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Abstract 
Epigenetic changes of DNA, including methylation, have long been recog-
nized as key indicators of various diseases, including aging, cancer, and neu-
rological disorders. Biomarker discoveries based on distinct methylation pat-
terns for both hypermethylation and hypomethylation lead the way in dis-
covery of novel diagnosis and treatment targets. Many different approaches 
are present to detect the level of methylation in whole genome (whole genome 
bisulfite sequencing, microarray) as well as at specific loci (methylation specif-
ic PCR). Cell-free DNA (cf-DNA) found in body fluids like blood provides 
information about DNA methylation and serves as a less invasive approach 
for genetic screening. Cell-free DNA and methylation screening technolo-
gies, when combined, have the potential to transform the way we approach 
genetic screening and personalized therapy. These technologies can help en-
hance disease diagnostic accuracy and inform the development of targeted 
therapeutics by providing a non-invasive way for acquiring genomic infor-
mation and identifying disease-associated methylation patterns. We highlight 
the clinical benefits of using cell-free DNA (cf-DNA) liquid biopsy analysis 
and available methylation screening technologies that have been crucial in 
identifying biomarkers for disease from patients using a non-invasive way. 
Powering such biomarker discoveries are various methods of cf-DNA me-
thylation analysis such as Bisulfite Sequencing and most recently, Methyla-
tion-Specific Restriction Enzyme (MSRE-seq) Analysis, paving the way for novel 
epigenetic biomarker discoveries for more robust diagnosis such as early dis-
ease detection, prognosis, monitoring of disease progression and treatment re-
sponse as well as discovery of novel drug targets. 
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1. Introduction 

Epigenetic biomarker discovery is the identification of changes in epigenetic 
marks, such as DNA methylation and histone modifications, that are associated 
with a particular disease or condition [1]. These biomarkers can be used for early 
detection [2] [3], diagnosis [4], prognosis [5], and to monitor the response to 
treatment [6] as well as therapeutic targets for drug discovery [7].  

One of the most common approaches for epigenetic biomarker discovery is 
through the use of high-throughput screening techniques such as genome-wide 
epigenetic arrays [8] and next generation sequencing (NGS) of bisulfite treated 
samples for methylation changes [9], and ChIP-Seq and ATAC-Seq for histone 
modifications [10]. These techniques allow for the simultaneous analysis of thou-
sands of genes and targets, making it possible to identify novel biomarkers that 
would have been difficult to detect through traditional methods. 

Methylation is a process by which a methyl group (CH3) is added to the DNA 
molecule [11]. This modification can affect the function of the gene to which it is 
attached [12]. In recent years, researchers have discovered that methylation pat-
terns in the DNA can be used as biomarkers for various diseases [13]. One of the 
most well-known examples of methylation as a biomarker is in cancer [14]. Tu-
mors often have distinct methylation patterns compared to normal tissue, and 
these patterns can be used to diagnose and classify different types of cancer. For 
example, in colorectal cancer, methylation of the APC gene is a common event 
[15] [16]. In breast cancer, methylation of the BRCA1 gene is a frequent event 
[17]. These biomarkers are useful in the diagnosis of cancer, as well as in deter-
mining the prognosis and treatment options for patients. Methylation biomark-
ers can also be used in the early detection of cancer [18]. Hypermethylation of 
certain genes such as tumor suppressor proteins [19], and hypomethylation of 
oncogene [20] is a common event in the early stages of cancer development, and 
it can be detected in blood or other bodily fluids. This makes it possible to detect 
cancer at an early stage, when it is more treatable.  

In addition to cancer, methylation biomarkers are also being studied for their 
use in other diseases. For example, methylation patterns in the DNA have been 
linked to several neurological disorders, including Alzheimer’s disease [21] and 
multiple sclerosis [22]. Other studies have shown that methylation patterns in 
the DNA can be used to predict the risk of developing certain diseases, such as 
heart disease [23] and diabetes [24]. 

Epigenetic drugs are a class of therapeutics that target the epigenetic mechan-
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isms that regulate gene expression [25]. Examples of epigenetic drugs include 
DNA methyltransferase inhibitors (DNMTi) [26], Histone deacetylase inhibitors 
(HDACi) [27]. Histone methyltransferase inhibitors (HMTi) [28]. Bromodomain 
and extra-terminal domain inhibitors (BETi), Histone lysine methyltrasferase in-
hibitors (HLMi), and Epigenetic modulation of miRNA (miRNA based therapies) 
[29]. These drugs are currently being studied in clinical trials for a variety of dis-
eases, including cancer, neurodegenerative diseases, autoimmune diseases, cardi-
ovascular disease, and others.  

A large amount of research has been conducted in the field of DNA methyla-
tion and the identification of biomarkers for early detection but, discovery of 
these biomarkers from cell free DNA is very challenging. However, the discovery 
of methylation biomarkers in cfDNA has revolutionized the field of cancer di-
agnostics, as it provides a non-invasive method for detecting and diagnosing 
cancer effectively even at a very early stage. Methylation patterns in cfDNA can 
be used to identify specific cancer types, provide customized treatment plan, 
monitor treatment response, and predict disease recurrence. Cell-free DNA liq-
uid biopsy is among those highly effective approaches that can help achieve this 
goal. The aim of epigenetic biomarker discovery from cell-free DNA liquid bi-
opsy is to identify molecular changes in the epigenome that can be used to detect, 
diagnose, and monitor diseases, particularly cancers. By analyzing cell-free DNA, 
which is DNA that is circulating in the bloodstream, scientists can gain a 
non-invasive window into the changes that occur in cancer cells. Methylation, a 
process that changes the way genes are expressed, is one of the key epigenetic 
changes that can be studied using cell-free DNA. By identifying specific patterns 
of methylation that are associated with cancer, scientists can develop new diag-
nostic and prognostic tools, as well as new targets for therapeutic intervention. 
The discovery of epigenetic biomarkers from cell-free DNA liquid biopsy is a 
promising new approach for improving the early detection, management, and 
treatment of cancer and other diseases. This approach holds great potential for 
transforming the field of cancer and other diseases and improving patient out-
comes. 

2. Methylation Analysis for Biomarker Discovery 

Methylation analysis has been used to identify a wide range of novel biomarkers 
for various diseases and conditions. Some examples of epigenetic biomarkers 
that have been discovered through methylation analysis include cancer [30], 
neurological disorders [31], cardiovascular [32], and other disease including di-
abetes (Table 1). The methylation of various genes, including APC, RASSF1A 
[33], and BRCA1 [34], has been observed in different types of cancer such as 
colon, breast, and ovarian cancer. These biomarkers can be used for early de-
tection, diagnosis, prognosis and treatment of cancer. Methylation analysis has 
also been used to identify biomarkers for neurological disorders such as Alzhei-
mer’s disease, where genes such as BDNF have been found to be methylated [35].  
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Table 1. Methylation types associated with diseases and biomarkers. The study of methy-
lation patterns and their association with disease is a rapidly growing field that holds 
great promise for improving our understanding of disease biology and the development 
of new diagnostics and therapeutic strategies. 

Methylation Type Diseases Associated Biomarkers References 

DNA Hypermethylation Different Cancer Types 
APC, RASSF1A, 

CDH13, p16INK4a, 
MGMT, p73, BRCA1 

[33] [39] [40] 

DNA Hypomethylation Different Cancer Types TERT, Dlk1/Gtl2 [41] [42] 

Imprinted Gene  
Methylation 

Imprinted Disorders H19, Igf2, [43] 

X-Chromosome  
Inactivation 

X-linked Disorders XIST, MEG3, SNRPN [44] [45] 

LINE-1 Methylation 
Cancer, Alzheimer’s 

Disease 
LINE-1 Repeat  

Elements 
[46] [47] 

Repeat Element  
Methylation 

Autism disorder 
Alu, LINE-1 repeat 

Element 
[48] 

 
These biomarkers can be used to monitor the progression of the disease and to 
develop new therapies. Methylation of the promoter of the NOS3 gene has been 
found to be associated with an increased risk of coronary artery disease. These 
biomarkers can be used to identify individuals at high risk for cardiovascular 
disease and to develop new therapies [36] [37]. It has also been used to identify 
biomarkers for other diseases, such as diabetes, where genes such as HNF4A 
have been found to be methylated [38]. 

One example of a novel epigenetic biomarker discovered through this approach 
is the methylation of the O6-methylguanine DNA methyltransferase (MGMT) 
promoter in glioblastoma, a type of brain cancer [39]. The MGMT gene is in-
volved in DNA repair, and its inactivation through methylation has been asso-
ciated with poor prognosis and resistance to therapy [49]. Therefore, the MGMT 
methylation status can be used as a biomarker for predicting the response to 
therapy and patient outcome in glioblastoma. Another example is the use of his-
tone modifications such as H3K27me3 as a biomarker for cancer diagnosis [50]. 
The Polycomb repressive complex 2 (PRC2) is an enzyme that catalyzes the tri-
methylation of histone H3 lysine 27 (H3K27me3) and its overexpression is asso-
ciated with cancer progression [51]. Therefore, H3K27me3 has been proposed as 
a biomarker for cancer diagnosis and therapeutic target. 

3. Disease with Hypermethylation and Hypomethylation 

Both hypermethylation and hypomethylation are considered as a hallmark of 
cancer, aging [52] and other diseases that leads to the development and progres-
sion of disease [53]. Hypermethylation and hypomethylation refer to the in-
crease or decrease, respectively, of methyl groups on the DNA. Hypermethyla-
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tion refers to the increase in methyl groups on the DNA, particularly in the 
promoter regions of genes. This mostly leads to the silencing of genes and the 
inhibition of their expression [55]. Hypermethylation is commonly observed in 
cancer, where it leads to the silencing of tumor suppressor genes, which are re-
sponsible for controlling cell growth and division [54]. Both the phenomenon 
of hypomethylation and hypermethylation can be represented in a diagram as 
shown below in Figure 1. 

Hypomethylation refers to the decrease in methyl groups on the DNA, partic-
ularly in the promoter regions of genes. This leads to the activation of genes and 
the increase in their expression [55]. Hypomethylation is commonly observed in 
aging and certain diseases, such as Alzheimer’s disease, where it leads to the ac-
tivation of transposable elements, which can cause genomic instability [56]. Hy-
pomethylation has been associated with a wide range of diseases, including can-
cer, neurological disorders, and developmental disorders. Hypomethylation can 
lead to the activation of oncogenes or the silencing of tumor suppressor genes, 
which can contribute to the development and progression of cancer. For exam-
ple, loss of methylation in the promoter of the c-myc oncogene has been ob-
served in various types of cancer, such as breast [57], and colon cancer [58]. 
Hypomethylation has been also observed in the brain of individuals with neuro-
logical disorders such as Alzheimer’s disease [59], Huntington’s disease [60], and 
schizophrenia [61]. Hypomethylation in specific genes, such as BDNF and 
S100B, has been associated with these disorders [62] [63]. It has been associated 
with several developmental disorders such as Rett syndrome, a neurodevelop-
mental disorder caused by mutations in the MECP2 gene. Hypomethylation of 
the MECP2 gene has been observed in individuals with Rett syndrome [64]. 
Hypomethylation has also been observed in other diseases such as diabetes and 
autoimmune disorders, where genes such as HNF4A have been found to be hy-
pomethylated. 

 

 
Figure 1. Representation of hypermethylation and hypomethylation in normal and diseased states. 

Tumor Suppressor Genes Promoter Hypermethylated repetitive 
DNA/Centromere/Imprinted Genes

a) Normal State

b) Diseased State

Tumor Suppressor Genes Promoter

Hypermethylation at promoter leads to 
repressed transcription of functionally 
active genes 

Hypermethylated repetitive 
DNA/Centromere/Imprinted Genes

Hypomethylation leads to genome 
instability and increased transcription of 
silent genes
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Hypermethylation is commonly observed in cancer, where it leads to the si-
lencing of tumor suppressor genes, which are responsible for controlling cell 
growth and division. This results in the development and progression of cancer 
[65]. Examples of hypermethylated genes in cancer include p16INK4a and BRCA1. 
Hypermethylation of genes involved in the immune response has been observed 
in autoimmune diseases such as systemic lupus erythematosus (SLE) and rheu-
matoid arthritis (RA) [66] [67]. It is also involved in the development and func-
tion of the brain has been observed in neuropsychiatric disorders such as schi-
zophrenia and bipolar disorder. The cardiovascular diseases such as hyperten-
sion [68], atherosclerosis and heart failure have been linked to the genes for 
hypermethylation change [69]. Hypermethylation has been observed in various 
diseases such as obesity, diabetes and certain respiratory diseases. 

4. Cell Free DNA (cfDNA) Liquid Biopsy Analysis for  
Biomarker Discovery 

Cell-free DNA (cfDNA) is a novel biomarker discovery molecule that can be 
used to detect and analyze DNA that is present in the blood, but not associated 
with cells [70]. The ability to detect and analyze cfDNA in blood samples as a 
liquid biopsy makes it a non-invasive method of biomarker discovery [70]. It is 
highly sensitive allowing for the detection of small amounts of DNA that makes 
it useful for early detection of cancer and other diseases. The analysis highly spe-
cific, allowing for the detection of specific genetic changes or mutations. How-
ever, there are also some disadvantages of cell-free DNA analysis that requires a 
relatively large amount of blood to be collected to obtain enough DNA for anal-
ysis. The DNA molecules are highly degraded, and make it difficult to do analy-
sis using conventional methods. Furthermore, the analysis of cfDNA requires 
sophisticated laboratory techniques and requires trained personnel to perform 
the analysis [71]. 

The greatest advantage of using cfDNA analysis for biomarker discovery is its 
non-invasive nature as it involves liquid biopsy testing. Blood samples can be 
easily obtained and analyzed, without the need for invasive procedures. Addi-
tionally, cfDNA analysis is highly sensitive and specific, allowing for the detec-
tion of small amounts of DNA and specific genetic changes or mutations [72]. 
The cfDNA analysis has been used to detect a variety of biomarkers associated 
with cancer, including mutations in genes such as EGFR, KRAS, and ALK. These 
biomarkers can be used to predict the response to specific therapies, monitor 
treatment response, and detect the recurrence of cancer [73].  

One of the most promising applications of cfDNA analysis in cancer is in the 
early detection of the disease [73]. In many types of cancer, cancer cells die and 
release their DNA into the bloodstream. This can be detected through cfDNA 
analysis, even before the cancer has formed a tumor that can be detected by im-
aging or other methods. This makes it possible to detect cancer at an early stage, 
when it is more treatable [74]. Another application of cfDNA analysis in cancer 
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is in the monitoring of cancer treatment. Cancer treatments, such as chemothe-
rapy and radiation, can cause cancer cells to die, releasing their DNA into the 
bloodstream. By analyzing cfDNA, it is possible to detect changes in the amount 
of cancer-specific DNA in the blood, which can indicate whether the treatment 
is working or not. The cfDNA analysis can also be used to monitor the recur-
rence of cancer after treatment [75]. Cancer cells that have spread to other parts 
of the body can release DNA into the bloodstream, which can be detected 
through cfDNA analysis. This makes it possible to detect recurrence of cancer at 
an early stage. It has the potential to revolutionize cancer diagnosis and treat-
ment, by enabling early detection, monitoring treatment response and recur-
rence of cancer [76]. 

5. Cell Free DNA Methylation Analysis 

Methylation analysis in cell-free DNA (cfDNA) is a technique used to detect and 
analyze patterns of methylation in DNA that is circulating in the bloodstream 
[77]. This can include DNA from both normal cells as well as cancer cells. The 
ability to detect and analyze methylation patterns in cfDNA has led to the de-
velopment of several new diagnostic and prognostic tools as well as potential 
targets [78] for treatment of the cancer [79], (Figure 2).  

Methylation analysis in cfDNA can be used to detect methylation patterns in 
specific genes, such as tumor suppressor genes and oncogenes, that are associated 
with the development and progression of cancer [80]. For example, methylation 
of the promoter regions of genes such as BRCA1, p16INK4a, and RASSF1A have 
been observed in several types of cancer, including breast [81], colon [82], and  
 

 
Figure 2. Use of cell-free DNA to discover novel epigenomic biomarkers for early detection of cancer. The use of 
cell-free DNA to discover novel epigenomic biomarkers for early detection of cancer is a promising new approach 
that holds great potential for transforming the field of cancer care. 
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lung cancer [83], respectively. Methylation of these genes can be used as bio-
markers for early cancer screening [84]. 

Several methods are currently used to analyze methylation patterns in cfDNA. 
These methods allow for the detection of methylation patterns at specific sites in 
the genome and can identify individuals at high risk of developing certain types 
of cancer. Additionally, cfDNA methylation analysis can be used in liquid biopsy, 
which is a non-invasive method of detecting and monitoring cancer [85]. It allows 
the detection of cancer-associated mutations in cfDNA and can be used to mon-
itor treatment response, detect recurrence and monitor minimal residual disease. 

6. Case and Control Methylation Study 

A case-control methylation study is a type of study that compares the methyla-
tion patterns of DNA from individuals with a particular disease (cases) to those 
without the disease (controls) in order to identify biomarkers for the disease. 
The goal of a case-control methylation study is to identify differentially methy-
lated regions (DMRs) or genes that are associated with the disease of interest and 
could potentially serve as biomarkers for diagnosis, prognosis, or treatment [86] 
[87]. In a case-control methylation study, DNA samples are collected from indi-
viduals with the disease (cases) and individuals without the disease (controls) 
and analyzed for methylation patterns using techniques such as Methylation- 
specific PCR (MSP) [88], Bisulfite sequencing [89], methylation-specific restric-
tion enzyme analysis (MSRE) [90] or Infinium methylation arrays [91]. The 
methylation patterns of the cases are then compared to the methylation patterns 
of the controls to identify DMRs or genes that are associated with the disease. 
Once DMRs or genes are identified, further validation studies can be conducted 
to confirm the association and to determine the clinical utility of the identified 
biomarkers. For example, the biomarkers can be used in a larger cohort of pa-
tients to evaluate their diagnostic or prognostic potential or used to monitor the 
response to treatment [92]. It’s worth noting that case-control methylation study 
is a powerful tool for biomarker discovery, but it has some limitations. It relies 
on the availability of well-matched case and control samples, and the difference 
in methylation levels between cases and controls should be statistically signifi-
cant to be considered as a biomarker. 

7. Therapeutic Targets for Methylation 

Methylation markers are specific regions of the genome that have been found to 
be methylated in certain diseases or conditions, and they can be used as thera-
peutic targets for the development of new drugs and therapies [93]. Targeting 
these methylation markers with drugs or other therapies that can reverse or in-
hibit the methylation of these genes may have therapeutic potential for treating 
cancer [94] and other diseases, such as neurological disorders and cardiovascular 
diseases [87].  

In cancer, methylation markers have been identified in several genes that are 
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associated with tumor suppression, such as BRCA1, APC, and RASSF1A. Anoth-
er example of methylation markers as therapeutic targets is in the development 
of drugs for neurological disorders. For example, the gene for the brain-derived 
neurotrophic factor (BDNF) is methylated in Alzheimer’s disease [95] [96]. There-
fore, drugs that can target and reverse this methylation may have therapeutic 
potential for treating Alzheimer’s disease.  

8. Epigenetic Drugs Targets  

Drugs that target methylation are a class of drugs that specifically target the 
process of methylation in the DNA, which can affect the function of the gene to 
which it is attached [97] [98] [99]. These drugs can be used to modulate methy-
lation patterns in the DNA and potentially restore normal gene expression. One 
class of drugs that targets methylation are epigenetic drugs, which focus on en-
zymes involved in regulating methylation patterns in DNA. These enzymes in-
clude DNA methyltransferases (DNMTs) [26] and histone deacetylases (HDACs) 
[27]. By inhibiting these enzymes, these drugs can modulate methylation pat-
terns and potentially restore normal gene expression. Another class of drugs that 
target methylation are small molecules that can bind to and inhibit specific me-
thyltransferases. This can lead to the reversal of gene silencing caused by hyper-
methylation and the reactivation of tumor suppressor genes. Class of methyla-
tion inhibitors are DNA methyltransferase inhibitors (DNMTi), Histone deace-
tylase inhibitors (HDACi) and Histone methyltransferase inhibitors (HMTi). 
DNA methyltransferase inhibitors (DNMTi) inhibit the activity of enzymes 
called DNA methyltransferases, which are responsible for adding methyl groups 
to the DNA (Table 2). Examples of DNMTi include Azacytidine and Decitabine 
[100]. They are approved for the treatment of myelodysplastic syndromes and 
acute myeloid leukemia [101] [102]. Histone deacetylase inhibitors (HDACi) [27] 
impede the activity of enzymes called histone deacetylases, which are responsible 
for removing acetyl groups from histones. Vorinostat (Zolinza), Romidepsin 
[103], Belinostat (Beleodaq) and Panobinostat [104] are Epigenetic modulators 
such as the HDAC inhibitors [105] [106]. Histone methyltransferase inhibi-
tors (HMTi) [28] deter the enzymes called histone methyltransferases, which 
are responsible for adding methyl groups to histones. Histone methyltransfe-
rase inhibitors (HMTi) include 3-deazaneplanocin A (DZNep) [107] and Chaeto-
cin [108]. Bromodomain and extra-terminal domain (BET) inhibitors responsible 
for recognizing and binding to acetylated lysine residues on histones [109]. Ex-
amples of BET inhibitors include JQ1, I-BET762 and OTX015. Several candidate 
molecules that targets G9a, EZH2 and GLP genes are Histone lysine methyltras-
ferase inhibitors (HLMi) in early stages of development and clinical trials as can-
cer therapeutics [110] [111]. Epigenetic modulation of miRNA (miRNA based 
therapies) has been developed to modulate the expression of specific miRNA and 
target the epigenetic mechanisms that regulate gene expression [29]. Several an-
tisense oligonucleotides are being studied in clinical trials. 
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Table 2. Epigenetic drug targets. The development of drugs targeting epigenetic modifi-
cations is a promising field that holds great potential for the treatment of a wide range of 
diseases, including cancer. The increasing understanding of the molecular mechanisms 
underlying epigenetic modulation of gene expression and the development of new tech-
nologies are expected to drive further progress in this field. 

Mechanisms Drugs References 

DNA Methyltransferase  
Inhibitors (DNMTi) 

Azacytidine, Decitabine [26] [100] 

Histone deacetylase  
inhibitors (HDACi) 

Vorinostat, Belinostat Romidepsin, 
Panobinostat 

[27] [103] [104] 

Histone methyltransferase  
inhibitors (HMTi) 

3-deazaneplanocin A (DZNep), 
Chaetocin 

[28] [107] [108] 

Histone lysine methyltrasferase 
inhibitors (HLMi) 

G9a, EZH2, GLP [110] [111] 

Bromodomain and extra-terminal 
domain inhibitors (BETi) 

JQ1, I-BET762 and OTX015 [109] 

Epigenetic modulation of miRNA Antisense Oligonucleotides (ASOs) [29] 

9. Methylation Changes in Cancers  

In the context of cancer, methylation analysis can be used to detect methylation 
patterns in specific genes that are associated with the development and progres-
sion of cancer [112] [113]. Methylation of certain genes, such as tumor suppres-
sor genes, can lead to the silencing of these genes and contribute to the devel-
opment of cancer. For example, methylation of the promoter regions of genes 
such as p16INK4a, BRCA1, and RASSF1A have been observed in several types of 
cancer, including breast [81], colon [82], and lung cancer [83], respectively. Sev-
eral methods are currently used to analyze methylation patterns in cancer, and 
these methods allow for the detection of methylation patterns at specific sites in 
the genome and can identify individuals at high risk of developing certain types 
of cancer. Methylation analysis can also be used to monitor treatment response 
and detect recurrence by monitoring the changes in methylation patterns over 
time. This can provide a non-invasive method of monitoring cancer progression 
and treatment response, which can be useful for patients who cannot undergo 
invasive procedures. 

Methylation-based cancer screening aims to identify individuals at high risk of 
developing certain types of cancer by analyzing methylation patterns in DNA 
samples obtained from blood, urine, or other bodily fluids [114] [115] [116]. The 
goal of early cancer screening is to detect cancer at an early stage, when it is most 
treatable, and can reduce the mortality rate.  

Colon Cancer 
Colon cancer is a type of cancer that starts in the colon or rectum and is 

caused by the abnormal growth of cells in the lining of the colon [117]. In colon 
cancer, methylation of certain genes has been found to play a role in the devel-
opment and progression of the disease. One of the most commonly methylated 
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genes in colon cancer is APC [118]. The APC gene is a tumor suppressor gene, 
and its inactivation through hypermethylation is a key event in the development 
of colon cancer. Methylation of this gene leads to the loss of its function and al-
lows the accumulation of mutations in other genes that promote cancer growth 
[119]. Another gene that is frequently methylated in colon cancer is MLH1 [120] 
[121]. This gene plays a role in DNA mismatch repair, and its inactivation through 
methylation can lead to the accumulation of mutations in other genes, which 
promote the development of colon cancer. Promoter methylation of other genes 
such as RASSF1A, CDKN2A, and NDRG4 have also been observed in colon 
cancer, and they are considered as tumor suppressor genes, their inactivation 
through methylation can contribute to cancer progression [122]. 

Lung and Breast Cancers 
In lung cancer, the methylation of the tumor suppressor gene p16INK4a has 

been observed in lung cancer and is associated with poor prognosis [123]. The 
loss of methylation in the p16INK4a promoter results in the inactivation of the 
gene and the loss of its tumor suppressor function. Another example is the acti-
vation of oncogenes through the loss of methylation in the promoter regions. 
Methylation can also occur in repetitive elements such as transposable elements, 
leading to genomic instability, which is a hallmark of cancer. In addition, me-
thylation-based therapies are being developed to target specific genes in lung 
cancer.  

In breast cancer, the methylation of the tumor suppressor gene BRCA1 has 
been observed in breast cancer, which is associated with poor prognosis. The 
loss of methylation in the BRCA1 promoter results in the inactivation of the 
gene and the loss of its tumor suppressor function. Hypomethylation in the 
promoter of the c-myc oncogene has been also observed in breast cancer. Me-
thylation-based therapies that target RASSF1A gene in breast cancer are being 
developed [124].  

10. Methylation Analysis Technologies 

There are several methods used to analyze methylation patterns in the DNA, 
each with their own advantages and limitations. Some of the technologies can be 
also used in the analysis of methylation in cf DNA. 

Methylation-specific PCR (MSP) uses PCR amplification to specifically target 
methylated or unmethylated regions of the DNA. The amplified DNA is then ana-
lyzed by gel electrophoresis to determine the presence or absence of methylation 
[88] [125]. MSP is a sensitive and specific method, but it can only be used to ana-
lyze a limited number of specific regions of the DNA. Bisulfite sequencing method 
uses bisulfite treatment to convert unmethylated cytosines to uracils, while methy-
lated cytosines remain unchanged. The treated DNA is then sequenced, and the 
presence or absence of methylation can be determined by comparing the sequence 
of the treated DNA to the original DNA sequence. Bisulfite sequencing is a highly 
sensitive and specific method, but it is also time-consuming and expensive [125]. 
Methylation-specific restriction enzymes (MSREs) are a class of enzymes that spe-
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cifically recognize and cut methylated DNA sequences. These enzymes can be 
used to analyze methylation patterns in the DNA by cutting only the methylated 
regions of the DNA and leaving the unmethylated regions intact. One of the 
most commonly used MSREs is HpaII, which recognizes and cuts the sequence 
CCGG, only when it is methylated. Another commonly used MSRE is MspI, 
which recognizes and cuts the sequence CGG, only when it is methylated. By 
cutting only the methylated regions of the DNA, these enzymes can be used to 
analyze the methylation status of specific genes or regions of the genome. The 
use of MSREs in combination with other techniques, such as gel electrophoresis 
or PCR, Sequencing allows for the detection and quantification of methylation 
patterns in the DNA [126].  

Illumina Infinium Methylation Array methodology used in this technique in-
volves bisulfite conversion of the genomic DNA followed by its amplification 
and hybridization of the bisulfite converted DNA to the already designed probes 
of arrays. The probes can differentiate between the methylated and unmethy-
lated cytosines based on the sequence of provided DNA. The most potentially 
used array is Illumina’s Infinium HumanMethylation450 BeadChip which has 
the capacity of identifying more than 480,000 methylated sites covering about 
96% islands, 92% shores, and 86% shelves [91]. This widely used array data of 
about 19 different cancer types is present in the public repository Genomic Data 
commons (GDC) data portal. This data is a part of The Cancer Genome Atlas 
(TCGA) and is utilized to discover many cancer biomarkers for early detection 
and diagnosis of cancer.  

 
Table 3. Summarized experimental techniques for methylation analysis. 

Methylation  
Analysis technique 

Advantages Limitations Example References 

Whole genome bisulfite  
sequencing (WGBS) 

Investigate almost all the 
CpG sites in the genome 

Costly and might cause  
degradation of DNA after  
bisulfite treatment 

WGBS revealed Breast 
cancer biomarkers [127] 

[128] 

Methylation DNA  
Immunoprecipitation  
(MeDIP) 

Specific to methylation 
of cytosine based on the 
antibody 

Cannot identify individual CpG 
site and mostly biased towards 
DNA hypermethylation 

Methylation analysis  
using MeDIP technique 

[129] 

Comprehensive High 
Throughput arrays for  
relative methylation 
(CHARM) 

Examine genome-wide 
CpG sites regardless of 
their closeness to the 
gene or CGIs 

Restricted to regions near to 
recognition sites of enzymes 

Altered DNA methylation 
is found in CGI shore in 
Colon cancer [130] 

[131] 

Illumina Infimium  
Methylation Assay 

A cost-efficient method 
and require less DNA 
quantity 

Limited because of array designs 
and degradation of DNA might be 
possible due to bisulfite treatment 

Breast cancer biomarkers 
identified using  
microarray [132] 

[133] 

TET-assisted Bisulfite  
Sequencing (TAB) 

  
DNA demethylation levels 
identified in prenatal 
germline [134] 

[134] 

Reduced Representation  
Bisulfite Sequencing (RRBS) 

High coverage and  
sensitivity of CGIs 

Limited coverage at distal  
regions and intergenic regions 

Liver methylation  
patterns found [135] 

[135] 
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Table 3 summarizes some experimental approaches that are widely used in 
the discovery of Genome-wide methylation analysis to identify epigenomic bio-
markers of cancer and many other disorders. These biomarkers can be utilized 
as indicators for early detection and diagnosis of many diseases. 

Bisulfite Sequencing for Methylation Analysis 
Bisulfite sequencing is a technique used to analyze the methylation status of 

specific regions of DNA, such as promoter regions of genes [136]. The method 
relies on the conversion of unmethylated cytosine residues to uracil by treatment 
with bisulfite, while methylated cytosine residues remain unchanged. The re-
sulting DNA is then sequenced and analyzed to determine the methylation sta-
tus of specific regions [136]. 

The process of bisulfite sequencing can be divided into several steps: 
1) Bisulfite treatment: The DNA sample is treated with bisulfite, which con-

verts unmethylated cytosine residues to uracil while leaving methylated cytosine 
residues unchanged [137]. 

2) PCR amplification: The bisulfite-treated DNA is then amplified using PCR 
with primers specific to the region of interest. 

3) Sequencing: The amplified DNA is then sequenced using a high-throughput 
sequencing platform, such as Illumina or PacBio. 

4) Data Analysis: The resulting sequencing data is analyzed to determine the 
methylation status of specific regions. The methylation status of each cytosine 
residue is determined by comparing the ratio of C’s to T’s at each position in the 
sequence [138]. 

Bisulfite sequencing is a powerful and widely used method for methylation 
analysis, as it allows for the high-resolution analysis of methylation patterns, in-
cluding single-base resolution. However, it has some limitations, it can only be 
used for the analysis of CpG dinucleotides, and it may not detect other types of 
methylation, like non-CpG methylation. 

In bisulfite DNA sequencing, genomic DNA is first treated with sodium bisul-
fite, which converts unmethylated cytosine residues into uracil, but leaves me-
thylated cytosines unchanged. The converted DNA is then amplified using po-
lymerase chain reaction (PCR) and sequenced. The resulting sequencing data 
can be used to identify methylated cytosine residues and infer the pattern of 
DNA methylation across the genome. The whole methodology and the steps in-
volved in this technique are shown in Figure 3. 

Bisulfite sequencing is a powerful and widely used method for methylation 
analysis, but it also has some limitations [139]. Some of the main limitations of 
bisulfite sequencing include: 

Limited to CpG dinucleotides: Bisulfite sequencing is only able to detect me-
thylation at CpG dinucleotides, which make up a small portion of the genome. 
Therefore, it is not able to detect other types of methylation, such as non-CpG 
methylation. 

Low sensitivity: Bisulfite sequencing has a relatively low sensitivity, meaning it 
may not detect all methylated sites in the genome. The sensitivity of the method  
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Figure 3. Steps involved in the bisulfite DNA sequencing. In bisulfite DNA sequencing, 
genomic DNA is first treated with sodium bisulfite, which converts unmethylated cyto-
sine residues into uracil, but leaves methylated cytosines unchanged. The converted DNA 
is then amplified using polymerase chain reaction (PCR) and sequenced. The resulting 
sequencing data can be used to identify methylated cytosine residues and infer the pattern 
of DNA methylation across the genome. 

 
is also affected by factors such as the quality and quantity of the DNA sample, 
the sequencing platform used, and the data analysis method. 

High cost: Bisulfite sequencing is a relatively expensive method, as it requires 
the use of high-throughput sequencing platforms, which are costly to use. 

Complexity: Bisulfite sequencing requires a relatively complex protocol that 
involves multiple steps, including bisulfite treatment, PCR amplification, and se-
quencing. 

False-positive and False-Negative: The bisulfite sequencing method can lead 
to false-positive and false-negative results, especially when the bisulfite treat-
ment is not thorough enough, or when the PCR amplification is not efficient [6]. 

Limited to a specific region: Bisulfite sequencing is limited to a specific region 
of interest and therefore it doesn’t provide a comprehensive view of the methyla-
tion patterns of the genome [139]. 

Methylation-Specific Restriction Enzyme Sequencing (MSRE-seq) Analysis  
Methylation-specific restriction enzyme analysis (MSRE) is a technique used 

to detect and analyze DNA methylation patterns [126]. The method relies on the 
recognition of specific sequences by restriction enzymes that are sensitive to 

m  m
ATATCGCGATATATAT          ATATCGCGATATATAT

bisulfite conversion
m  m

ATATCGCGATATATAT          ATATCGCGATATATAT

methylated locus           unmethylated locus

Bisulfite 
DNA

dsDNA 
Conversion

End Repair
dA Tailing

Adapter
Ligation

Size Selection

Amplification
Purification

NGS Analysis
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methylation. By cutting or not cutting the DNA at specific sites, the method al-
lows for the identification of methylated or unmethylated regions of the genome. 
The process of MSRE can be divided into several steps including end-repair and 
A-tailing, adapter ligation, PCR amplification, size selection, and next genera-
tion sequencing. The DNA sample is digested with a restriction enzyme that re-
cognizes a specific sequence and is sensitive to methylation (Table 4). For ex-
ample, the restriction enzyme HpaII recognizes the sequence CCGG, and SacII 
identify the sequence of GCGG and cuts the DNA only when the cytosine resi-
dues are unmethylated [140]. The human genome has 63,266 target sites for the 
SacII enzyme, and only cuts for hypomethylated sites (Figure 4).  

 
Table 4. The table lists MSREs that may be useful for epigenetics analyses. These enzymes 
are commonly used in the study of epigenetic modifications, such as DNA methylation, and 
can be used for various applications, including DNA methylation analysis, genomic bisulfite 
sequencing, and ChIP-seq (chromatin immunoprecipitation followed by next-generation 
sequencing). 

Restriction Enzyme Recognition Sequence 

Aat II GACGT↓C 

Acc II CG↓CG 

Aor13H I T↓CCGGA 

Aor51H I AGC↓GCT 

BspT104 I TT↓CGAA 

BssH II G↓CGCGC 

Cfr10 I R↓CCGGY 

Cla I AT↓CGAT 

Cpo I CG↓GWCCG 

Eco52 I C↓GGCCG 

Hae II RGCGC↓Y 

Hap II C↓CGG 

Hha I GCG↓C 

Mlu I A↓CGCGT 

Nae I GCC↓GGC 

Not I GC↓GGCCGC 

Nru I TCG↓CGA 

Nsb I TGC↓GCA 

PmaC I CAC↓GTG 

Psp1406 I AA↓CGTT 

Pvu I CGAT↓CG 

Sac II CCGC↓GG 

Sal I G↓TCGAC 

Sma I CCC↓GGG 

SnaB I TAC↓GTA 
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Figure 4. Analysis of differentially methylated regions (DMRs) by Methylation-sensitive 
restriction enzyme sequencing (MSRE-seq) techniques. The method takes advantage of 
the specificity of methylation-sensitive restriction enzymes, which recognize and cleave 
specific DNA sequences only when they are methylated. In MSRE-seq, DNA is first treated 
with a methylation-sensitive restriction enzyme, which cleaves the DNA at specific sites 
based on the presence or absence of methylation. The resulting DNA fragments are then 
amplified using polymerase chain reaction (PCR) and sequenced. 

 
MSRE is a relatively simple and cost-effective method for methylation analy-

sis, as it allows for the detection of methylation patterns at specific sites in the 
genome. It requires small number of samples to do the analysis compare to bi-
sulfite treated samples. However, it has some limitations, it can only be used to 
analyze a limited number of sites at a time and it may not provide a comprehen-
sive view of the methylation patterns of the genome [141]. 

11. Conclusions 

In conclusion, methylation analysis in cell-free DNA (cfDNA) samples is a po-
werful tool for biomarker discovery in various diseases. Methylation, the process 
by which methyl groups are added to the DNA, can lead to changes in gene ex-
pression that can be used as biomarkers to indicate the presence or progression 
of a disease. cfDNA methylation analysis can be used to detect methylation pat-
terns in specific genes that are associated with the development and progression 
of diseases such as cancer. It is non-invasive method of detecting biomarkers 
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that can provide early detection and monitoring of the disease. 
Methods such as Methylation specific PCR (MSP), bisulfite sequencing and 

methylation-specific restriction enzyme analysis (MSRE) can be used to detect 
methylation patterns in the genome. Methylation analysis in cfDNA can offer re-
volutionary way of monitor treatment response and detect recurrence by moni-
toring changes in methylation patterns over time. Overall, methylation analysis in 
cfDNA samples has enormous potential as a biomarker discovery tool in various 
diseases, including cancer, neurodegenerative disease, cardiovascular disease, ag-
ing and others. It has the possibility to improve early diagnosis, treatment moni-
toring, and recurrence detection, providing a non-invasive method of monitoring 
disease progression and treatment response as well as discoveries of targets for 
novel disease treatment. The discovery of methylation biomarkers in cfDNA is 
a new and exciting development in the field of epigenetics. The potential of 
cfDNA methylation biomarker analysis for disease diagnosis, treatment moni-
toring, and prognosis prediction is still being explored and is expected to lead to 
new and innovative strategies for disease care and patient treatment. 
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