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Abstract 

Northeastern Morocco is made up of several units belonging to the Alpine 
belt and its foreland. Miocene to plio-quaternary volcanic rocks with variable 
mineralogy and geochemistry dominate the geology of this region. The pres-
ence of active faults in different directions explains the high tectonic instabil-
ity and the high frequency of earthquakes. This study contributes to the effort 
of understanding the geothermal potential of the Northeast of Morocco. Heat 
source and permeability are both key factors in the geothermal process. In-
deed, lineaments analysis constrains the structures and their directions and 
indicates severely faulted zones, which are the most promising areas for geo-
thermal exploration. For this purpose, we used Landsat data combined with 
geological and structural maps available in this region. Different image 
processing techniques were applied including band ratio (6/2) and directional 
filters. To validate the results, we conducted a comparative study between li-
near structures, available geological data, and previous studies. Results of the 
automatic extraction method of lineaments from Landsat 8 OLI/TIRS indi-
cate three main lineament systems: 1) a NE-SW system ranging from N40 to 
N70; 2) an N-S system ranging from N10 to N45; 3) an EW to WNW-ESE 
systems ranging from N80 to N120. Most of lineaments extracted are loca-
lized in Kebdana, Amejjaou, Nador and Melilla regions. Compared to pre-
vious studies, the NE-SW system is consistent with an extensive period (Tor-
tonian to Pliocene); the NW-SE system is consistent with the last compressive 
episode (Pliocene); the N-S system is consistent with the first compressive pe-
riod (Late/End Tortonian). 
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1. Introduction 

In the last few years, remote sensing has been a very promising tool for re-
searchers in different disciplines, including mining exploration [1] [2] [3] [4] 
and geological mapping ([5] [6] [7] and references therein). Many approaches 
were developed with the aim of identifying morphological and structural linea-
ments [8]-[28]. Such methods use geomorphologic signatures deduced from 
high spatial resolution images, such as Landsat ETM+, OLI/TIRS, and Sentinel. 
Three main lineament interpretation methods are usually adopted as follows: 
manual lineament interpretation, automatic lineament extraction and 
semi-automatic extraction. The visual interpretation consists of textural patterns 
related to geomorphological features and tonal contrast [29] [30] while the au-
tomatic extraction uses computer algorithms. Image enhancement and filtering 
options are applied to processed images with different image processing tech-
niques, for instance, Principal Component Analysis (PCA) and band ratio (e.g. 
[31] [32] [33] [34]). The processing for lineament extraction purposes is usually 
performed on grey-colour spanning images instead of colored images because it 
gives better results as the contrast is better exposed in black and white versions 
[35]. The filters are chosen afterward and applied using software (e.g. Geomati-
ca), which can be either directional [31] [32] non-directional [30] [36] or both 
[37] [38]. A recent study [39] has questioned both filtering techniques while ex-
tracting lineaments and got better results with directional filtering compared to 
non-directional filtering. However, the application of direction filters may pro-
duce some artefacts [40], which can be confusing, and should be corrected and 
revised. To minimize the errors resulting from visual interpretation, several au-
thors [41] [42] suggest doing the same process several times with a week break at 
least and then comparing it with interpretations of the same operation of anoth-
er observer. 

The northeast of Morocco consists of two orogenic belts, the Rif chain in the 
north and an intracontinental belt called the Atlas, developed within the alpine 
tectonic foreland [43], to the south. The study area borders the junction between 
these domains, where three structural units directed ENE-WSW were previously 
identified [44]: 1) the eastern-rifian foreland; 2) Guercif and Taourirt-Oujda ba-
sins; 3) Taourirt-Oujda mounts. They exhibit complicated tectonic features 
showing both compressive and extensional structures, dated from Miocene to 
Plio-quaternary. The hercynian basement outcrops near the Taourirt-Oujda area 
and the deformation is concentrated in the shear zones, striking ENE-WSW to 
E-W [45] [46]. The faults used the pre-existent structures and reactivated them 
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during the Late Triassic period, which mainly consisted of red mudstones, car-
bonates and tholeiitic basalts [47]. A carbonate platform was developed in the 
Early Liassic, and was cut later by a series of extensional faults forming a pattern 
of grabens and horsts oriented ENE-WSW and E-W. Then, a major NNW-SSE 
extension occurred between the Jurassic and the Early Cretaceous [48]. This ex-
tension was followed by a long compressive event, which started in the Eocene 
and created the NW-SE and NNE-SSW strike-slip faults and the E-W folds, and 
persisted to the Miocene [48] when volcanism took place.  

The study area is known for a Plio-quaternary volcanic activity and a large 
number of geothermal manifestations (Figure 1). The lack of subsurface imag-
ing data in geothermal areas encourages geologists to acquire more surface in-
formation and infer the subsurface geologic conditions (e.g. mineral alteration, 
permeability…). Lineaments, as extractable geological features, refer to rock 
fractures, joints and faults. The latter plays a key role in creating the porosity 
and permeability, which allows the capture and storage of thermal fluids in a 
geothermal system. Thus, characterizing these features shall contribute signifi-
cantly to the understanding of the fluids’ behaviour in a geothermal reservoir. In 
this paper, we applied the automatic extraction method using a Landsat8 
(OLI/TIRS) image, covering northeastern Morocco, then, we applied the visual 
inspection to add and remove lineaments in order to construct a map of tectonic 
lineaments. The results are remarkably important as they demonstrate that the 
automatic extraction method can indicate the presence of small fractures, hardly 
detected in the field, their global directions and density and hence can be a good 
prospect for permeability. 

2. Geological Settings 

Rif-Tell belt is an Alpine system, resulting from the progressive closure of the 
Maghrebian Tethys and slab rollback of its lithosphere since the late Eocene 
[49]. The Rif belt (Figure 1(b)) forms the westernmost part of the alpine belt, 
which extends along the north of Africa (with Tell and Kabylia) and continues 
eastward to Sicily and Calabria in southern Italy. The Rif belt consists of three 
structural and paleogeographic domains: Internal Zones, Flysch Zones and Ex-
ternal Zones. Morocco is located in the northwesternmost part of Africa over-
looking the Mediterranean Sea to the north and the Atlantic Ocean to the west 
(Figure 1(a)).  

The studied region corresponds to northeastern Morocco, made up of several 
units from the Rif belt and its foreland. The geological setting is marked by the 
presence of four main volcanic areas, displaying different mineralogy, geochemi-
stry and age: A calc alkaline/shoshonitic volcanism dated at 13.1 - 4.8 Ma; alkaline 
volcanism dated at 6.3 Ma - 0.88 Ma with transitional terms occurring between 6.3 
Ma and 4.8 Ma (first alkali basalt to latest Shoshonite, respectively) [50]. The high 
tectonic instability within the region is due to the presence of many faults in dif-
ferent directions. Recent geophysical explorations demonstrate that the lithosphere 
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(a) 

 
(b) 

Figure 1. Regional geological settings ((a) geological map of Morocco, red dotted lines 
represent the Moroccan Hot Line; (b) the main structural domains of the Rif belt [57], 
green dotted lines corresponds to the Al-idrissi Fault zone (AI) [58] and red circles refer 
to the distribution of hot springs within the NE area). 
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beneath NE Morocco is anomalously thinned extending far to the South (Aga-
dir) [51], delineating what is called “The Moroccan hot line” defined by [52] 
(Figure 1(a)). The Tertiary alkaline volcanism observed within the area in Gou-
rougou (Nador), Guilliz (Guercif) and Oujda volcanic provinces is related to this 
hot line. This volcanism is also reported in the Middle Atlas (the most important 
province) and in the Anti-Atlas (Siroua and Saghro) [53] [54], where high mag-
netic anomalies were found [55]. Many tectonic models were proposed to dis-
cuss their origin (e.g. [50] [52] [53] [54] [56]), however, the relationship between 
different volcanic episodes is still a matter of debate.  

On one hand, the presence of NE-SW major strike-slip faults and structures 
crossing from Agadir to the High and Middle Atlas, associated with faults in the 
eastern Rif (Nekor) led many authors [53] [59] [60] to suggest a fault system re-
ferred as “en echelon”. Most of those faults cross the Alboran Sea and link up 
with the easternmost part of the Betics [61]. 

On the other hand, the Eastern Morocco volcanism is settled on Upper Mi-
ocene sedimentary basins [53]. Many authors [62] suggested subduction as the 
main cause of this magmatic activity; however, this hypothesis could not be cor-
roborated because of the lack of any chronological or geochemical polarity. 
Thus, the model of a transverse strike-slip system, occurring between Iberia and 
Africa, linking both crusts and affecting the entire lithosphere, was highly rec-
ommended by [63] and supported by geochemical data (e.g. [50] [54] [64]). Re-
sults showed that Neogene magmatic activity is predominantly related to an ex-
tensional regime created by the upwelling of a mantle source, enriched during 
the previous subduction, while the Plio-quaternary volcanism is related to a 
compressional system, with an enriched lithospheric mantle source and a possi-
ble asthenospheric depleted mantle. 

The compressional stress regime in Northeast of Morocco displayed since 
Tortonian volcanic activity three sedimentary and eruptive bodies (Figure 1), 
these elements recorded the chronology of tectonic events [65] [66]: 
 The first is a N40 compressive stress trend is responsible for the development 

of Tortonian basins. Kebdana and Temsamane basins are developed along 
strike-slip faults oriented N70 - N90, while N-S and N40 - 50 trends are re-
sponsible for forming Boudinar and Nekor basins, respectively. Calc-alkaline 
volcanism of Ras Tarf and Trois Fourches is associated with the basins of 
Boudinar and Nekor [67]. 

 The second is a compressive stress-oriented N-S and occurs in late Tortonian 
and during the Messinian. A reverse movement is registered along N90 faults 
in addition to strike-slip movement on faults striking N70, N40 - 50 and N-S. 
Those movements were the expression of a variation in paleostress direction 
and led to the development of Guercif, Boudinar and Kert basins [61] [67]. 
The E-W extension in the Northeast of Morocco is responsible for normal 
faults, oriented N-S, frequently exposed all over the post-nappes basins. This 
event was synchronous with shoshonitic volcanic eruptions in Nador and 
Guercif regions (Gourougou and Guilliz) [53].  
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 The third consists of a counterclockwise rotation of the stress field with a 
max. Compressive stress-oriented N140 - 160 [66], N90 and N120 - 140 
structures are mainly dextral strike-slip faults while the N-S structures are si-
nistral. Faults oriented N40 - 70 are reactivated with a sinistral behaviour 
[67]. Previous studies (e.g. [61] [65] [66] [68]-[73]) recorded that this com-
pressive stress (N140 - 160) has been well identified all over the Northeast of 
Morocco (from Rif basins to middle and high Atlas). The alkaline activity took 
place during the same period in the eastern Rif and its foreland [53] [74].  

The split of several blocks showing an alternation of horst and troughs has 
characterized the Neotectonic evolution of Northeast of Morocco. Compressive 
and extensive stress regimes at this time were associated simultaneously [67]. 
Different structures presented in Northeast of Morocco (Figure 2), including the 
numerous volcanic intrusions (veins, eruptive centres, etc.) feeding the lava 
flows, are formed following three major directions: NE-SW, NW-SE and N-S. 
Consequently, volcanic emissions seem to be parallel to faults trending N70 - 90, 
N40 - 50 and N-S, dominating the area’s structure; N120 - 140 faults are locally 
associated [67]. 
 

 

Figure 2. Geological map of Eastern Rif (Morocco) with the distribution of volcanism in the Neogene basin, after [75]. (a) Ras 
Tarf, (b) Trois fourches, (c) Gourougou, (d) Beni Bou Ifrour [67]. 
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3. Materials and Methods 
3.1. Data 

In this paper, we work on Northeast of Morocco. The image used is landsat8 
OLI/TIRS (Path 201 and Row 36, taken on 9th January 2019) and the data is 
available free at the United States Geological Survey website  
(https://earthexplorer.usgs.gov). It is provided with the Universal Transverse 
Mercator (UTM) projection and a WGS 84 World Geodetic System. This image 
contains eleven bands with different wavelengths and resolutions (Table 1) from 
Landsat 8 image. The most used band in geology are the optical bands (OLI) 
from the Coastal aerosol to the panchromatic band. In order to validate the re-
sults, we used as references the maps covering the study area at different scales 
(The Neotectonic map 1/1,000,000 (1994); The geological map of Kebdani: 
1/50,000 (1984) The geological map of Berkane 1/50,000 (2001); The geological 
map of Zaio 1/50,000 (authors, 2001); The geological map of Seghanghan 
1/50,000) (1996). 

3.2. Methods 

The main step of lineament extraction is described in the following chart 
(Figure 3). It starts with pre-processing, consisting of radiometric and atmos-
pheric corrections, then the processing, to enhance the visibility of lineaments in 
the images. The main purpose is to identify lineaments with possible structural 
origins. After several attempts using different image processing techniques, clas-
sifications and colour composite images, we concluded that linear structures are 
more visible in the 6/2 band ratio images, the choice is also supported by other 
studies (e.g. [78]). Hence, the ratio of 6/2 image was sharpened and directional 
filters were applied (Figure 3). 
 
Table 1. Spectral bands of the Landsat 8 satellite [76] [77]. 

Bands Wavelengths (µm) Spatial resolution (m) 

Band 1 Coastal aerosol 0.43 to 0.45 30 

Band 2 Blue 0.45 to 0.51 30 

Band 3 Green 0.53 to 0.59 30 

Band 4 Red 0.64 to 0.67 30 

Band 5 NIR 0.85 to 0.88 30 

Band 6 SWIR1 1.57 to 1.65 30 

Band 7 SWIR2 2.11 to 2.29 30 

Band 8 Panchromatic 0.50 to 0.68 15 

Band 9 Cirrus 1.36 to 1.38 30 

Band 10 TIRS1 10.60 to 11.19 100 

Band 11 TIRS2 11.50 to 12.51 100 
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Figure 3. Flowchart showing the main steps of the methodology of tectonic lineament 
extraction and validation approach. 

3.3. Enhancement of Lineaments by Filtering 

Directional filters improve lineaments’ perception by producing an optical sha-
dow effect adjusted on the image as if it was enlightened by grazing light [79]. 
Besides, those filters enhance the detection of lineaments, which are not advan-
taged by the illumination source [80]. We used Sobel operators, widely utilized 
for lineament extraction and edge detection [81], to enhance the lineaments au-
tomatically extracted from directional filters. Sobel filters consist of a selective 
variety of directional filters using a pair of convolution matrix of 3 * 3, one of 
them is the other mask rotated by 90˚ (Table 2), and is determined based on the 
distance from the central pixel. In this study, the image used for the filtering is 
Ratio 6/2.  

From these directional filter images (Figure 4), the lineaments are automati-
cally extracted, however, the result is not definitive, the work is still incomplete 
and a visual method must be used before reaching the next step of confirmation 
and validation.  

3.4. Tracing and Validation of Structural Lineaments 

After enhancing the edges by directional filtering, we opted for visual inspection 
[82] [83]. This method allows choosing the significant lineaments of structural 
origin. Validation of fractures consists mainly of eliminating linear structures 
related to different parameters (e.g. ridgeline, shade, etc.), so we first compare 
our map of lineaments with geological and pre-existing structural maps. 
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Figure 4. Example of different directional filters applied on the same area (Gourougou). (a) NE, (b) EW, (c) NS, (d) NW. 
 
Table 2. Sobel filters. 

3 * 3 Sobel Matrix 

NE-SW E-W NW-SE N-S 

0 1 2 −1 0 1 2 1 2 1 2 1 

−1 0 1 −2 0 2 1 0 −1 0 0 0 

−2 −1 0 −1 0 1 0 −1 −2 −1 −2 −1 

4. Results 

Results reveal the existence of more than 4600 lineaments (Figure 5, Figures 
6(a)-(c), Figure 7(a) and Figure 7(b)). The length of structures varies and 
spans from few meters to few kilometers, the longest representable lineament is 
about 4 kilometers (Figure 6(a)). Rose diagram (Figure 7(b)) shows that the 
predominant trending is NE-SW, followed by the E-W, NNE-SSW and N-S 
trends, respectively, while the weakest represented is the NW-SE trend. Ex-
tracted lineaments allowed counting almost 2490 structures striking NE-SW, 
about 1260 E-W, 360 NNE-SSW, 300 N-S and nearly 190 NW-SE.  

A density map (Figure 8) is created based on extracted trends, with the aim of  
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Figure 5. Lineament map of the northeastern Rif. Green squares represent the zoomed 
areas below. 
 

 

Figure 6. (a) map of lineaments of Zaio-Berkane-Ras el ma regions (yellowish not continued line represents the trend of the li-
neament drawn by the visual method and the purple shadow refers to the difference between the extracted and the visual trends), 
(b) map of lineaments of Amejjaou-Nador-Melilla regions, (c) map of lineaments of Seghanghan and Amejaou regions. 
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Figure 7. (a) Length frequency diagram (b) Rose diagram. (2490 NE-SW, about 360 NNE-SSW, 1260 E-W, 300 N-S, 190 NW-SE). 
 

 

Figure 8. Density map of lineaments in the Northeast of Morocco. 
 
revealing zones with high structural density. Two areas have the highest densi-
ties: the first is Kebdana, close to Kariat Arekmane and Ras el Ma, reported in 
the geological map as formed by Jurassic limestone; the second is Amejjaou, in 
the west of Seghanghan and Nador, described in the geological map as a part of 
the Temsamane unit, consisting mainly of Shists. Areas of Nador, Melilla and 
the coastal limit with Algeria show a high density as well.  

Compared to materials used for validation, the number of highlighted struc-
tures within the area is more important in this study than the number of linear 
structures in geologic and structural maps, made based on fieldwork. Mapped 
lineaments generally correspond to fractures and faults, mainly related to vol-
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canic outcrops, Miocene basins and Jurassic terrains. The fracture is usually a 
result of breaking a rock in response to stress, if one of the two sides of the frac-
ture moved, it is no longer a simple fracture, but a fault that has a couple of 
well-known criteria.  

Recorded structures in the geological maps of Northeast of Morocco (Kebda-
ni, Seghanghan, Zaio and Berkane) and the Neotectonic map of Morocco are 
quite the same, although, sometimes, the superimposition is conveyed through 
several segments and the result is spoiled. This imperfection might be due to sa-
tellite images’ spatial resolution (30 m) or lineaments’ invisibility in these areas.  

NE-SW, E-W and N-S trending systems, obtained by processing satellite im-
ages, are reported on diagrams showing a similarity to what is described in the 
literature and to the measurements taken in the field, noting that the N-S trend 
is weakly represented in the digital processing results. 

The validation process of the outputs proves that coupling automatic extrac-
tion and visual interpretation methods give better results. Morocco’s neotectonic 
map shows quite a good correlation of structures with what was obtained from 
the processing methods. Although in the map, features are represented as huge 
faults and structures, trend and localization of the lineaments are respected in 
our generated map, with slight differences, yet very logical and acceptable. In 
fact, structures are represented as several aligned segments with the same direc-
tion (Figure 7(a)). Despite the good results show a matching correlation with 
the neotectonic’s map, we also note a non-correlation of some other features, 
which is when areas are covered with vegetation and the satellite images are un-
able to give accurate responses. 

Geological maps of the studied area indicate the presence of several linea-
ments represented as faults and strike-slip faults. The density of lineaments in 
geological maps and our generated map is identical. The trends of lineaments 
are globally coherent and consistent. However, structures in geological maps are 
sometimes shifted, probably because of projection systems’ differences and in-
duced errors. Blanked areas where no lineament is represented (Figure 5 and 
Figure 8) make the density contrast deeper; this may be explained by the abun-
dance of new constructions and agricultural terrains. These results are therefore 
highly correlated with the faults’ distribution depicted in Neotectonic’s and geo-
logical maps, with respect to remarks mentioned above. 

5. Discussion 

The northeast of Morocco represents a very dynamic area. It is related to exces-
sive tectonic regimes since the Late-Miocene with many phases of deformations 
[84] [85]. The current deformation under the transtensive regime (NNW-SSE to 
N-S extensive system and NNE-SSW strike-slip faults), in the South of Alboran 
Ridge and Nekor Basin, is limited by Al-Idrissi fault (Figure 1(b)) [86]. Geodetic 
studies and kinematic models based on magnetic anomalies of the ocean floor 
show a current convergent movement of plates in Alboran sea, oriented NW-SE 
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with a speed of 4.3 ± 0.5 mm/yr [87]-[93] and a displacement in the Rif belt to-
wards the southwest with a speed of 5.4 ± 1.5 mm/yr. Whereas the regional 
seismological studies show: 
­ A NE-SW extension in the Southern Betics, together with strike-slips [94] [95]; 
­ A transtension in the Alboran Sea [95]-[100]; 
­ Strike-slips and transtension in Northern Rif [101] [102]. 

A polyphase tectonic history, resulting from several successive compressive 
and distensive phases from Eocene to the present, is well documented in nor-
theastern Rif [103]. It begins with an oligocene tightening phase-oriented N-S, 
then it continues with a distensive oligo-miocene phase with the same direction 
N-S linked to the opening of the Alboran sea, and it ends with an overlap of 
Carbonate thrusts of Alboran Domain ‘‘Bokkoya massif’’ on the Flysch domain 
in the SSE (Figure 1(b)). Finally, the late compressive NNE-SSW Tortonian phase 
made the last remarkable structures [103] [104] [105] [106]. Since the late Mi-
ocene, surface crustal deformation caused kilometric-sized folds and brittle de-
formation, associated with the development of large strike-slip faults (i.e., the Ne-
kor fault between Al Hoceima and Nador (Figure 1)). Faults’ pattern in central 
and eastern Rif is sorted into three groups, two of which are almost orthogonal: 
one in the NNE-SSW direction, and one in the NS direction, perpendicular to the 
coastline, and a last one in NW-SE (Figure 9) [105] [107] [108] [109] [110]. 

Figure 9 summarizes the structural evolution of Neogene post-nappe basins 
of Eastern Rif [70] [107] and shows that different manifestations in Northeast of 
Morocco are the result of a polyphase tectonic during the Plio-Quaternary: 
­ Starting with a large period of distension NE-SW oriented from the Torto-

nian to the Pliocene followed by a compressive episode, oriented N-S during 
late Tortonian. 

 

 

Figure 9. Structural evolution of Neogene post nappe basins of Eastern Rif [70] [107]. 
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­ Then, a compressive period, during the upper Pliocene and the early Qua-
ternary, oriented NW-SE and well visible in the Northern border of Gharb 
and Guercif basins.  

­ Finally, an extensive period in Quaternary, oriented NE-SW and marked by 
the most recent features, where the subsidence is well-conserved [107]. 

Although the E-W trend (poorly cited in literature), identified in this study, is 
consistent with Belt axis and directions of magnetic anomalies beneath the sur-
face in the northeast part of the Rif [111]. 

On one hand, previous studies on tectonic movements, lineaments and geos-
patial information in the northeast of Morocco are very limited. The most recent 
work dealing with the topic in the area [112] used Landsat image analysis and 
compared the results with data obtained from radar ERS1-SAR interpretation 
[113], Spot image analysis [114] and structural field analysis. Four systems of 
faults were depicted [112]: 1) NE-SW faults with a pattern of en echelon struc-
tures (e.g. in the El Aïoun area), recorded during their fieldwork; 2) NW-SE 
faults; 3) ENE-WSW and E-W faults; 4) faults trending N-S, mainly in Oujda 
area (Bou Yahi). Although the frame of the current study area and the studied 
area of the cited work is not exactly the same, it can be considered and used for 
comparison, as they both share the same geodynamic and geographic settings. 
Regarding the orientation of present structures, all directions are conformably 
expressed within the northeast of Morocco; however, the frequency and the do-
minance are relatively different. NW-SE trending faults, for instance, are the 
second most dominant faults in the work of [112], while it is the least dominant 
in this study. This difference might be explained by the dominance of Rif belt 
structures over Foreland structures within the area (for the current work). 

On the other hand, our results were confronted with results of a similar study 
on NE of Iberia. The latter shows that the bulk of major post-Alpine extensional 
faults, mainly Neogene, are oriented NW-SE. Secondary structural lineaments, 
however, show an NNW-SSE trend, running slightly in an oblique way to the 
main faults [115]. Eruptive fissures and subordinated structural lineaments in 
northeastern Spain show a pattern, compatible, structurally, with a light dextral 
transtensional component in two major Neogene faults (Amer and Llora faults), 
oriented NW-SE [116] [117].  

[118] [119] were the first to suggest the idea of magmas taking the way up-
ward in the uppermost crust and subordinated fissures, controlling subsequent 
eruptions, making this pattern an enhancer to the development of fractures and 
transport of magma through them [115]. This behaviour apparently is not an 
exception, though it was described in some other volcanic zones [120]. Within 
the same area in the NE of Spain, eruptive centres are aligned mainly NW-SE to 
NNW-SSE, having a sub-parallel trend with lineaments. This orientation might 
be the reflection of magma-feeding fractures’ geometry [115] [121] [122]. A 
secondary group of volcanic features is elongated NE-SW and ENE-WSW [115].  

In the northeast of Morocco, recent volcanic formations towards the south 
and the southeast of the study area show normal faults trending from N160˚E to 
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N10˚E [123]. Volcanic flows are aligned along the fissures striking N-S (Oujda 
region) or exactly at the intersection between N-S normal faults and ENE-WSW 
strike-slip faults (with a reverse component). The general trend of volcanic out-
crops, on a larger scale, is NE-SW to E-W, conformably with the most predomi-
nant lineament trend in the northeastern Rif (mainly NE-SW and E-W). This 
conclusion supports the idea of having a pattern controlling the magma ascen-
sion with a preferable direction NE-SW. 

6. Conclusions 

Combining eye detection with an automatic extraction method using satellite 
images gave us better results so far. Firstly, it reduces the time of the processing 
by defining the most likely zones where lineaments could be important in size 
and distribution. Moreover, it detects the small lineaments, hardly detected on-
site. Secondly, structural lineaments are easily selected and rectified once the 
analysis of detected linear structures is done and suppression of insignificant li-
neaments (corresponding to roads, rivers, agriculture squares, etc.) is completed. 
Using only the automatic extraction therefore will not be of high precision and 
effectiveness. 

To summarize, lineament’s directions detected from coupling the two me-
thods yield more accurate results. Trends represented in the northeast of Mo-
rocco, rating by their abundance within the study area, are NE-SW, E-W, 
NNE-SSW, N-S and NW-SE. The NE-SW and the E-W trends are the most 
overriding based on this study, which explains why volcanic outcrops are aligned 
in the same direction. Northeast of Morocco must have a cracking pattern, simi-
lar to the one described in the NE of Spain, leading to a close behavior and hence 
reflecting the geometry of magma-feeding fractures in north of Morocco. These 
results have major implications in the undergoing geothermal study within the 
area, especially in understanding the subsurface flow of thermal fluids in geo-
thermal reservoirs and avoiding serious risks during the geothermal drilling 
projects. 
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