 1 1s t s t
W M B HX C C C C+ + + += + − − + − , (4.5) 

where , ,W M BC C C  and HC  are the Wigner, the Majorana, the Bartlett and the 
Heisenberg exchange constants, respectively. Each term of the interaction is ex-
pressed as a sum of Gaussian functions in the form 

 ( )
2 22,3,4

1 e kr r
kkV r V α

α α
−

=
= ∑  (4.6) 

where , ,C T LSα =  and LL. Two sets of values are considered for the exchange 
constants, namely: CW = 0.1333, CM = −0.9333, CB = −0.4667, CH = −0.2667, 
which are known as the Rosenfeld constants, and belong to the symmetric case, 
and CW = −0.41, CM = −0.41, CB = −0.09, CH = 0.09 which belong to the Serber 
case. For the two-particle triplet-even state (t = 0, s = 1), which is the case for the 
ground-state of the deuteron nucleus, and from the normalization condition of 
the exchange constants, the operator tsX equals −1 for both of the symmetric and 
the Serber cases so that the two types of the exchange constants will produce the 
same results for the ground-state characteristics of deuteron. 

Our realistic two-nucleon interactions underbind the ground-state energies of 
the A = 2, 3, 4 nuclei. It appears that a simple two-pion exchange three-nucleon 
interaction cannot give attraction in A = 3 nuclei [19] [22]. 
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The matrix elements of the residual two-body interaction V ′  with respect to 
the basis (2.11) are given by [15] [17] [18] [19] [22]: 

 

( ) ( )( )

( ) ( )1,

1
, , |

2

2 ;2 2 ;2

|

J T J T

J T J T
L S J L S Jsjt

A A

AJ M TM V AJ M TM

A A
C C LM SM JM L M S M JM

L J
A JT A sjt A JT A sjt s j

L S J

L J
s j s jt V s jt

L S

S

J

S

π π

π π

ε ε

ε ε

ε ε

′Γ Γ′ ′Γ

−

′

−
′ ′ ′ ′=

 
 ′ ′× Γ − Γ × Γ − Γ  
 
 

 
 ′ ′ ′ ′×  
 ′ ′ 

∑
 

  

  

 (4.7) 

Here Γ  stands for the set of all orbital and spin-isospin quantum numbers of 
the A-2 particles. The number of quanta for the two-particle wave function 

2nε = +  , in which n is the radial quantum number of the inter-particle distance 
joining the last pair.  , s, j and t are the orbital, the spin, the total spin and the 
isospin quantum numbers of the last pair. In Equation (4.7) 2 ;2A JT A sjtεΓ − Γ   
are the two-particle total fractional parentage coefficients which are products of 
orbital and spin-isospin coefficients [19] [23]. The last elements in Equation 
(4.7) are the two-particle matrix elements of the residual interaction where: 

( )1, 1A A A AV V r r− −′ ′= −  and 
1 2 12

3 4 34

13 24

j j j
j j j
j j J

 
 
 
 
 

 are the normalized 9j-symbols. 

Thus, the energy matrices can be constructed according to Equations (2.9) 
and (4.7) for the different states of a nucleus with mass number A, for each resi-
dual interaction, as functions of the oscillator parameter ω . These matrices are 
diagonalized with respect to ω  which is allowed to vary in a wide range of 
values, 8 30ω≤ ≤  MeV, in order to obtain the best fit to the spectrum of this 
nucleus or to the best fit to the binding energy, in the case where the nucleus has 
no excited states. Hence, the energy eigenvalues and eigenfunctions of the 
ground state of this nucleus are obtained for each considered potential. 

5. The Root Mean-Square Radius and the Magnetic Dipole 
Moment 

The ground-state nuclear wave function, which is obtained as a consequence of 
the diagonalization of the ground-state energy matrix, is used to calculate the 
root mean-square radius from the well-known formula [21] [22] [23] 

 

[ ]

( )( )

( )( ) ( ) ( ) [ ] [ ]

2

, , 2

1
2

, 2 , ,, ,
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AR r C C A JT A sjt
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A JT A sjt
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ε ε

ε ε ε ε

ε ε ν ν
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ω

ε ε δ ε ε δ

ε ε δ δ δ δ δ

′Γ Γ′ ′′ ′ΓΓ Γ
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′ ′ ′+ ′ ′

 −
= + × × Γ − Γ


 × Γ − Γ + − − + + + 
 

− − + +   

∑
 
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  
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 (5.1) 

https://doi.org/10.4236/ojm.2024.142003


K. A. Kharroube 
 

 

DOI: 10.4236/ojm.2024.142003 34 Open Journal of Microphysics 
 

where 0.85pr =  fm is the proton radius and m is the nucleon mass. 
The magnetic dipole moment operator µ̂  for a nucleus consisting of A 

nucleons is defined as the expectation value of the operator [19] [21] 

 ˆ ˆ ˆo σµ µ µ= + , (5.2) 

where 

 ( )1

1ˆ 1 2
2o oi oii

A tµ
=

= −∑   (5.3) 

and 

 ( ) ( )1
ˆ 2p n p n oi oii

A t sσµ µ µ µ µ
=
 = + + − ∑  (5.4) 

In Equations (5.3) and (5.4) 0i , 0is  and 0it  are the z-components of the 
orbital, the spin, and the isospin momenta of the ith-nucleon, respectively. pµ  
and nµ  are the proton and the neutron magnetic moments, respectively. The 
matrix elements of the orbital operator ˆoµ  and the spin-isospin operator ˆσµ  
are calculated in a nuclear state having JM J= . The method of calculating these 
matrix elements are given by applying the supermultiplet model of the nucleus 
[21]. 

6. Results and Conclusions 

In the present paper, we introduce four new nucleon-nucleon interactions in the 
form given by Equations (4.3) - (4.6). The first is a one-parameter potential, the 
second is a two-parameter potential, the third is a three-parameter potential, and 
the fourth is a four-parameter potential. In Tables 1-4, we present the parame-
ters of our four interactions, for which the calculated values of the deuteron 
characteristics are in good agreement with the corresponding experimental val-
ues. The values of the depth parameters V are given in MeV and the values of 
the range parameters r are given in fm. 

In Table 5, we present the calculated deuteron characteristics by using the 
four new interactions. The second column is for the deuteron binding energy 
(DBE), the third for the deuteron root-mean square radius (DRM), the fourth 
for the deuteron D-state probability (DDSP), the fifth for the deuteron magnetic  

 
Table 1. Depth and range parameters for the one-parameter potential (pot-I). 

Parameter 1CV
 1Cr  1TV

 1Tr  1SV
 1Sr  1LV

 1Lr  

Value 36.221 1.752 −30.312 1.763 −18.432 2.902 −10.523 1.429 

 
Table 2. Depth and range parameters for the two-parameters potential (pot-II). 

Parameter 1CV
 1Cr  2CV

 2Cr  1TV
 1Tr  2TV

 2Tr  

Value 36.095 1.772 − 20.334 0.564 −32.021 1.766 19.324 0.563 

Parameter 1SV
 1Sr  2SV

 2Sr  1LV
 1Lr  2LV

 2Lr  

Value −18.546 2.866 11.232 1.785 −10.672 2.388 13.155 1.446 
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Table 3. Depth and range parameters for the three-parameters potential (pot-III). 

Parameter 1CV
 2CV

 3CV
 1TV

 2TV
 3TV

 

Value 38.652 −10.341 −24.327 −31.432 −15.387 −16.464 

Parameter 1Cr  2Cr  3Cr  1Tr  2Tr  3Tr  

Value 1.742 0.449 0.663 1.798 0.592 0.553 

Parameter 1SV
 2SV

 3SV
 1LV

 2LV
 3LV

 

Value −21.631 11.879 15.222 0.137 12.858 −11.453 

Parameter 1Sr  2Sr  3Sr  1Lr  2Lr  3Lr  

Value 2.802 1.829 1.437 2.359 1.841 1.274 

 
Table 4. Depth and range parameters for the four-parameters potential (pot-IV). 

Parameter 1CV
 2CV

 3CV
 4CV

 1TV
 2TV

 3TV
 4TV

 

Value 39.956 −91.468 −30.154 −80.243 −19.698 40.233 −19.574 50.221 

Parameter 1Cr  2Cr  3Cr  4Cr  1Tr  2Tr  3Tr  4Tr  

Value 1.356 0.622 0.973 0.497 2.473 0.524 1.492 0.586 

Parameter 1SV
 2SV

 3SV
 4SV

 1LV
 2LV

 3LV
 4LV

 

Value −25.266 40.213 −22.654 50.212 −10.914 31.554 −18.431 66.221 

Parameter 1Sr  2Sr  3Sr  4Sr  1Lr  2Lr  3Lr  4Lr  

Value 0.852 0.501 0.774 0.434 1.985 0.228 2.295 0.416 

 
Table 5. Deuteron characteristics by using the four nucleon-nucleon interactions. 

Case DBE in MeV DRM in fm DDSP DMD (N.M.) DQM (e.fm2) 

pot-I 2.22450 1.9952 0.0437 0.8674 0.2977 

pot-II 2.22452 1.9947 0.0425 0.8632 0.2931 

pot-III 2.22453 1.9715 0.0417 0.8611 0.2899 

pot-IV 2.22456 1.9634 0.0455 0.8578 0.2871 

Exp. [24] [25]  
[26] [27] 

2.22457 1.9631 0.04 ~ 0.07 0.8574 0.2859 

 
dipole moment (DMD), and the sixth for the deuteron electric quadrupole mo-
ment (DQM). The experimental values [24] [25] [26] [27] are also given in the 
last row of this table. 

For the triton nucleus, our total nuclear wave function is obtained by using 
the TISM wave functions given by Equation (2.11) with a number of quanta of 

excitation N = 0, 2, 4, 6, 8, and 10, total spin 1
2

S = , total isospin 1
2

T = , and even  

parity. Accordingly, we applied the variational method to calculate the triton 
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ground state energ eigenvalue and eigenfunction, by varying the oscillator para-
meter, ω  in a wide range of values: 8 20ω≤ ≤  MeV to obtain the best val-
ues. The obtained nuclear wave function is used to calculate the triton binding 
energy (B.E.), root mean square radius (R), and magnetic dipole moment (μ). 

In Figure 1, we present the variation of the binding energy of triton with re-
spect to the oscillator parameter ω  by using the fourth potential Pot-IV. 

In Figure 2, we present the variation of the root mean square radius of triton as 
a function of the oscillator parameter ω  by using the fourth potential Pot-IV. 

In Figure 3, we present the variation of the magnetic dipole moment of triton as 
a function of the oscillator parameter ω  by using the fourth potential Pot-IV. 

In Table 6, we present the triton binding energy (B.E.), root mean-square ra-
dius (R), magnetic dipole moment (μ), and oscillator parameter ( ω ), by using 
the four potentials. 

Table 7 presents all of the energy expectation values, as well as point-particle 
 

 
Figure 1. Binding energy of triton as function of the oscillator parameter ω  by using 
the fourth potential Pot-IV. 

 

 
Figure 2. Root mean square radius of triton as function of the oscillator parameter ω  
by using the fourth potential Pot-IV. 
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Figure 3. Magnetic dipole moment of triton as function of the oscillator parameter ω  
by using the fourth potential Pot-IV. 

 
Table 6. Triton results using the four potentials. The experimental values are also given. 

Charact. Case B.E. (MeV) R (fm) μ (N.M.) ω  (MeV) 

Exper. 8.482 [28] 1.75 [28] 2.98 [5] ---- 

Pot-I 8.221 1.774 3.144 15.0 

Pot-II 8.262 1.769 3.113 15.0 

Pot-III 8.292 1.761 3.062 14.0 

Pot-IV 8.369 1.755 3.011 14.0 

 
Table 7. Role of the different operators in the triton binding energy for the fourth poten-
tial Pot-IV. 

Statistical error Expectation value Operator 

0.01 51.152 T 

0.01 −59.521 V 

0.01 −8.369 T + V 

0.001 1.57 Proton 2
ir  

0.001 1.64 neutron 2
ir  

 

root mean square radii of the neutron and proton density by using the fourth 
potential. In this Table, V gives the total nucleon-nucleon potential energy, and 
T is the total kinetic energy. 

As we see, the fourth potential gives the best results for both of the deuteron 
characteristics and the triton characteristics which are in good agreement with 
the corresponding experimental values rather than the other three potentials. 

The results of ref. [29] shown that the three-body interaction can explain the 
binding energy and the dip in the proton distribution of the 3He nucleus. The 
effect of the spin-isospin dependence of the three-nucleon interaction can bring 
the theory of this nucleus closer to the experiment. However, the inclusion of the 
three-body force in the model Hamiltonian of the triton nucleus can improve 
the ground-state characteristics of the triton by no more than 1.0% [30]. 
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