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Abstract 
Leaf area index (LAI) is a key parameter for studying global terrestrial ecolo-
gy and environment and has great ecological significance. How to accurately 
measure and calculate structural parameters of trees has become an urgent 
matter. This paper reports the use of terrestrial laser scanning (TLS) as a mea-
surement tool to achieve accurate LAI estimation through point cloud pre-
processing measures, the LeWos algorithm, and voxel methods. The accuracy 
and feasibility of this indirect measurement method were explored. It is found 
that the single wood structure parameters extracted from TLS have a good li-
near relationship with manual measurement, and the extraction errors meet 
the requirements of real-scene conversion. The study also found when the 
voxel size is consistent with the minimum distance of the point cloud set by 
TLS instrument, it has a strong correlation with the measured value of canopy 
analyser. These results lay the foundation for conveniently and quickly ob-
taining structural parameters of trees, tree growth state detection, and canopy 
ecological benefit assessment. 
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1. Introduction 

Plant canopy is an important part of terrestrial ecosystem between atmosphere 
and soil matrix for organic matter synthesis and metabolism, which plays an 
important role in maintaining the balance of carbon and oxygen and the sus-
tainable development of human society [1]. Canopy structure further reveals the 
intrinsic genetic characteristics of plants and the role of the external environ-
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ment, and is closely related to natural phenomena such as light energy transmis-
sion, rainwater interception, transpiration loss, and ground temperature regula-
tion [2] [3] [4]. Leaf area index (LAI), as an important quantitative index to de-
scribe structure of plant canopy, is equivalent to structural characteristics and 
ecological significance of plant canopy, and has become a key parameter in study 
of global terrestrial ecology and environmental response [5]. 

LAI was initially used to quantitatively describe leaf growth and density 
changes at plant population level, but its connotation has also changed with the 
deepening of measurement methods and application levels [6]. At present, the 
mainstream definition is Chen’s “total unilateral area of leaf tissue per unit of 
ground surface area (m2/m2)” [7]. Over the years, the research and overview of 
LAI measurement methods can be summarized as direct measurement and in-
direct measurement. Direct measurement is usually in strict accordance with the 
definition of LAI, generally requires destructive sampling, and even whole plant 
harvest. Common methods include punching weighing method, grid method, 
pattern weighing method, etc. [8]. However, the whole process of direct mea-
surement is complex, time-consuming and labor-intensive, and is not suitable 
for large-area measurement, especially for tall trees. Indirect measurement is to 
derive LAI by using coupling relationship between plant canopy structure and 
surrounding radiation environment. The theory involves many parameters such 
as Beer-Lambert law, aggregation effect, zenith angle, azimuth angle and trans-
mittance [9] [10] [11]. The biggest advantage of indirect measurement is that it 
does not affect the normal growth and development of plants, and the access is 
convenient and quick. Optical sensors are widely used in indirect measurement 
methods. The commonly used instruments are LAI-2200 canopy analyzer, fi-
sheye camera, etc. [12]. However, traditional optical sensor has light saturation 
effect, which is easy to underestimate high LAI value. The main reason is that 
traditional optical sensor obtains two-dimensional information and lacks more 
vertical structure information inside canopy [13] [14] [15]. Compared with the 
limitations of traditional optical sensors, the emerging laser radar technology is 
increasingly favored by scholars. It can obtain fine three-dimensional informa-
tion of ground objects, retain vertical structure of canopy to the greatest extent, 
and effectively weaken light saturation limit. It has been widely used in the esti-
mation of leaf area index [16] [17]. 

Light detection and ranging (LiDAR), is an active remote sensing technology, 
which rapidly obtains 3D spatial information of ground objects through trans-
mitting and receiving laser signals and is reflected in computers in the form of 
“point cloud” (i.e. the collection of laser reflection points of ground objects’ sur-
face profiles) [18]. According to the sensor platform, it can be divided into 
ground, airborne and space-borne laser scanning technologies [19]. Generally, 
airborne and space-borne platforms have certain limitations in point cloud res-
olution and acquisition of horizontal and vertical structure information inside 
canopy. In order to be applicable to large-scale LAI estimation, a large amount 
of ground data is needed for verification and correction [20] [21] [22]. Terrestri-
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al laser scanning (TLS) has higher measurement accuracy, which can accurately 
construct tree crown structure through massive point clouds and reflect more 
depth information [23]. Common methods used to estimate LAI in TLS include 
hemispherical projection method and stereo pixel method. Hemispherical pro-
jection method is to project point clouds onto hemispherical surfaces by means 
of spheroidal plane projection or Lambert azimuth equal-area projection, then 
calculate porosity in two-dimensional planes, and finally deduce effective LAI 
[24]. The three-dimensional pixel method (i.e. the voxel method) divides point 
clouds according to the voxel grid and determines whether point clouds fall into 
the grid to calculate leaf area density (LAD). Finally, the LAI value is obtained by 
accumulating the LAD of each layer with vertical height [25]. Later, convex hull 
algorithm and echo conversion method were derived. These methods basically 
optimized the estimation of different parameters as much as possible on the 
original basis, and constantly improved the estimation of LAI [26] [27]. All these 
methods above indicate that LiDAR technique has three-dimensional advantages 
and far-reaching prospects for LAI inversion to varying degrees. 

At present, it is a generally accepted way to indirectly derive real LAI by using 
voxels to retain characteristics of real canopy structure. However, there are also 
problems of optimal voxel size and branch point cloud being included in the 
process, which affects the estimation accuracy of LAI. Wood components such 
as branches are often neglected in previous accurate calculation of LAI. There-
fore, this paper obtains a complete single tree point clouds through a variety of 
preprocessing methods, and then uses the LeWos algorithm to separate branch 
and leaf point clouds. Finally, a LAI voxel model that removes the wood com-
ponents and only includes the leaf point cloud is constructed to achieve accurate 
estimation of canopy LAI. The research results can provide a basis for large-scale 
LAI estimation using LiDAR sensors carried by drones or satellites, and further 
provide research ideas for monitoring the growth status of trees and evaluating 
the ecological benefits of canopy. 

2. Materials and Methods 
2.1. Sample Wood Setting 

The research site of this experiment was selected in the campus of Anhui Agri-
cultural University. Through field investigation, 10 landscaping tree species were 
selected, and 20 plants were sampled (Table 1). In order to accurately obtain a 
three-dimensional model of a single tree with complete structure, individual 
trees with no public facilities shelter near the ground and no obvious overlap-
ping of adjacent canopy branches and leaves are preferred. 

2.2. TLS Data Acquisition and Preprocessing 
2.2.1. TLS Setup and Target Sphere Placement 
The basic data required for this experiment were collected using TLS of Zhong-
haida HS450. The device can sensitively calculate time difference between pulse  
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Table 1. Species and amounts of trees. 

No. Species Amounts 

1 Koelreuteria paniculata Laxm. 2 

2 Cinnamomum camphora (L.) J. Presl 2 

3 Ligustrum lucidum W. T. Aiton 2 

4 Albizia julibrissin Durazz. 2 

5 Firmiana simplex (L.) W. Wight 2 

6 Metasequoia glyptostroboides Hu & W. C. Cheng 1 

7 Pinus massoniana Lamb. 3 

8 Magnolia grandiflora L. 3 

9 Platanus acerifolia (Aiton) Willdenow. 2 

10 Sapindus saponaria L. 1 

 
laser from the emission position to contact surface and then back to the receiver, 
and obtain the high-precision XYZ relative spatial coordinates of the contact 
point on outer surface of the object. It can complete the three-dimensional im-
aging with a horizontal perspective of 360˚ and a vertical perspective of 100˚. In 
order to fully collect the global details of the external contour of a single tree, 
three-station erection or multi-station erection method is used to carry out 
three-dimensional scanning operations around different directions of the same 
target. At the same time, in order to accurately splice multi-station point cloud 
data, it is necessary to evenly place multiple target balls with bright reflection 
surfaces in public field of view between stations, which can be used as a highlight 
overlap mark (i.e., constructing homonymous points) for fine stitching of each 
station image. 

2.2.2. TLS Data Preprocessing 
The original point cloud data of TLS need to go through the preprocessing steps 
of point cloud splicing, filtering and segmentation in turn, and then obtain the 
complete structural point cloud used to extract the DBH, crown width, tree 
height, first branch height and canopy volume parameters of single tree. The 
TLS processing scenario is shown in Figure 1. 

Point cloud stitching, that is, point cloud registration, is to find the spatial 
transformation relationship between the point sets of each station in different 
coordinate systems to match the homonymous points, so that the point sets of 
each station are unified into the same coordinate system, and the point clouds of 
the intersecting areas are completely overlapped. We use the iterative closest 
point (ICP) fine registration algorithm, which is based on the least square me-
thod. The rotation and translation parameters of the optimal rigid body trans-
formation are iteratively calculated according to the relationship point pairs 
generated by the matching of the homonymous point markers until they con-
verge to the millimeter-level accuracy requirement of complete registration [28].  
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Figure 1. TLS point cloud data acquisition and preprocessing (taking Sapindus mukorossi as an example). (a) HS450 model TLS 
equipment appearance. (b) By marking the target balls of each station to construct the corresponding relationship of the corres-
ponding points, the ICP registration algorithm is used to complete the precise splicing of the point cloud. (c) There are noise 
points in the original point cloud data, and the number of noise point clouds will be reduced after filtering; ground point recogni-
tion clearly divides the single tree and the ground, and completely extracts the single tree point cloud. (d) Canopy top view, which 
can be used to extract the crown. (e) The longitudinal section of the trunk, showing the details of the trunk. 

 
Generally, pairwise stitching requires at least three homonymous points, that is, 
the field of view of each station contains at least three target balls. 

Point cloud filtering is a key measure to improve the quality of point cloud 
data processing in the later stage. We limit the goal of filtering to removing dis-
crete point clouds that do not belong to or are easily confused with the target 
point cloud to eliminate external factors (such as light, personnel movement, 
etc.) or the noise generated by the instrument itself. Based on KD-tree principle, 
this paper calculates the Euclidean distance between adjacent point clouds in 
three-dimensional space, and identifies and eliminates outliers by setting the near-
est point number and threshold (usually the threshold is the standard deviation of 
the average distance from all points to adjacent points) [29]. 

Point cloud segmentation, that is, the pre-processed single tree point cloud is 
completely extracted from the root of the trunk to the tip of the tree. The main 
tasks include selecting the single tree site range and removing the ground point 
cloud. Due to the small amount of occlusion around each individual tree in this 
experiment, it is possible to manually select the box along the outer edge of the 
crown directly under the top view, while the ground point cloud can be identi-
fied using a simple morphological filter (SMRF) [30]. 

The structural parameters of DBH, crown width, tree height and first branch 
height of TLS single tree point cloud were measured in HDScene software. The 
canopy volume is obtained with self-compiled function in Matlab Software. 
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2.3. LAI Branch-Leaf Separation Voxel Model Theory 

In indirect measurement of LAI, Beer-Lambert law is the core theoretical basis, 
which is used to describe the attenuation law of light radiation through uniform 
medium. However, the plant canopy is not a homogeneous medium, and the 
distribution of leaves also shows certain aggregation characteristics, which can-
not meet the hypothesis of this law. Since then, considering the non-random 
distribution of canopy leaves [31], Chen and Black et al. constructed a classical 
model of canopy porosity and LAI that has been used so far, as shown in Equa-
tion (1): 

( ) ( )LAI cos ln P Gθ θ θ= − ⋅ Ω                    (1) 

where P is the canopy porosity, θ is the given incident light zenith angle, G is the 
extinction coefficient and Ω is the aggregation index. 

Although the classical LAI model takes into account the aggregation effect, it 
cannot distinguish the non-photosynthetic wood components such as leaves and 
branches. At the same time, the traditional optical instruments also have limita-
tions in the separation of branches and leaves, resulting in the estimated LAI 
values usually contain wood components such as branches, further causing con-
fusion between the measured LAI and its definition [32]. In contrast, the TLS 
point cloud data has the three-dimensional structural characteristics of individ-
ual trees, and there is obvious spatial separation between leaf clusters and 
branches, which provides data support for branch-leaf separation. 

LeWos is a general automatic unsupervised point cloud segmentation algo-
rithm developed by Wang et al., which only needs to pre-set a verticality (i.e., the 
absolute value of the Z-axis component of the normal vector) threshold between 
0.1 and 0.2 to complete branch and leaf separation [33]. The core of the algo-
rithm is based on the search of the point cloud network graph component con-
nection. The point cloud density and the verticality information of the point are 
added to the graph component construction, and then the point cloud connec-
tion node is recursively iterated, and the spatial connection points with similar 
characteristics are divided into branch clusters or leaf clusters. 

A voxel is a cube with the smallest volume size in a three-dimensional model, 
and its concept is similar to the pixels that make up a two-dimensional image. 
The voxelization process of point cloud data first needs to set the voxel size (∆x, 
∆y, ∆z) according to the range and resolution of TLS acquisition. At this time, 
the single-tree point cloud will be stored in the corresponding voxel as many as 
possible, and then the LAD at each height can be obtained by calculating the 
beam interception probability. Finally, the LAD of each layer is accumulated 
along the Z-axis direction to obtain LAI (denoted as LAITLS) as shown in Figure 
2. When using this method, the voxel containing the point cloud can be set to 
indicate that the light cannot be penetrated, and the corresponding voxel is en-
coded as 1; the direct transmission of voxel light without point cloud is encoded 
as 0. Refer to the LAI expression proposed by Hosoi and Omasa based on voxel  
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Figure 2. Leaf separation and point cloud voxelization (taking Koelreuteria paniculata as 
an example). (a) LeWos algorithm realizes branch and leaf separation of TLS point cloud 
data. (b) When the voxel size is 0.0288 m, the point cloud is stored in the voxel. 
 
method [25] (Equation (2)). Since the verification data of Equation (2) are de-
rived from small shrubs, the comprehensive influence of branches is small, and 
the branches of large trees observed in this experiment have a large occlusion of 
light. Therefore, we propose a LAI calculation model based on branch-leaf sepa-
ration point cloud data (Equation (3)). 

( )1 1 01LAI 1.1 h
k n n n
=

≅ × +∑                    (2) 

( )leaf leaf empty wood1LAI 1.1 h
k n n n n
=

≅ × + +∑               (3) 

where h is the tree height, k is the k-th layer tree height segmentation, n1 and n0 
are the number of voxels of the k-th layer height encoded as 1 or 0 respectively, 
nleaf, nempty and nwood are the number of voxels included in the k-th layer height 
leaf point cloud, no point cloud and branch point cloud respectively, 1.1 is the 
correction coefficient of the leaf angle when the incident light zenith angle is set 
to 57.5˚. 

2.4. Single Tree Structure Parameters and LAI Verification Data  
Acquisition 

The structural parameters of individual trees include DBH, crown width, tree 
height and first branch height. The DBH tape, fiber tape and ultrasonic altimeter 
were used for manual field measurement. The measurement results were used as 
the real values to evaluate the extraction accuracy of TLS structural parameters 
of individual trees, and provide basic data for analyzing the relationship between 
structural parameters of individual trees and LAI. 

Because this experiment cannot directly obtain the real LAI through the full 
harvest method, the LAI-2200 canopy analyzer was used to indirectly obtain the 
LAI verification data (recorded as LAI2200). The LAI-2200 canopy analyzer is 
composed of a host and an optical sensor stick. The optical sensor is a convex 
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“fisheye” lens with a viewing angle of 148˚, which can measure the light intensity 
changes of the upper and lower canopy at five different zenith angles (7˚, 23˚, 
38˚, 53˚, 68˚). The annular detector located inside the lens can send the light in-
tensity attenuation values of five zenith directions to the host, and then derive 
LAI through the built-in canopy radiation transmission model. In order to meet 
the observation conditions of heterogeneous tree canopy, it is necessary to 
choose a cloudy day with stable weather conditions or a sunny morning and 
evening period that avoids direct light exposure. In addition, interference factors 
such as shadow and trunk occlusion need to be avoided during measurement. 
Therefore, this experiment uses 90˚ and 180˚ cover caps to segment the observa-
tion area to reduce interference. In the actual operation, the light intensity values 
corresponding to the upper and lower parts of the canopy were recorded ac-
cording to the angle of the cover cap around the single tree level for one week, as 
shown in Figure 3. 

2.5. Data Analysis and Model Evaluation 

The accuracy of TLS extraction of individual tree structure parameters can be 
quantitatively evaluated by root mean square error (RMSE). The smaller RMSE 
indicates the higher accuracy. Pearson correlation coefficient and significance 
test were used to analyze the linear correlation between individual tree structure 
parameters and LAI, and to determine the rationality of LAI estimation by voxel 
model. The calculation formulas of RMSE and correlation coefficient are shown 
in formulas (4)-(5). 

( )2
1RMSE n

i ii x y n
=

= −∑                     (4) 

( )( )
( ) ( )

1

2 2
1 1

n
i ii

n n
i ii i

x x y y
r

x x y y
=

= =

− −
=

− −

∑
∑ ∑

                 (5) 

where ,i jy  is the i-th and j-th measured values, ,i jx  is the i-th and j-th TLS 
extracted values, ,x y  are the mean values of the two, respectively, and n  is 
the sample size. 
 

 
Figure 3. Measurement of LAI-2200 canopy analyzer. (a) Select 90˚ cover cap, according to 
the order of ABBBBABBBBA, repeat three times. (b) 180˚ cover cap, measured in ABBABBA 
order, repeated three times. The A value represents the light intensity of the upper canopy, 
and the B value represents the light intensity of the lower canopy. 
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3. Results and Analysis 
3.1. Accuracy Analysis of Single Wood Structure Parameters  

Extracted by TLS 

The DBH, tree height, crown width and first branch height extracted by TLS 
were compared with the results of manual measurement to quantitatively evaluate 
the instrument measurement accuracy of TLS. The results are shown in Figure 
4. It can be seen that there is a good linear relationship between the DBH, tree 
height, crown width and the first branch height extracted by TLS and the cor-
responding measured values, and the scatter points are roughly distributed near 
the 1:1 straight line. Among them, the RMSE value of the DBH extraction error 
is only 0.3087 cm, and the overall distribution of the scatter plot has no obvious 
high and low deviation tendency, which indicates that the trunk point cloud can 
accurately record the dry contour details. The extraction errors of tree height 
and crown width were also maintained at a low level as a whole, and the RMSE 
values were 0.3723 m and 0.3306 m, respectively, which further indicated that 
the single tree 3D model of TLS and the real tree also maintained good 
 

 
Figure 4. Scatter plot of extracted and measured values of four TLS single wood structure parameters. 
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consistency at the vertical height and crown width levels. By observing the scat-
ter distribution of the first branch, it is found that there is a certain degree of 
underestimation deviation between the TLS extraction value and the measured 
value. This error may come from the difference in the interpretation of the sur-
veyor at the critical position of the first branch. In general, the TLS extraction 
errors of the four single-tree structural parameters all meet the needs of real-world 
conversion, and the characteristics of trunks, branches and leaves of trees retain 
good authenticity. Therefore, we can directly use TLS data to estimate the real 
LAI. 

3.2. Correlation Analysis between LAITLS and LAI2200 with  
Different Voxel Sizes 

Based on the point cloud resolution (0.0288 m) set by the instrument during TLS 
measurement, eight gradients of voxel size non-equidistant setting 0.01 m, 0.03 
m, 0.05 m, 0.1 m, 0.15 m, 0.3 m, 0.6 m, 1.2 m were used to estimate the LAITLS of 
removing woody components, and the correlation analysis was performed with 
the LAI2200 measured by the canopy analyzer under the 90˚ and 180˚ cover caps, 
respectively (Figure 5). It can be seen from Figure 5 that there is a significant 
positive linear correlation between 90˚ LAI and 180˚ LAI observed by LAI-2200  
 

 
Figure 5. Correlation coefficient heat map of LAITLS and LAI2200 with different voxel sizes. 
Note: * indicates that there is a correlation between the two quantitative data. At this time, the 
correlation coefficient is meaningful. * indicates that the correlation is significant at the 0.05 
level test, and * * indicates that the correlation is significant at the 0.01 level test. 
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canopy analyzer, and the correlation coefficient r = 0.88, indicating that there are 
differences in the observation of the same target using different angle masks, but 
the overall trend is still consistent. Obviously, from the results of different voxel 
sizes, the closer the set voxel size is to the point cloud resolution, the more sig-
nificant the correlation with LAI2200. Among them, when the voxel size was set at 
0.01 m - 0.1 m, the correlation with LAI2200 measured under 90˚ and 180˚ caps 
reached a very significant level, and the 0.03 m voxel size had higher correlation 
coefficients under the same reference (r = 0.84 and 0.73). When the voxel size is 
set more than 0.1 m, the correlation coefficient with the LAI2200 measured under 
the 90˚ and 180˚ cover caps gradually decreases. When the voxel size exceeds 0.3 
m, the linear correlation between them is basically not significant. This shows 
that the reasonable setting of voxel size is very important for the calculation of 
the true value of LAI. In addition, the correlation coefficient between the LAI2200 
of the 180˚ canopy cover and the LAI estimated by the voxel method is lower 
than that of the 90˚ canopy cover. The reason may be related to the number of 
observations of the B value of the different angle canopy cover. The number of B 
values required for the observation of the 90˚ canopy cover can capture the at-
tenuation information of the light intensity in all directions of the canopy. 
Therefore, the 90˚ canopy cover has higher measurement accuracy. 

We draw a box plot (Figure 6) based on the data distribution differences be-
tween LAITLS and LAI2200 with different voxel sizes, and observe the range of LAI 
values estimated by the voxel model after the separation of branch and leaf point 
clouds. It can be seen from the figure that the LAITLS value increases first and 
then decreases with the gradient change. Among them, although the LAITLS close 
to the point cloud resolution voxel size has a similar trend to the measured value 
LAI2200, the LAI value is generally greater than the measured value of the canopy 
analyzer. At the same time, we found that the overall change of LAI value from 
0.03 m to 0.01 m was much larger than that from 0.03 m to 1.2 m, that is, the 
smaller the voxel size, the more severe the decrease trend of LAI value. On the 
whole, LAI2200 is basically in the low value estimation interval compared with 
LAITLS. Combined with the common underestimation phenomenon of canopy 
analyzer, TLS shows the advantage of easily breaking through the limitation of 
LAI observation underestimation. 

3.3. Correlation Analysis between LAI and Structural Parameters  
of Single Tree 

The LAITLS of LAI2200 and 0.03 m voxel size were correlated with individual tree 
structure parameters (DBH, tree height, crown width, first branch height and 
canopy volume) (Figure 7). It can be seen that LAI2200 and LAITLS were signifi-
cantly negatively correlated with crown width, and the correlation coefficients 
with DBH, tree height, first branch height and canopy volume were negative. 
This indicates that the more compact the horizontal and vertical structure of 
trees, the larger the ratio of leaf area to ground projection. Explained by defini-
tion, in the case of the same number of leaves, the shrinkage of the horizontal  
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Figure 6. Numerical distribution box plots of LAITLS and LAI2200 with different voxel sizes. 

 

 
Figure 7. Heatmaps of correlation coefficients between LAI2200 and LAITLS with 0.03 m voxel size and individual 
structural parameters. 

 
structure of a single tree reduces the surface occupied area of the tree, the 
layered LAD value increases, and the LAI value accumulates. On the other hand, 
DBH and other single tree structure parameters, crown width and canopy vo-
lume showed a significant positive correlation, so the characteristics of tree 
growth tend to open state. Therefore, with the growth of trees, the LAI value will 
have a downward trend, which means that the LAI value of trees is not the larger 
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the higher the ecological benefits, but is closely related to the growth status of 
trees. 

4. Discussion 

The point cloud data of different varieties of trees with high-precision vertical 
and horizontal depth information were obtained by TLS. On the basis of branch 
and leaf separation, the LAI estimation model was modified by voxel method, 
and the correlation between LAI estimation values of different voxel sizes and 
the measured values of LAI-2200 canopy analyzer was compared. The results 
theoretical model of this study is feasible in LAI estimation. 

This study found that voxel size directly affects the accuracy of LAI estima-
tion. The larger the voxel setting, the larger the number of point clouds per 
unit voxel content, and the overall LAD of each height layer showed a trend of 
increasing first and then decreasing, which in turn affected the overall estima-
tion interval of LAI. We observed that when the voxel size is close to the 
minimum point cloud spacing set by the TLS instrument, it has a strong cor-
relation with the measured value of the canopy analyzer, which is consistent 
with the conclusion that Li et al. [34] [35] used the average distance between 
point cloud data as the voxel size to estimate LAI more accurately. The spatial 
distribution of point cloud distance is expressed as point cloud density, and 
the point cloud density is different at different heights or distances because the 
instrument measurement parameters are fixed. Therefore, we fix the global voxel 
size with a uniform value of the average distance, which does not reflect the 
change of density of point cloud data at different positions of trees. Leila et al. 
proposed an adaptive voxelization strategy based on the variable local spatial 
point cloud density and the natural characteristics of the canopy, which effec-
tively reduced the calculation error of LAI intermediate auxiliary parameters 
(such as porosity) [36]. This provides a research idea for the subsequent optimi-
zation of voxel adaptation size according to the point cloud density at different 
positions of a single tree. 

Due to the limitations of traditional optical sensor instruments, LAI estimates 
often include wood components and cannot reflect the true LAI of leaves. [37] 
Based on the characteristics of TLS data, LeWos algorithm is used to identify 
and eliminate branches, which can effectively remove the influence of wood 
components and then estimate the real LAI. The LeWos unsupervised algorithm 
in this paper can basically obtain better branch and leaf separation effect, but in 
the natural state, the mutual occlusion of branches and leaves will lead to the loss 
of some internal information and cannot separate the complete branches or 
leaves. At the same time, the vertical detection depth of TLS on the ground is li-
mited, and the point cloud information of the upper canopy of tall trees will still 
be lost. However, the lack of point cloud information is a thorny problem. It is 
necessary to establish a tree digital point cloud sample library by multi-angle and 
multi-position laser scanning to obtain a more abundant single-tree model, and 
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train appropriate machine learning algorithms to fill in the missing parts ac-
cording to the structural characteristics [38]. At present, due to the large work-
load and high cost of data acquisition, related research needs to be further stu-
died. 

In this study, although a modified model of voxel LAI estimation based on 
branch and leaf separation algorithm was proposed, this method was only indi-
rectly verified by LAI-2200 canopy analyzer, which could not be compared with 
the real LAI of trees. In the next step, a small number of small shrubs or low 
trees were selected and directly verified by the whole harvest method. In the fu-
ture research, we can also consider the recognition of leaf point cloud and the 
reconstruction of leaf components, and directly calculate the surface area of all 
leaves to obtain a more realistic LAI, which will truly break through from the de-
finition level. This will also be an important way to indirectly measure many 
theories, in addition to considering factors such as leaf aggregation effect, zenith 
angle, leaf inclination distribution, and non-photosynthetic components [39]. 
With the deepening of research technology, the high-fidelity characteristics of 
TLS point cloud data will provide key support for mining more deep informa-
tion of LAI. 

5. Conclusions 

In this paper, the three-dimensional point cloud data of 20 trees were obtained 
by TLS technology, and the point cloud voxelization method was combined with 
LeWos algorithm to propose a single tree canopy LAI estimation model for re-
moving the woody components of branches and branches. Then, the difference 
between the eight voxel sizes of 0.01 m, 0.03 m, 0.05 m, 0.1 m, 0.15 m, 0.3 m, 0.6 
m and 1.2 m and the observed values of LAI-2200 canopy analyzer was explored. 
The following conclusions were obtained: 

1) TLS provides accurate horizontal and vertical structure information of dif-
ferent tree species. The structural parameters of DBH, crown width, tree height 
and first branch height extracted by TLS have very low relative error with ma-
nual measurement results, which fully meets the high fidelity and high precision 
acquisition of three-dimensional spatial structure characteristics of trees. 

2) The closer the voxel size is to the point cloud resolution set during TLS ac-
quisition, the stronger the correlation between the point cloud resolution and 
the indirect measurement results of the canopy analyzer. At the same time, as 
the voxel size changes before and after the point cloud resolution, the LAI esti-
mation value generally shows a trend of increasing first and then decreasing. 

3) The LAI values calculated by canopy analyzer and TLS were consistent with 
the single tree structure parameters, which showed that the compact tree struc-
ture often had a larger LAI value. 

In this paper, TLS point cloud is used as the direct data source, which effec-
tively avoids the limitations of the two-dimensional geographic projection me-
thod, and comprehensively considers the factors of voxel size and wood compo-
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sition, and provides a way to estimate the high-precision LAI values of different 
tree species. 
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