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Abstract 
A kimberlite field, represented by fertile and sterile kimberlite pipes (chim-
neys) is located in the region of Kenieba (West Mali, Kédougou-Kenieba in-
lier, West African Craton). Thirty pipes and kimberlite dykes have been iden-
tified in the birimian formations, composed mainly of metasediments and gra-
nitoids, covered by sedimentary formations (sandstones and conglomerates) of 
Neoproterozoic age. All these formations are injected with dykes and doleritic 
sills of Jurassic age. The study of kimberlite pipes is still stammering in Mali, 
and thus no previous study has allowed to characterize the structures control-
ling their implementation. The reinterpretation of aeromagnetic data vali-
dated by field work indicates that the major structures of the Kenieba region 
are oriented NNE-SSW, NE-SW, E-W and NW-SE. These structures (faults and 
kimberlite pipes) are often associated with dolerite dykes, which would imply 
an injection of dolerite magma into the other formations. The location of the 
known kimberlite pipes makes it possible to say that the direction NW-SE is 
the most favorable for the exploration of kimberlites in the region of Kenieba. 
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1. Introduction 

The Kenieba kimberlite field in western Mali (West African Craton, WAC) is 
characterized by kimberlite pipes (chimneys), gem-quality diamonds and indi-
cator minerals [1]. The results of previous works show that some of the hig-
hlighted pipes contain microdiamonds with low economic potential, and that 
miners frequently announce the discovery of large diamonds in the alluvium. 

Intrusions located, approximately, more than ten kilometers from the city of 
Kenieba, were highlighted by BRGM during the year 1958. These rocks have 
been identified as kimberlites. This discovery caused a sudden and growing in-
terest in this area, for exploration in the 1960s. The age of implementation of 
kimberlite intrusions in West Africa was determined by the work of [2], who 
used the Rb/Sr method on phlogopite. They got an age of 1072 Ma for a chimney 
in Sékonomata near Kenieba. This age corresponds to the establishment of the 
Neoproterozoic sandstone formations crossed by the intrusions of doleritic sills 
and dykes [3].  

Structurally, the work of [4] shows, through a geophysical study, that the ma-
jor structures affecting this part of the West African craton are linked to: 1) the 
opening of the Atlantic Ocean with a NW-SE orientation; 2) Pan Africa with 
N-S to NNE-SSW guidelines; 3) some structures associated with the establish-
ment of the Taoudéni basin during a rifting with NE-SW and E-W orientations; 
4) Eburnean orogenesis with NW-SE orientations at ENE-WSW. The works on 
swarms of mafic dykes indicate NE-SW to NW-SE directions [5]. The use of 
aeromagnetic data revealed several directional structures NW-SE [6], N-S (Se-
negalese-Malian shear zone in the western part of the study area and NE-SW 
(Kédougou-Kenieba shear zone) [7]. 

The objective of this work is to understand the conditions of formation of Ke-
nieba kimberlites in order to bring new arguments for the diamond exploration 
sector in Mali. Aeromagnetic images were therefore used to understand the struc-
tures favoring the formation of these kimberlites. Known pipes are interpreted 
and new targets are proposed. 

2. Geological and Tectonic Settings 

The study area belongs geologically to the Kédougou-Kenieba Inlier (KKI), 
which is included in the WAC, of which it formed a central-western margin [8] 
[9]. The KKI is made up of metavolcanic, metavolcano-sedimentary and intru-
sive formations [10] [11], as shown in Figure 1. 

The Birimian formations are deformed and metamorphosed, mainly in 
greenschist facies, and were structured during the Eburnean orogeny, which is 
dated at around 2270 - 1960 Ma [9]. They are bounded to the east by the vast se-
dimentary cover of the Neoproterozoic domain. The kimberlite pipes intersect 
the Paleoproterozoic formations of the Kenieba plain and the Neoproterozoic 
formations of the Tambaoura [12]. 

Kimberlites from Mali are intrusive in both Birimian rocks and Neoprotero-
zoic sandstones, but have greater abundance in the Birimian domain.  
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Figure 1. Map of West Africa showing the ages of the major terranes, modified from the 
Geological Survey of Canada 1:35 M map of the world [14], in [3], showing the approx-
imate limit of the present day WAC as a heavy dashed line (after [15]). The study zone is 
indicated in red rectangle. AGD: Ahmeyim Great Dyke; ATS: Aousserde Tichla swarm. 
Two-letter country codes: BF: Burkina Faso; CI: Cote d’Ivoire; DZ: Algeria; GH: Ghana; 
GM: The Gambia; GN: Guinea; GW: Guinea Bissau; LR: Liberia; MA: Morocco; ML: Mali; 
MR: Mauritania; NE: Niger; SL: Sierra Leone; SN: Senegal; and TO: Togo. 

 
The first discovery of diamonds in the Kenieba region was made by gold min-

ers in 1954. Subsequently, several kimberlite pipes were identified as part of the 
extensive exploration work [12]. The diamond of the Kenieba region is found in 
alluvium and/or kimberlite pipes. 

Knowledge of Mali’s geology has been considerably enhanced by a cooperative 
program between the government of the Republic of Mali and the BRGM/Geo- 
system Maps consortium, which led to the production of the 1:200,000 geologi-
cal map [13]. The rocks of the Malian part of the Kédougou-Kenieba inlier are 
associated with the Eburnean orogeny dated approximately between 2000 and 
2600 Ma. 

Haggerty [16] estimated that the kimberlites of Mali were “associated” with 
those of Liberia and that all were structurally controlled by the Archean subsoil 
complex of the Leo Ridge. This author clearly identifies a structural relationship 
between the Liberian kimberlites and that of Kenieba. Although the majority of 
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known kimberlites in West Africa are restricted to the Liberian domain, di-
amonds have however been discovered in Birimian suggesting that an overall 
distribution of kimberlites in this part could be expanded beyond the Liberian 
(Figure 2) [17] [18] [19] [20] [21]. 

A large portion of the West African kimberlites is dyke type that is associated 
with structures with an overall E-W trend. But conjugate trends have been 
mapped in Guinea with approximately N-S or NE-SW directions [22]. In Mali, 
we have NW-SE and E-W (Delys Dyke) management. Major structures (shear 
zones, faults, fractures, sills and doleritic dykes) have N-S, NE-SW, NW-SE and 
E-W directions [4] [5] [6] [7] (Figure 3). 

3. Data Used and Methodology 
3.1. Data 

The magnetic data used in this study come from aeromagnetic surveys carried 
out between 1996 and 1997 by the company High-Sense Geophysics, on behalf 
of the Ministry of Mines, Energy and Water of the Republic of Mali. The aero-
magnetic coverage was conducted at a flight altitude of 100 m following the 
N65E oriented profiles and spaced 200 m apart, with a magnetometer recording 
sensitivity of more or less 0.001 nT. 

After correction of the measurements due to the temporal variation of the 
magnetic field, the data of total magnetic intensity (TMI), were deducted by 
making the difference between the measured field and the fraction of the regional 
field taken from the 1995 IGRF model. The TMI grid was then developed using 
the minimum curvature as the interpolation method for a 100 m sampling step 
(Figure 4(a)). A reduction at the pole was applied to the TMI grid in order to 
bring back the anomalies observed vertically from their causative sources. This was 
done by selecting a point in the center of the magnetic anomalies map (−11.25˚E 
and 12.92˚N), with tilt values (I = 4.509˚) and declination (D = −8.093˚) from the 
1995 IGRF model. The RTP map obtained, which is the basic data used for the 
different treatments performed in this study, is given in Figure 4(b). 

 

 

Figure 2. Regional repartition of assumed kimberlites (K) in West Africa [17]. 
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Figure 3. Global repartition and orientation of West African mafic dykes as mapped 
in this and previous studies [3], modified. 

3.2. Methodology 
3.2.1. Spectral Analysis 
Spectral analysis has been widely used by many authors to determine the depth 
of magnetic and gravimetric anomalies [23]-[32]. 

Magnetic anomalies can be properly treated as a spatial series applicable to 
Fourier synthesis and analysis without affecting the intrinsic appearance of the 
anomalies [26] [27]. Spectral analysis does not require a priori knowledge of the 
geometry or density contrast of the bodies responsible for the observed anoma-
lies. It simply requires the study of spectral energy as a function of wavelength 
[29] [30] [32] [33]. Near-surface sources will thus give a flatter power spectrum, 
while deeper sources will give a steeper power spectrum [26] [27]. The depth (h) 
of an interface can be obtained using the formula of [23] given by “Equation 
(1)”. 

( ) ( )Log 4πh E n= ∆ ∆                      (1) 

where E represents the energy spectrum; Δ(LogE) is the variation of the loga-
rithm of the energy spectrum in the frequency interval Δ(n). 
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Figure 4. (a) Total Magnetic Intensity (TMI) map; (b) Map of the Re-
duced to The Pole (RTP). 
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3.2.2. Vertical Derivative (DZ) and Analytical Signal (SA) 
The vertical derivative filter amplifies the effect of surface sources by mitigating 
the effect of deep sources. This filter enhances the relief of a near-surface ano-
maly by allowing its geometric boundaries to be further defined [34] [35]. In this 
study, it is mainly used in structural interpretation and the relationship between 
deep and superficial structures. The operator of the vertical derivative of order n 
is given by Equation (2). 

( )2 2 n

DV x yO k k= +                         (2) 

Regarding the analytical signal method, it was first described by [36] [37] [38] 
as a complex field deriving from a complex potential. This method does not re-
quire knowledge of source parameters or ambient magnetic field parameters 
[32]. It is very effective in highlighting areas of intrusion or geological contacts. 
This technique has been used in many studies, not only for structural interpreta-
tion but also to highlight areas of deep geological formations or contacts or un-
der cover [32] [39]. 

The mathematical expression of the amplitude of the analytical signal (AAS) 
proposed in 1984 by Nabighian [38] and which is a function of the horizontal 
derivative (following x and following y) and the vertical derivative z is given by 
Equation (3). 

( ) ( ) ( ) ( )2 2 2
, , ,

AAS ,
f x y f x y f x y

x y
x y z

∂ ∂ ∂     
= + +     

∂ ∂ ∂     
       (3) 

3.2.3. Euler Deconvolution (ED) 
This technique is very often used to automatically estimate the location and 
depth of magnetic and gravimetric sources [30] [39] [40] [41] [42]. This method 
was established by [43] and was applied mainly to real magnetic data along the 
profiles. 

Using Thompson’s approach [43] [44] developed the equivalent grid method. 
The mathematical expression of Euler 3-D deconvolution given by [44] is repre- 
sented by Equation (4). 

( ) ( ) ( ) ( )0 0 0x x T y y T z z T
N B T

x y z
− ∂ − ∂ − ∂

+ + = −
∂ ∂ ∂

           (4) 

With: (x0, y0, z0): position of the anomaly source; (x, y, z): position of the ob-
server; T: magnetic or gravimetric field detected at (x, y, z); B: regional value of 
the total field; N: degree of homogeneity often called structural index. 

4. Results 

On the RTP map (Figure 4(b)), important positive and negative anomalies of 
very varied shapes and intensities can be observed: 

• The negative anomalies whose amplitudes vary from −120.3 to 0 nT are lo-
cated mainly in the north of Yatia and in the SE frame of the study area. These 
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are diamagnetic formations that can correspond to sedimentary formations. Al-
though, uniform in their distribution, these areas of negative anomalies are lit-
tered with positive anomalies of very small extent that may correspond to vol-
canic formations or intrusive bodies; 

• Positive anomalies with amplitudes ranging from 39.5 to 296.8 are much 
more widespread and correspond to ferromagnesian materials. They have both 
circular (Yatia anomaly) and rectilinear (E-W anomaly of the Farina-Koufara 
axis north of the study area). Circular anomalies may correspond to granitic in-
trusion zones like the positive Yatia anomaly, while rectilinear anomalies may be 
interpreted as lineaments, fault zones or doleritic dykes. On the NE-SW anomaly 
corridor passing through the Kofeba-Fatako axis, a set of structural features can 
be observed from the relief of rectilinear anomalies and these geological struc-
tures can be interpreted using specific filters. 

In order to evaluate the average maximum depth associated with the RTP grid 
(Figure 4(b)) and thus define the different depth domains, a 2D radial spectrum 
was applied to the RTP grid. The spectrum obtained (Figure 5) highlights the 
average depth slices (roof and wall) corresponding to the four information do-
mains searched. According to this spectrum, the average maximum depth of the 
deep sources is 1339.65 m, while those of the intermediate sources are, in des-
cending order, 206.61, 95.62 m and 17.36 m (Figure 5). Unlike the others, the 
17.36 m depth corresponds to that of near-surface formations and structures, 
and is the least accurate because it incorporates noise (or Nyquist frequency) 
generated by the method used as one approaches the surface. 

To enhance the relief of magnetic anomalies associated with geological struc-
tures, a vertical derivative (DZ) filter was applied to the RTP grid. Analysis of the 
resulting DZ map (Figure 6(a)) reveals a series of structural features. Despite a 
decrease in intensity and volume, the circular positive anomaly associated with the 
Yatia granite is visible on the DZ map, demonstrating that this granitic formation 

 

 
Figure 5. Result of spectral analysis of the RTP grid. 

https://doi.org/10.4236/ojg.2023.1311050


B. Traore et al. 
 

 

DOI: 10.4236/ojg.2023.1311050 1185 Open Journal of Geology 
 

 

 
Figure 6. (a) Vertical derivative map; (b) Synthesis structural map. 1: Names of local-
ities; 2: Samples of diamondiferous kimberlites; 3: Samples of non-diamondiferous 
kimberlites; 4a and 5b: Dolerites; 4b: Interpreted faults. 
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outcrops at the surface. The positive E-W anomaly along the Farina-Koufara 
axis has also decreased in intensity and volume. The structural feature enabling 
us to identify the line of this E-W anomaly on the DZ map, leads us to under-
stand that it is covered by superficial deposits but that its roof is fairly close to 
the surface. 

The general interpretation of the various structural features of the DZ map 
has led to the development of a synthetic structural model (Figure 6(b)). This 
model, whose major axis in the shape of a ponytail is oriented NE-SW, defines a 
set of dexter and sinistral wrench faults. 

Correlative analysis of the spatial distribution of diamondiferous and non- 
diamondiferous kimberlite samples collected in the study area, with the inter-
preted structures (Figure 6(a) and Figure 6(b)), shows that they are predomi-
nantly located in fault zones. As kimberlites are generally associated with 
deep-seated structures, to identify faults in the structural model in Figure 6(b) 
that meet this criterion and thus delineate the geometry of target anomalies, an 
analytical signal (AS) filter was applied to the RTP grid (Figure 7(a)). 

Analysis of the AS map shows that most of the structures interpreted on the DZ 
map correspond at depth to anomalous zones that may be associated with the do-
lerite dykes observed in the study area. The distribution of diamondiferous and 
non-diamondiferous kimberlite samples on the AS map shows that these samples 
are also related to the doleritic dyke anomalies highlighted. These dykes, which are 
potential diamondiferous targets in the study area, are thought to be the product 
of a mixture of doleritic and diamondiferous magma lodged in fault zones. 

A categorization of the AS grid into ranges of 0.04 nT/m combined with the 
spatial distribution of the kimberlite samples enabled us to define the geometry of 
the various diamondiferous targets (Figure 7(b)) and their relationship with the 
structural model in Figure 6(b). To assess the depth of interpreted faults and 
dykes, the Euler deconvolution method was applied to the RTP grid for specific 
Euler parameters (structural index N = 0.1; tolerance Z = 5% and window W = 8). 

The distribution of Euler solutions compared with the plots of the various 
structures (Figure 8(a) and Figure 8(b)), shows that the depth of the interpreted 
structures varies from surface to a maximum depth of 400 m. A complete cate-
gorization of the AS grid into ranges of 0.005 nT/m, based on the variation in 
magnetic relief, shows the relationship between the interpreted structures and 
the basic geological formations of the study area (Figure 9(a) and Figure 9(b)). 

5. Discussion 

The Kenieba region (straddling the Birimian domain and the Neoproterozoic 
cover) was the site of diamond mining in the 1960s. However, very little explora-
tion works on the primary origin of the diamond has been completed. Earlier 
work on the kimberlites of the West African craton showed varied ages [17], as 
well as varied ages of the mafic dykes more or less associated with certain kim-
berlites [3]. The reinterpreted aeromagnetic data bring new insights, both struc-
turally, and in terms of prospecting targets for kimberlites. 
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Figure 7. (a) Analytical signal map; (b) Structural map and diamondiferous 
targets. 1: Locality names; 2: Kimberlite pipes; 3: Non-diamond-bearing 
kimberlite samples; 4: Interpreted faults; 5: Dykes derived from a mixture of 
doleritic and diamond-bearing magma. 
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Figure 8. (a) Analytical signal map; (b) Structural map and diamondiferous 
targets. 1: Locality names; 2: Kimberlite pipes; 3: Non-diamond-bearing 
kimberlite samples; 4: Interpreted faults; 5: Dykes derived from a mixture of 
doleritic and diamond-bearing magma. 
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Figure 9. (a) Base formations associated with the synthesis structural model; (b) Base 
formations associated with the structural model and diamondiferous targets. 1: Locality 
names; 2: Kimberlite pipes; 3: Non-diamond-bearing kimberlite samples; 4: Interpreted 
faults; 5a and 6b: Meta-volcano-sediments; 5b: Dykes derived from a mixture of dolerit-
ic and diamondiferous magma; 6a and 7b: Argillite-type metasediments; 7a and 8b: 
Granitic intrusions and Neoproterozoic sedimentary cover; 8a and 9b: Dolerites. 
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Aeromagnetic structures reveal several faults directions. The central part of 
the zone is marked by NE-SW to N-S structures, ending in a ponytail towards 
Koféba. E-W and NW-SE structures are also present throughout the zone. All 
these structures can be observed in the Birimian domain. Only NW-SE direc-
tions predominate in the Neoproterozoic sedimentary cover. 

The processing carried out (DZ map obtained) has enabled us to draw up a 
synthesis structural model which suggests that the known kimberlite pipes are 
located close to the structures, or at the junction with other structural elements, 
and therefore at depth. These structures, and some kimberlite pipes, are also as-
sociated with doleritic dykes. Most of the known pipes seem to trend in a NW-SE 
direction, following the magnetic structures and supposedly derived from a mix-
ture of doleritic and kimberlitic magma.   

Indeed, many relationships between dolerites (or diabases) have been described 
in Canada (as xenoliths in kimberlites) [45], Russia [46], and West Africa [47]. So, 
taking into account the relationships between pipes and dolerites, we have a 
good correlation between the two.  

Taking into account geochemical data, particularly from the dolerites of the 
Kenieba kimberlite field, and integrating them with geophysical and structural 
data would increase the potential for the discovery of new diamond exploration 
targets in the study area. 

6. Conclusions 

This study is based on the use of airborne geophysical data as a tool in diamond 
exploration in southwest Mali. 

The methodology adopted in this work consisted in reprocessing the available 
aeromagnetic data, followed by a geological field survey. 

Based on analysis of the airborne magnetic map, we have demonstrated for 
the first time in Mali a control model for structures associated with kimberlite 
pipes and their relationship with dolerite dykes. The results of this model have 
made it possible to locate kimberlites near or at the junction of structures oriented 
along NE-SW and NW-SE directions. Indeed, the majority of known pipes ap-
pear to be aligned in a NW-SE direction along the magnetic structures, possibly 
resulting from the injection of kimberlite and dolerite magmas.  

However, the quality of these data can be improved by integrating geochemi-
cal data on the dolerites located near the kimberlite field. 
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