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Abstract 
Decoupling between climate and tectonics, transform the elevation of earth 
surface regionally by denudation and displacement of land. To extract the 
tectonic footprints on morphology of landform, geormophometry is widely ac-
cepted tool due to visible responses in Drainage architecture to an intense tec-
tonic environment. The present morphology of Yamuna basin in the Garhwal 
Himalaya, India is a result of continuing crustal deformation; erosion and 
deposition in the area. The drainage system and geomorphic expression of to-
pography have been significantly influenced by active tectonics in this basin. In 
present study, for numerical modelling to detect the influence of tectonic sig-
nals on landform, we used morphotectonic parameters, to gradient index (SL), 
valley floor height to width ratio (Vf), asymmetry factor (Af), basin shape index 
(BS) and hypsometric integral (HI), extracted from SRTM DEM with resolution 
of 30 m. All these morphotectonic parameters are integrated to produce an in-
dex of relative active tectonics (IRAT). The Yamuna basin is classified into three 
groups based on IRAT, very high (<2.0); moderate (2.0 - 2.25) and low (>2.25) 
based on the degree of tectonic activity. Result shows approx. 56% of Yamuna 
basin experience high tectonic activity. This along strike deformation pattern 
pronouncedly emulates subsurface geometry based tectonic model. 
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1. Introduction 

Geometry of landscape is the combined product of interaction between en-
dogenic and exogenic earth processes. Substantial set of recent documentation 
with sophisticated statistical and analog models have used to replicate dynamic 
interchange between subsurface crustal distortion and exogenic erosional processes 
as the root of landform evolution. A debate has initiated with this to elucidate 
whether exogenic denudation along with tectonic mechanism is equally in 
charge or it is has relegate control over unloading of landmass [1] [2]. Tectonic 
geomorphology outlines the understanding of robust impact of global tectonics 
with multi-layered spatio-temporal development of landscape [3]-[8]. The most 
common approach to accomplish confined influence of tectonic movement is 
depend on comparative relation between denudational chronologies with ther-
mal histories of rock however palaeoelevation with reference to long term fluc-
tuation in sea level are not completely involved in framework so far. Digital Ele-
vation Model (DEM) is also extensively adopted digital technique to visualize 
topographic map. The essential purpose of DEMs in tectonic geomorphology is 
mathematical quantification of landscape morphology to build the immediate 
numerical model of surface response with ongoing subsurface movement as it 
permit to real-time mapping of topography and tectonic induced surface defor-
mation without limitation of spatial scale.  

In an orogeny, contoured by the dichotomy of lithospheric adjustment and 
precipitation, fluvial system is among the crucial exogenic agents to shape mon-
tane landforms. Land mass distribution in high elevated area is dominantly hinge 
on the mechanical characteristics of rock formation and spatial distribution-geo- 
metry of drainage network. Mountainous Drainage pattern is vigorously suscept-
ible to mechanisms such as folding, faulting and basin tilting and fluvial mechan-
ics such as river incision and sediment load [9] [10]. In Himalaya, compressional 
regime provides continuous accretionary influx by varied crustal shortening 
along thrust boundaries hence results in heterogeneity in spatial distribution of 
upliftment rates [11]-[17]. These chronological datasets synchronised well with 
subsurface geometry of Main Himalayan Décollement [18]. While present day 
precipitation in Himalaya is more dynamic in southern front along with oro-
graphic barriers inference more vibrant geomorphological characteristics in cen-
tral part in north of convergent mountain belt [8] [15] [19] [20] [21] [22]. Mor-
phometric parameter and geomorphic indices of drainage network have been 
used for identification and categorization of these active zones [23]. 

Yamuna is the largest tributary of Ganga and flow across the strike of the 
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structurally complex, deformed and tectonically unstable fold-thrust belt of NW 
Himalaya, in Uttarakhand and its catchment area falls into “Zone 4” in India’s 
seismic hazard zoning map. Present investigation is analysed spatial heterogene-
ity of landmass distribution with use of six morphotectonic indices comprised of 
stream length gradient index (SL), valley floor width to height ratio (Vf), hyp-
sometric integral (HI), basin shape index (BS), and basin asymmetry factor (Af) 
in Yamuna Basin Garhwal Area, NW-Himalaya (Figure 1(a) & Figure 1(b)), 
Resulting model has been compared with published dataset [18] [24]. 

2. Geological and Tectonic Setting 
2.1. General Background 

Himalayan growth started around 50 Ma years ago, a continent-continent colli-
sion between Indian and Eurasian plates occurred along the Indus-Tsangpo Su-
ture Zone (ITSZ) [25]. Subsequently, the Indian continent continued to con-
verge under the Eurasian continent at a rate of 5 cm/yr [26]-[32]. A fraction of 
this convergence is absorbed by crustal deformation of the northern margin of 
the Indian continent associated with the activation of several major thrust zones 
such as the synchronous Main Central Thrust (MCT) and South-Tibetan De-
tachment System (STDS), Main Boundary Thrust (MBT) and Main Frontal 
Thrust (MFT) (Figure 1(b)) [33]-[39]. The high-grade metamorphic units of the 
Higher Himalayan Crystalline (HHC) of Neoproterozoic age lie between the 
MCT and the STDS, and between the MCT and the MBT, the Paleoproterozoic 
to Paleozoic Lesser Himalayan meta-sedimentary (LHMS) zones are imbricated 
into a duplex and overlain by several klippen comprised of Neoproterozoic through 
Ordovician gneiss and high-grade metamorphic rocks of the HHC [40] [41] [42] 
[43]. Near the peak of the range, the north dipping STDS separates the HHC 
units to the south from the lower-grade Neoproterozoic-Eocene Tethyan Hima-
layan sequences (THS) to the north [44]. The sub-Himalaya consists of the Siwa-
lik Hills which lies between the MBT and MFT [45]. The Indo-Gangetic fore-
deep formed in front of the rising Himalayan range where sediments eroded 
from the areas of high relief has been accumulated. North of the MFT, the 
décollement of the Indian basement (i.e. Main Himalayan Thrust: MHT) is 
thought to extend as a flat beneath the LHMS zones and to form a steeper ramp 
at the front of the HHC [46] [47] [48]. 

2.2. Tectonostratigraphy Description of the Area in the Yamuna  
Basin 

The Yamuna basin comprises of the HHC, LHMS, Sub-Himalaya, and Indo- 
Gangetic alluvium (Figure 1(c)). The structurally highest tectonic zone in the 
north of the study area is the HHC. It is made up of the Vaikrita group which is 
characterized by high-grade metamorphic rocks and the Munsiari formation 
made up of low to medium grade metamorphic rocks (gneisses, meta basics, qu-
artzite, and high-grade schist and granites). However, the rocks of the Vaikrita 
group and the THS are not exposed in the present study area in the Yamuna ba-
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sin. Structural window bound by MT comprises of the Ramgarh group and Be-
rinag formation is exposed within the HHC at Kharsali [49]. Here, we name it as 
the Kharsali window (Figure 1(c)). 

 

 
Figure 1. (a) Simplified geological map of Himalaya. (b) Location of study area in NW Himalaya with regional setup. VT (Vaikri-
ta thrust), MT (Munsiari thrust), RT (Ramgarh thrust), TT (Tons Thrust), NAT (North almora thrust), SAT (South almora thrust) 
and MBT (Main boundary thrust) (c) Geological and structural framework of Yamuna basin. PT (Purola thrust), ST (Sandra 
thrust), HT (Hudoli thrust), BT (Berinag thrust), DT (Deoban thrust) and CT (Chandpur thrust); modified after [43] [49]. 
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The footwall of the MT is covered by the LHMS zone; Ramgarh thrust sheet 
(RTS) and Purola klippe (Figure 1(c)). The RTS is made up of the Ramgarh 
group which is separated from the Inner LHMS sequence along the Ramgarh 
Thrust (RT). The Purola klippe represents an un-eroded part of the HHC which 
was once thrust over the Inner LHMS sequence along the Purola Thrust (PT). 
The PT represents a southward extension of the MT [49] [50]. The local struc-
tural breaks are the Sandra Thrust (ST) and Hudoli Thrust (HT). In the footwall 
of the MT, the LHMS zone is classified into a vast window of Inner LHMS se-
quence and Krol nappe of Outer LHMS sequence. Stratigraphic subdivisions of 
Inner LHMS are made up of dolomites, carbonaceous slates and carbonates 
while the outer LHMS sequence is characterized by slate, quartzite, conglome-
rate and limestone [43]. Both Inner and Outer LHMS sequences are separated by 
south-dipping Tons Thrust (TT). Krol nappe is synclinorium in nature and it is 
cutting across by major E-W trending strike-slip fault which is named the Aglar 
fault [49]. The LHMS sequence in this area is separated from the sub-Himalaya 
along with the NE-dipping MBT. Southernmost Indo-Gangetic Alluvium in the 
study area is separated from the sub-Himalaya along the HFT.  

2.3. Active Structures 

An active zone along the MCT has been described in the NW-Himalaya based 
on the concentration of micro-seismicity [51]-[58] and low-temperature ther-
mochronological cooling ages [58] [59] [60] [61] [62]. Similarly, differential rock 
uplift inferred across the PT2 in the Nepal Himalaya studying uplift of river ter-
races [37], geodetically determined uplift rates [32] and elevated electrical con-
ductivity [63]. Receiver function study shows the presence of the active MHT 
décollement below the Himalaya [51]. It is characterized by a flat beneath the 
LHMS sequence and northward dipping mid-crustal ramp located approximate-
ly beneath the physiographic boundary between the LHMS sequence and the 
HHC [52] [58]. This inferred flat and mid-crustal ramp, although varying some-
what along strike in its location and dip [32] [58] [64], is responsible for diffe-
rential rock uplift which causes changes in modern geomorphology and spatial 
patterns of denudation rates [65] [66]. The differential rock uplift inferred across 
the MCT zone could be produced by one or combination of the followings sce-
narios: 1) passive over thrusting across the MHT ramp with no additional 
out-of-sequence deformation [67], 2) an emergent thrust fault located at the PT2 
that is not currently mapped at the surface [65] [68], and/or 3) an actively 
growing blind duplex on MHT ramp [58] [69] [70].  

3. Methodology and Materials 

For the present assessment of morphometric analysis along the Yamuna basin, 
all morphotectonic parameters are calculated using SRTM DEM with a spatial 
resolution of 30 meters. The Yamuna basin is subdivided into 16 sub-basins us-
ing the [71], (Figure 2) stream ordering principle. To understand the impact of  
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Figure 2. Drainage of Yamuna River and its major tributaries and reference numbers of six sub-basins in Yamuna watershed. 
Rectangle in red is for swath profile in Figure 8(b).  
 

tectonic activity on regional morphology, it is more necessary to study a smaller 
region. The smaller regions respond to morphotectonic changes due to their low 
stream power [72]. Seven morphometric parameters have been calculated to 
capture active-tectonic variation in the region. These parameters include stream 
length gradient index (SL), valley floor width to valley height ratio (Vf), basin 
shape index (BS), basin asymmetry factor (Af), and hypsometric integral (HI) 
(Table 1). All these parameters are integrated to derive the Index of relative ac-
tive tectonics (IRAT). The IRAT is further subdivided into four classes based on 
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the intensity of relative tectonic activity. All these SRTM DEM derived parame-
ters have been carried out in the ArcGIS 10.2 platform. Along with the morpho-
tectonic analysis, seismicity of the Yamuna basin is also considered to validate its 
relevance with tectonic activity. The seismicity map of the Yamuna basin has 
been prepared by collecting earthquake data from the ISC catalog (1911-2019) 
and published a seismicity map [56]. Across the Yamuna basin, the seismic belt 
passes along a zone between Barkot and Kharsali, which is cutting across by 
many faults such as the MT, BT, RT, HT, and PT. The susceptibility status of the 
landslide in the Yamuna basin has been studied recently using different geo-
morphological factors [24]. These data are also integrated to validate its rele-
vance with active tectonics.  

 
Table 1. Mathematical expression of morphotectonic parameter, with their categorized classes.  

Morphotectonic parameter Mathematical expression Classes References 

Stream Length Gradient 
Index (SL) 

( )SL H Lr Lt= ∆ ∆  

where, ΔH is change in altitude, ΔLr is the length of a reach,  
and Lt is the horizontal distance from the watershed divide to  

the centre of the reach 

Class 1 
(>500) 

Hack (1973) 
Class 2 

(500 - 300) 

Class 3 
(<300) 

Valley floor width-to-height 
ratio (Vf) 

( ){ }fw ld rd scVf 2 V E E 2E= + −  

where, Vfw is the width of the valley floor, Eld and Erd are  
elevations of the left and right valley divides (facing downstream) 

respectively, and Esc is the elevation of the valley floor. 

Class 1 
(<0.5) 

Bull and 
McFadden, 1977 

Class 2  
(0.5 - 1.0) 

Class 3 
(≥1) 

Drainage basin  
asymmetry factor (Af) 

( )r tAf 100 A A=  

where Ar is the area of the basin to the right (downstream)  
of the trunk rivulet, At is the total area of the drainage basin 

Class 1 
(>15) Hare and  

Gardner, 1985; 
Keller and  

Pinter, 2002 

Class 2 
(5 - 15) 

Class 3  
(<5) 

Hypsometric integral (HI) 
( ) ( )L L L LHI E avg E min E max E min= − −  

where, EL avg = average elevation, EL min = minimum elevation,  
EL max = maximum elevation.  

Class 1 
(> 0.47) 

Strahler, 1952; 
Keller and  

Pinter, 2002 

Class 2  
(0.46 - 0.47) 

Class 3  
(<0.46) 

Basin shape index (Bs) 

S L WB B B=  

where BL is the length of a basin and it is measured from the  
head point to the mouth, and BW is the width of a basin and is  

measured at widest point of the basin. 

Class 1 
(>1.76) Bull and 

McFadden, 
1977;  

Ramirez- 
Herrera, 1998 

Class 2  
(1.11 - 1.76) 

Class 3 
(<1.11) 
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4. Result 
4.1. Spatial Distribution of Morphotectonic Parameters  

Morphotectonic is used to calculate tectonic activity in terms of mathematical 
expression (Table 1). SL index is controlled by crustal movement and rock 
strength. Sub-basins 1, 4, and 13 fall in class-1 type due to the high value of SL 
index while other sub-basins such as 2, 3, 6, 8, 10, 11, and 16 belong to class-2 
type with moderate SL index values (Figure 3(a)). The highest values of SL in 
the Yamuna basin are >5000 in sub-basin 4 and peaks of SL index values in 
sub-basin 1 are 2808.11, 2925.61, and 4092.86 and sub-basin 13 are between 
6000 - 2000 (Figure 3(b)). Sub basins those falls in class 2 have average a value 
of SL index varies from 485.5 to 328. The lowest average values are 50 - 100 and 
are calculated in sub-basins 5, 7, 9, 12, 14, and 15. 

The area of active uplift is linked up with continued down cutting in rivulets 
that characterized V-shaped valleys illustrate the low value of Vf (Vf < 1) while 
U-shaped flat-floored valleys (Vf > 1) show an accomplishment of the base level 
of erosion prominently in reply to respective tectonic dormancy [23] [73]. 11 
sub-basins out of 16 falls in class 1 of Vf (Vf < 0.5). Sub-basin 8, 9, and 10 are in 
class 2, and sub-basin 14 and 15 are in class 3 with the highest values of Vf 
(Figure 4(a)). The spatial distribution of Af (Figure 4(b)) values is quite the 
opposite of that of Vf. Only 5 sub-basins (no. 1, 9, 11, 12, and 13) Value of Af is 
relatively very high in sub-basins 1, 9, 11, 12, and 13 and fall in class-1 type. 
Major tributaries in this sub-basin are tilting in W to NW direction. The high-
est tilting is recorded in sub-basin 12 (Af < 27). 10 sub-basins (62% of the total 
catchment area) are in class 2 with moderate tilting. Only sub-basin 15 is in 
class 3 (Af ~3). 

Like Vf, sub-basin 1, 2 from upper catchment region (HI~0.49 and 0.48 re-
spectively) and in the lower half of Yamuna basin, sub-basin 8, 10, 12, 13 and 16 
belong to class 1 of HI (Table 2). The hypsometric curve of Hanuman Ganga 
valley (sub-basin 1) is S-shaped (concave upward and convex in downward) an 
indication of a transition stage between youth to mature, the upper part of HI 
curve of this tributary is in distorted or monadnock phase, while the lower sec-
tion is still in in-equilibrium or young stage (Figure 5(a)). With HI ~0.46, 
sub-basin 11 falls in class 2. Sub-basins 3, 5, 7, 9, 14 and 15 falls in class 3 (Table 
2) with very low HI values i.e. < 0.42 (Figure 5(b)). Basin shape index (BS) is an 
identical feature of a watershed that is controlled by surface to subsurface proc-
esses. BS ranges in between 0.51 (sub-basin 12) to 2.39 (sub-basin 13) in focused 
area. The majority of the sub-basins in the Yamuna basin, fall in classes 1 and 2, 
with elongation in shape and higher BS values as compared to class 3, which has 
circular shaped sub-basins with low BS values. Sub-basin 1, 4, 11, 13, and 16 are 
elongated in shape and show the highest value of BS among all sub-basins 
(Figure 6(a)). While in the case of sub-basins 5, 7, 9, 12, and 15, elongated valley 
transforms into circular one with very low BS values (Bs ~0.99 to 0.51). 
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Figure 3. (a) Example of longitudinal river profile and SL graph of sub-basin 1, 4, 11, and 13. (A-Munsiari Formation, B-Ramgarh 
Formation, C-Inner LHMS sequence, D-Outer LHMS sequence and E-SHS). (b) Classes of SL gradient index in Yamuna basin. 
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Figure 4. (a) Classes of Vf for Yamuna basin. (b) Classes of AF for Yamuna basin. 
 
Table 2. Calculated classes of all morphotectonic parameters in each sub-basin with IRAT classes and respective tectonic activity. 

basin no. Af-50 Vf SL index BS HI IRAT value IRAT class Activity 

1 1 1 1 1 1 1 1 Highly active 

2 2 1 2 3 1 1.8 1 Highly active 

3 2 1 2 2 3 1.8 1 Highly active 

4 2 1 1 1 3 1.2 1 Highly active 

5 2 1 3 3 3 2.2 2 
Moderately  

active 

6 2 1 2 2 3 2 2 Highly active 

7 2 1 3 3 3 2.2 2 
Moderately  

active 

8 2 2 2 2 1 2 2 
Moderately  

active 

9 1 2 3 3 3 2.4 3 Less active 

10 2 2 2 2 1 2 2 
Moderately  

active 

11 1 1 2 1 2 1.4 1 Highly active 

12 1 1 3 3 1 1.8 1 Highly active 

13 1 1 1 1 1 1 1 Highly active 

14 2 3 3 2 3 2.4 2 
Moderately  

active 

15 3 3 3 3 3 2.8 3 Less active 

16 2 1 2 1 1 1.4 1 Highly active 
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Figure 5. (a) Calculated HI curves in 16 sub-basins. (b) Classes of HI for Yamuna basin. 
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Figure 6. (a) Classes of BS for Yamuna basin. (b) Classes of IRAT of Yamuna basin. 

4.2. Evaluation of Index of Relative Active Tectonics (IRAT) 

All these values of morphotectonic indices derived in the Yamuna basin are 
combined to extract the IRAT. The IRAT values are used to explain the spatial 
distribution of relative tectonic activity in the Yamuna basin. The values of IRAT 
have been grouped into three classes, Class-1 (<2.0) highly active; class-2 (2.0 - 
2.25) moderately active and class-3 (>2.25) represent less active basin respec-
tively. In the present investigation of the study area, 56.25% sub-basins which is 
1375.218 sq. km of the study area belongs to class-1, while 31.25% sub-basins 
~268.11 sq. km relates to class 2 and remaining ~703.22 sq. km area which cov-
ers 12.5% sub-basins belongs to class 3 (Figure 6(b)).  

4.3. Seismicity and Landslide Occurrences in the Area 

The collision between Indian and Eurasian plates resulted in crustal shortening 
across the Garhwal and Kumaun Himalaya is 14 mm/yr and 12 mm/yr, respec-
tively [74]. From an average northward convergence rate of ~50 mm/yr of the 
Indian plate beneath the Tibetan plate, only ~20 mm/yr is being accommodated 
[28] and retains the complete Himalaya seismically active. An independent out-
look of seismically and tectonically active structural framework of Himalaya is 
provided by seismic data. The seismicity map of the Yamuna basin has been 
prepared by collecting earthquake data from the ISC catalog (1911-2019) and 
published a seismicity map [56] (Figure 7(a)). The recorded history of this 
seismically active region presents an image with clustering of earthquake events 
of different magnitudes [40] [56] [58] [75], (Figure 7(a)).  

Landslides are the natural phenomenon in the Himalayan mountain region. 
Landslides are erosive and accumulative processes that affect the geographical 
features of the drainage basin and for the determination of these characteristics,  
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Figure 7. (a) Recorded earthquake events of different magnitude in Yamuna 
basin. (http://www.isc.ac.uk) (b) Distribution of landslides in Yamuna basin. 

 
active tectonics turns to be a very important factor [23]. The influencing factors 
in the occurrence of landslide are tectonic activity, rainfall, lithology, and struc-
tural framework [76] [77] [78]. Tectonic processes that give rise to Himalaya are 
dominantly responsible for triggering landslide activity in the Yamuna Basin. 
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Landslide occurrence data provides a prospective active tectonic zone in the 
Himalaya. Nearly 15% of the landmass in India is susceptible to landslide ac-
cording to Geological Survey of India and the Himalaya covers maximum vul-
nerable landmass [24] because of its ongoing tectonic movement. Adverse 
lithology separated by tectonically and seismically active thrust boundaries in the 
working process behind this natural hazard. Recently landslide occurrence and 
susceptibility map of the Yamuna basin has been prepared [24]. It is noticed that 
density of landslide occurrence is maximum in the north of the RT-BT were 
many faults such as MT, RT, PT, HT, and BT exist and in the region south of the 
TT where CT, KT, MBT, and Aglar fault are present in the Yamuna basin 
(Figure 7(b)).  

5. Discussion & Conclusion 

Dynamic exchange between endogenic tectonic processes and exogenic erosional 
processes in landform growth has been discussed since recent time. It is quite 
impossible to measure the degree of intensity of endogenic tectonic uplift on 
drainage morphometry with morphotectonic parameters alone. No single varia-
ble is sufficient alone to draw a line between the response of landform to tectonic 
upliftment and climate induced erosion. However, combined with structural set-
tings, annual rainfall and seismic data, these parameters generate a clear picture 
to the spatial distribution and level of tectonic uplift in Yamuna basin. As the 
main tributary of the Ganga, Yamuna drains southern slope of Himalaya in its 
higher ranges. Annual rainfall fluctuation in upper reaches of the basin, increas-
es rainfall erosivity and induce reactivation of these tectonic lineaments which 
also trigger number of seasonal landslides. Amplified transportation of eroded 
meta-sedimentary sediments in river channel form the upper reaches take places 
and the sediments deposit in flood plains of Yamuna. Although rainfall induced 
reactivation of lineament plays a very minute role or yet to be discovered. 

Intensity of deformation varies spatially in imbricated lithological units and it 
is possibly due to locking-unlocking of the ramp along the MHT in different re-
gions of the Himalaya. Observed morphotectonic indices characterize high to 
moderate tectonic activity in both the hinterland zone between the MT and RT 
and the foreland zone between the TT and the MBT. Apart from MT, instability 
in the northern zone is also initiated by ongoing amplification of the axial zone 
of the Kharsali window and besides MBT and intense back thrusting of TT in the 
south, structural control of the Aglar fault on the morphology of the Krol nappe 
is also remarked by early workers [79]. While the central area between these two 
active zones is less active which is very similar with early derived normalized 
channel steepness index [18] (Figure 8(a)). Erosion rate derived by early work-
ers [18], explicitly in sub-basin 2 and 4 (sub-basin #8 and #7 respectively in [18]) 
exhibit maximum erosion rate 4.59 ± 0.39 mm/yr and 1.17 ± 0.09 progressively 
while for sub-basin 11 (sub-basin #1 in [18]), it is ~0.55 ± 0.04 mm/yr. Near MT 
zone, underlying geometry and architecture of the ~16˚ dipping MHT ramp 
constrain the style of erosion pattern and active tectonic zone because a distinct  
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Figure 8. (a) Distribution of normalized steepness index (ksn) (m0.9) [18] 
which is similar with IRAT distribution in Figure 6(b). ksn increases towards 
north of the Yamuna valley. (b) 40 km wide swath profile, presenting distri-
bution of elevation in Yamuna valley, Garhwal Himalaya from NE to SW (see 
Figure 2 for swath profile outline). Plots of erosion rates with vertical error 
bars. High erosion rate is observed at transition of HHC and LHMS (after [18] 
[83]). (c) Local relief, major thrust boundaries and subsurface geometry of 
MHT décollement [18] [58]. (dip angle of thrusts may not correct) for com-
plete name of thrust initials see Figure 1.  
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belt of micro-seismic epicenters lying at ~15 - 20 km depth along PT2 is typically 
interpreted as the result of strain accumulation near the creeping/locked transi-
tion at depth along a ramp in the MHT [48] [52] [53] [58] [80] [81]. This seg-
ment of MHT is accompanied by a maximum upliftment rate of ~4.0 - 5.7 
mm/yr with an average sliding rate of ~14 - 20 mm/yr of the Himalayan orogen-
ic wedge. In further south, Yamuna catchment again gains a relatively higher 
uplift rate of ~0.37 - 0.53 mm/yr over gently dipping MHT attain a steeper dip of 
~6˚, ~18 - 35 km north of the MBT with the occurrence of soberly noticeable 
tremors [18] (Figure 8(b), Figure 8(c)). 

Whereas central part of the Yamuna basin (bounded between MT in the north 
and TT in the south) is characterized by two different tectonic settings. In the 
north region, synformally folded thrust sheets with the Purola klippe at its core 
while the southern part is footwall block of the TT with no composite structure 
as the northern part. Significant low values of SL, Bs, HI and Af are estimated in 
these sub-basins. The resulted IRAT values in this region indicate moderate to 
low tectonic activity. Probably emplacement of these thrust sheets along with the 
Purola klippe and back thrusting along the TT were followed by locking of tec-
tonic movement along local thrusts HT, PT and BT. Here, 2˚ flat ramp beneath 
the surface, is associated with the lowest rock uplift rate of ~0.1 - 0.2 mm/yr in 
this segment [82] with low IRAT and least histories of earthquake. It explains 
moderate to low activity in central part of Yamuna basin. This must notify that 
change in numerical values of a certain parameter in different sub-basins with 
homogeneous lithological settings clarifies that in Himalayan orogenic configu-
ration, lithology has relegate to no control over landscape morphology. All 
marked small/large-scale landslides trigger by whether seismic or coseismic ori-
gin but magnitude-frequency distribution of landslide inference the influence of 
structural discontinuities in Himalaya. Seismicity in Yamuna valley is compara-
tively lower than that of the adjacent Alaknanda and Bhagirathi valleys however 
subsurface geometry is quite uniform throughout Garhwal Himalaya. This hete-
rogeneous seismicity is needs to be explored to reveal the variation in geody-
namic evolution on more local scale.  

The purpose of research is to explore the dynamics of earth and universe 
hence it should be related to serving mankind. Yamuna basin also has spiritual 
and economic importance. Thousands of people visits Yamunotri every year for 
its religious significance and natural beauty. As well as many government 
projects are ongoing in this region. Neo-tectonic deformation generates natural 
hazards and consequently claims many lives. Therefore, this study has estab-
lished a relatively cohesive approach to classify the areas with seismotectonic 
format of a region and so can contribute in landslide and seismic hazard mitiga-
tion. 
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