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Abstract 
In the Saharian domain, the Tarfaya-Laayoune coastal basin developed in a 
stable passive margin, where asymmetrical sedimentation increase from East 
to West and reach a sediment stack of about 14 kilometers. However, the 
morphology of the studied area corresponds to a vast plateau (hamada) pre-
senting occasional major reliefs. For this purpose, remote sensing approach 
has been applied to find the best approaches for truthful lithological mapping. 
The two supervised classification methods by machine learning (Artificial 
Neural Network and Spectral Information Divergence) have been evaluated 
for a most accurate classification to be used for our lithofacies mapping. The 
latest geological maps and RGB images were used for pseudo-color groups to 
identify important areas and collect the ROIs that will serve as facilities sam-
ples for the classifications. The results obtained showed a clear distinction 
between the various formation units, and very close results to the field reality 
in the ANN classification of the studied area. Thus, the ANN method is more 
accurate with an overall accuracy of 92.56% and a Kappa coefficient is 0.9143. 
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1. Introduction 

Orbital technology is continuously improving advanced levels which are useful 
for lithologic mapping as well as mineral exploration [1]-[13]. 
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Advances in image classification and the ability to integrate multiple data 
sources have further improved geological surveys using remote sensing technol-
ogies. There are a multitude of classification algorithms that have proven to be 
effective in geological mapping: Artificial Neural Networks (ANN) [14]-[21], 
Spectral Angle Mapper (SAM) [13] [15] [22] [23] [24] [25], Support Vector Ma-
chines (SVM) [13] [26] [27] [28] [29]. 

On the other hand, advances in Landsat sensors with two additional spectral 
bands and a narrower bandwidth are an advantage for applications requiring 
thinner, narrow bands, as well the development of spectral indices for various 
applications of Landsat data, including agriculture, land cover mapping, cool 
and coastal water mapping, snow and ice, soil and geology [30]. In this sense, 
Landsat bands are well-known for particular applications: band 7 (geological 
band), band 5 (soil and rock discrimination) and band 3 (soil/vegetation dis-
crimination) [31] [32] [33].  

The Meso-Cenozoic Tarfaya-Laayoune-Dakhla basin is located NW of the 
Archean-Proterozoic ridge of Réguibate, NW of the West African craton. The 
studied region belongs to the Tarfaya-Laayoune basin, the central region of the 
Meso-Cenozoic Tarfaya-Laayoune-Dakhla basin, which has been a relatively stable 
tectonic platform since the Jurassic period [34]. Primarily, the Meso-Cenozoic 
formations mainly arbitrate layers of bituminous, phosphate and limestone rocks 
of obvious economic interest. 

Like all arid regions, the geological mapping is more complicated because 
most of the formations are invaded by large movements of sand (34 m/s) accele-
rated by the flat morphology of the land [35]. However, the geological mapping 
coverage has been reported by several maps at a scale of 1:100.000 and which 
concern the type-localities (from the North to the South): Tarfaya, Tah, Oum 
Debaa and Laayoune [34]. 

In another sense, this work aims to classify lithofacies by processing Landsat 8 
multispectral data. Artificial Neural Network (ANN) and Spectral Information 
Divergence (SID) were used for classification while the spectra of the regions of 
interest (ROI) of the image were used as end members. For better precision, The 
ANN and SID classifiers were compared, and a choice was made for the classifier 
to be used as a support for geological mapping. Finally, we are guided to make a 
comparison between the two classification methods to choose the most efficient 
for a good presentation of the lithological cartography of the area. 

2. Geological Settings 

In Morocco, the Saharan domain presents morphological, climatic and hydro-
logical peculiarities. This area is characterized by arid conditions, precipitation 
less than 54 mm/year, an annual average temperature that varies between 17˚C 
on the coast and 25˚C elsewhere and 3239.81 hours of sunshine per year. This 
domain is established on Precambrian crystalline lands (climate-data.org). 

The Tarfaya-Laayoune-Dakhla (Figure 1) basin is part of the western margin 
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of the platform. It is made up of a set of elongated NE-SW basins, parallel to the 
coast [34] [36]. These basins are from N to S: Tarfaya-Laayoune, Boujdour, 
Dakhla, Lagwira. They were formed during the Mesozoic and Cenozoic in the 
marine direction of the Archean-Proterozoic formations of the Reguibate Ridge 
and the folded Paleozoic sediments of the Paleozoic basin of Tindouf. 

The Tarfaya Laayoune basin is separated from the Essouira-Agadir basin by 
the stable structural top of the Anti-Atlas. It is limited to the N and NE, succes-
sively, by the anti-Atlas Proterozoic domain and the Paleozoic-Cenozoic basin of 
Tindouf, to the E by the Archean and Proterozoic crystalline massif of the Tiris 
domain and to the SE and S by the Archean and Proterozoic crystalline massif of 
the domain of Oulad Dlim “dominates affected by the Hercynian phase”. 

 

 
Figure 1. localization of the sector on the scale of Morocco (A) and at the level of the re-
gion of Laayoune (B). Geological setting in the studied locality (C), Tarfaya Laayoune Ba-
sin, Morocco. Adaptation from the geological map of West Africa [37]. 
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The Meso-Cenozoic Tarfaya-Laayoune-Dakhla basin, a relatively tectonically 
stable platform since the Jurassic, is located to the NW of the Archean-Proterozoic 
ridge of Réguibate “NW of the West African craton” (Figure 1). Its sedimentary 
filling is asymmetrical, increasing from east to west, reaching a stack of about 14 
kilometers [38]. The studied basin is a consequence of the opening of the central 
Atlantic [39]. This basin summarizes the geological history from the Trias to the 
Neogene at the northern borders of the West African Craton. 

This basin was initially studied during oil exploration [40]. In general, the 
thickness of the Mesozoic series is greater than in the basins located north of the 
High Atlas. In the Laayoune basin, they reach over 10,000 m. The structural 
framework of the Layoune-Tarfaya basins, sketched by Heyman (1988), is a set 
of hemigrabens developed from NNW dipping listric faults, connected at a 
depth of about 16 km on a detachment fault. 

To the west, the Paleozoic series are folded and form the Appalachian reliefs 
of the Zemmur, a little more exposed to the winds and rains of the Atlantic. In 
the north of the country Mechem, the Hamada Tindouf (or Draa) from a vast 
flat entablature, consisting mainly of limestones, which dominates the Paleozoic 
lands. The few wadis are directed to the center of the basin of Tindouf. To the 
west of the Reguibate and Zemmour extends the Atlantic plain of Tarfaya, 
Laayoune, Boujdour and Dakhla, whose substratum, mainly carbonated, is rich 
in phosphate deposits. 

On the structural level, the Tarfaya-Laayoune basin boundary with the An-
ti-Atlas is rectilinear in a North Northeast-South Southouest direction [41]. In 
the South, this limit is aligned with the major accident North Northeast-South 
Southwest of Zemmour and two major structural directorates control the Tar-
faya-Laayoune basin and its hinterland [42]: 

1) East Northeast-West Southwest to North East-South West: the Atlas direc-
tion limits the Precambrian-Paleozoic to the hinterland of the Tarfaya-Laayoune 
Basin; this direction is materialized by the axis of the Tindouf Paleozoic basin, 
the Anti-Atlas chain, the Reguibat Precambrian Massive Middle Axis, the South- 
Atlas Fault (East Northeast-West Southwest) and the Agadir Fault (N45˚) [38] 
[43]. 

2) North Northeast-South Southwest: the Meso-Cenozoic Atlantic direction 
coincides with the general elongation of the Tarfaya-Laayoune basin and the di-
rection of the Zemmour fault, inherited from the Hercynian cycle [44]. 

3) A third N90˚ direction, intersecting with the coast, is apparent from the 
analysis of the bathymetric and gravity maps of the northwestern African mar-
gin. This family of transverse accidents segments the margin in low zones and 
high zones which control, from the Triassic, the distribution of the evaporite 
deposits [45]. 

3. Material and Methods 
3.1. Data Characteristics 

The Landsat 8 satellite rotates in a sun-synchronous, quasi-polar orbit at an alti-
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tude of 705 km, inclined at 98.2 degrees, and performs an Earth orbit every 99 
minutes. The Operational Land Imager (OLI) satellite and the Thermal Infrared 
Sensor (TIRS) are sensors on board the Landsat 8 satellite, which was commis-
sioned in 2013. This satellite collects images of the Earth with a cycle of 16-day 
repetition (Table 1). 

The OLI sensor acquires data with improved radiometric accuracy over a 
12-bit dynamic range, which improves the signal-to-overall noise ratio. This 
translates to 4096 potential gray levels, compared to just 256 gray levels in 
Landsat 1-7 which has only 8-bit instruments. The OLI collects data for two new 
bands, a coastal/aerosol band (band 1) and a cirrus band (band 9), as well as the 
heritage Landsat multispectral bands [31] [32] [33].  

3.2. Methodology 

In our study, we used as data sources the geological maps of Laayoune area 
(1:100.000) (Figure 2) and the correspondent Landsat 8 satellite image. 

As shown in the flowchart (Figure 3), we begin the study using data sources 
(geological map and satellite image) and a software package for atmospheric and 
radiometric correction, pre-processing and processing. 

Then, the pre-processing step requires the stacking of the data sources neces-
sary for the stacking of the layers, the atmospheric correction and the radiome-
tric correction of the corrected satellite image. It is an important step in remote 
sensing which aims to obtain a physical parameter independent of lighting con-
ditions and even atmospheric conditions, which allows us to use images from 
different eras to detect changes. 

A certain number of “radiometric noises” can be present in the image due ei-
ther to deficiencies of the sensors, or to problems of data transmission, or finally 
of interpretation (coding/decoding). Basically, these radiometric corrections are 
carried out directly on the image reception by reassigning codes corresponding 
to neighboring pixels or to defective points. 

 
Table 1. Landsat 8 band characteristics. 

Sensor Band number Band name Wavelength (μm) Resolution (m) 

OLI 1 Coastal 0.43 - 0.45 30 

OLI 2 Blue 0.45 - 0.51 30 

OLI 3 Green 0.53 - 0.59 30 

OLI 4 Red 0.63 - 0.67 30 

OLI 5 NIR 0.85 - 0.88 30 

OLI 6 SWIR 1 1.57 - 1.65 30 

OLI 7 SWIR 2 2.11 - 2.29 30 

OLI 8 Pan 0.50 - 0.68 15 

OLI 9 Cirrus 1.36 - 1.38 30 
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Figure 2. Geological map showing the outlines of the studied zone (Adaptation from the geological maps 
of LAAYOUNE area, scale: 1:100,000 [46] [47]. 
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Figure 3. Methodology flowchart of the processing techniques applied for the lithological 
mapping based on Landasat 8 OLI data. 

 
On the other hand, the sensors installed on board Earth observation satellites 

operating in the spectral range of solar emission (wavelengths of 0.24 µm) are 
radiometers which measure the luminance reflected by the earth + atmosphere 
assembly lit by the sun. In a non-cloudy atmosphere, the radiometric signal de-
pends on the reflectance of the earth’s surface but also on the effects of the at-
mosphere that occur during the two paths (descending, from the Sun to the sur-
face, and ascending, from the surface to the sensor) effected by solar radiation 
through the atmosphere. The simple calibration of the sensor data, in luminance 
(absolute values measured in) or in reflectance’s (relative values), therefore does 
not provide information on the surface but a composite signal. the objective of 
this correction is to extract this signal provides information independent of the 
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effects of the atmosphere, which vary in time and space, and only concerning the 
terrestrial surface, which is the object to be studied. 

3.3. Optimal Index Factor (OIF) 

The Optimal Index Factor (OIF) is a statistical value that can be used to select 
the optimal combination of three bands in a satellite image with which you want 
to create a color composite developed by Chavez et al. (1984). It ranks the 20 
three-band combinations that can be made from six TM data bands (not count-
ing the thermal infrared band) and the optimal band combination out of all the 
possible 3-band combinations is the one with the greatest amount of d. ‘“Infor-
mation” (highest sum of standard deviations), with the least duplication (lowest 
correlation between pairs of bands). This technique is valid for any multispectral 
remote sensing dataset. It is based on the amount of total variance and correla-
tion within and between various combinations of bands [48]. The algorithm 
used to figure the OIF for any subset of three bands is: 

( )
!

3 3! 3 !
N N

N
 

=  ∗ − 
                        (1) 

where: 
N: is the total number of bands in the map list (For 3 bands, there is only 1 

combination; for 4 bands, there are 4 combinations, for 5 bands, there are 10 
combinations; for 6 bands there are 20 combinations; and for 7 bands, there are 
35 combinations). 

Then, for each combination of three bands, the OIF is calculated as: 

, , ,

OIF i j k

i j i k j k

Std Std Std

Corr Corr Corr

+ +
=

+ +
                (2) 

where: 

iStd : standard deviation of band i 

jStd : standard deviation of band j 

kStd : standard deviation of band k 

,i jCorr : correlation coefficient of band i and band j 

,i kCorr : correlation coefficient of band i and band k 

,j kCorr : correlation coefficient of band j and band k 

3.4. Minimum Noise Fraction (MNF) 

Minimum noise fraction (MNF) is a powerful technique for denoising remote 
sensing data. This is a preparatory transformation which condenses most of the 
components into a few spectral bands and to classify these bands in decreasing 
orders of interest [49] [50]. Thus, the lower band numbers contain more spectral 
information and present great interest in lithological mapping [49] [51] [52] 
[53]. Particularly, the MNF uses a noise covariance matrix to decorrelate and 
resize the noise in the data and then run a pca to convert the noise-bleached data 
[54]. In this way, the noise is evenly distributed between the bands, which allows 
the method to achieve good discrimination of spectral characteristics [55]. 
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3.5. Principal Component Analysis (PCA) 

Principal component analysis (PCA) is a multivariate statistical method initiated 
by Pearson (1901) and widely used in the scientific community. It selects the 
uncorrelated linear combinations of variables such that each component succes-
sively extracts the linear combination and presents a lower variance [51].  

In remote sensing, its role is to extract the desired spectral signatures by 
transforming a number of correlated spectral bands into a smaller number of 
uncorrelated spectral bands called principal components. His interest in map-
ping is reinforced by his ability to improve and separate certain types of spectral 
signatures from the background, which has led various authors to use the PCA 
technique [1] [2] [11] [51] [56]-[63]. 

3.6. End Members Extraction 

The identification of lithological units and the classification of images using spa-
tial remote sensing appear problematic because few images pixels display “pure” 
spectra [64]. Thus, the previous analyzes relating to PCA and MNF have a pre-
ponderant function for the determination of endmembers (Training Samples). 
Indeed, the use of Endmembers is mainly a critical step to classify the input data 
in the classification algorithm used [65] [66]. 

This approach requires a set of input endmembers that represent “pure” spec-
tra of representative lithologies in the studied zone, where these endmembers 
can be extracted directly from imagery, so that all relevant materials are included 
that represent true surfaces and are under the same viewing and lighting condi-
tions as all spectra in the scene. However, to limit the spectral similarity between 
endmembers, we used the separability of the ROI pairs to select only the most 
spectrally distinct. In this work, the representative endmember image spectra 
were derived for regions of interest (ROI) defined mainly from the existing geo-
logical map [34]. 

3.7. Artificial Neural Network (ANN) 

ANNs are computer systems inspired by the neural networks that make up the 
human brain. Its concept is that they “learn” to do tasks from examples, gener-
ally without being programmed with task-specific rules [67] because it manages 
to find a solution in a non-algorithmic and unstructured way based on the ad-
justment of the weights connected to the network neurons [68].  

For each neuron, the input value is calculated as follows [69] [70]: 
1

1
mn n n

i ji jjnet Oω −
=

⋅= ∑                       (3) 

where: 
n
inet : the input value of ith neuron in nth layer; 

n
jiω  correspond to the connection weight between ith neuron (layer) and jth 

neuron in the (n − 1)th layer; 
1n

jO −  is the output of jth neuron in the (n − 1)th layer; 
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m is the number of neurons in the (n − 1)th layer. 
In each neuron, the value calculated from the Equation (3) is transferred by an 

activation function. The common function for this purpose is the sigmoid func-
tion, and is given by:  

( ) ( )
1

1
n
j n

j

Sig net
Exp net

=
+ −

                    (4) 

The ANN algorithm has been widely used for the classification of several sets 
of remote sensor data and has produced very powerful results (Jensen, 2015) 
compared to traditional classification methods [71] [72] [73] [74] [75]. Thus, the 
ANN is able to perform calculations in order to acquire, represent and calculate 
a map of a multivariate information space from an initial data set [76]. 

Image classification using ANN is performed by extracting texture features 
and then applying the back propagation algorithm. The typical back propagation 
network is characterized by input and output layers and at least one hidden one. 
Theoretically, there is no limit on the number of hidden layers, but there is 
usually only one or two. Neural Network technique uses standard back propaga-
tion for supervised learning which activates by adjusting weights in the node to 
minimize the difference between the activation of the exit node and the exit [77]. 

3.8. Spectral Information Divergence (SID) 

SID is a spectral classification method that considers each pixel as a random va-
riable and uses its spectral histogram to define a probability distribution [70]. 
For a given multispectral hyperspectral pixel vector ( )T

I Lx x x=   each com-
ponent Ix  is a pixel of band image IB .  

Then x can be modeled as a random variable by defining an appropriate 
probability distribution. The component Ix ’s in x are nonnegative due to the 
nature of radiance or reflectance. With this assumption Ix  can be normalized  

within the range [0, 1] by defining 
1

j
j

II
L

x
p

x
=

=
∑

 so that { } 1
L

I Ip p
=

=  is the de-

sired probability vector resulting from the pixel vector x.  
In order to further study how to use concepts arising from information theory 

to capture relationship and correlation between two multispectral hyperspectral  
pixel vectors, assume that there is another pixel vector ( )T, ,I Ly y y=   with 

the probability distribution given by { } 1
L

I Iq q
=

=  and 1j j II
Lq y y
=

= ∑  Using 
p and q we define Spectral Information Divergence (SID) by: 

( ) ( ) ( )SID ,x y D x y D y x= +                   (5) 

where 

( )
1

log
L

I
I

I I

pD x y p
q=

 
=  

 
∑  

And 
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( )
1

log
L

I
I

I I

qD y x q
p=

 
=  

 
∑  

It should note that ( )D x y  is called the relative entropy of y with respect to 
x which is also known as Kullack-Leibler information function, directed diver-
gence or cross entropy. The SID defined by Equation (5) can be used to measure 
the spectral similarity between two pixel vectors x, and x2. 

The spectral similarity between two pixels is then measured by the difference 
in probabilistic behaviors between their spectra; the smaller the divergence, the 
more likely the pixels are to be similar [78]. Regarding methodology, the End-
member spectra used by SID can come from ASCII files or spectral libraries, or 
you can extract them directly from an image (as average ROI spectra) [79]; this 
algorithm improves the precision of the estimation of Endmember used in the 
optimal classification [80]. 

4. Results 

The morphology of the studied area corresponds to a vast plateau (hamada) not 
presenting major reliefs, except for depressions (known as sebkhas) which does 
not rarely show most Meso-Cenozoic formations (mainly along oueds and edges 
of sebkhas). 

Obviously, the use of remote sensing data is very valuable for the study of 
geological features especially in large areas with little or no in-situ data. In order 
to obtain better results, the Landsat 8 OLI data has been radiometrically and 
geometrically corrected. This pre-processing step is essential to obtain spatial 
and radiometric corrected images to delineate the geological units in the study 
area. Then, the image used requires more enhancement through the following 
methods (OIF, MNF and PCA). 

4.1. Enhancement Images  

First, the Optimal Index Factor (OIF) is a statistical value which help to find the 
optimal combination of three bands in a satellite image in order to create a color 
composite [10] [81]. Thus, Figure 4 shows that the band composition 6-7-8 of 
Landsat 8 data, represent the most optimal RGB color combination image that 
will be chosen for geological mapping in the study area according to the results 
of the OIF. Indeed, this RGB color combination represents the combination of 
the most information (as measured by variance) with the least duplication (as 
measured by correlation) and thus exhibits a noticeable color variation corres-
ponding to large geological formations. 

The MNF technique allows to segregate noise, feature extraction, spectral data 
reduction but also to better discriminate formation still confused at this stage. 
Figure 5 displays a color composite image comprising the MNF components 1, 
2 and, 3 which are displayed in red, green and blue respectively. Table 2 sum-
marizes the most influential bands in the MNF transformation, measured by ei-
genvectors. 
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Figure 4. False colour combination with highest OIF. RGB composite of bands 
6 (red), 7 (green), and 8 (blue) of Landsat 8 OLI data of the studied area. 

 

 
Figure 5. MNF RGB color combination (MNF 1, MNF 2, MNF 3). 
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Table 2. Percentage of information contained in each MNF bands of the studied data. 

Num Eigenvalue percentage 

1 846.91525 76.17522 

2 149.144175 13.41467 

3 56.549253 5.086284 

4 28.825196 2.592663 

5 17.267562 1.553119 

6 9.40914 0.846299 

7 3.688301 0.331742 

8 - - 

9 - - 

 
The PCA transform was applied to Landsat 8 OLI (Figure 6) data in order to 

produce uncorrelated output bands, segregate noise components, and reduce the 
dimensionality of the studied data. Table 3 summarizes the most influential 
bands in the PCA transformation, measured by eigenvectors. 

The obtained results expect that the first PC represents the highest percentage 
of variance or eigenvalue and the last PC represents lower variance; this is com-
puted by the presence of noise in the original spectral bands of the Landsat 8 da-
ta.  

Thus, more colorful color composite images are produced using PCA instead 
of the spectral color composite images because the spectral bands are not corre-
lated (Figure 6 shows PCA bands 3, 1 and 2 in RGB for the study area). Thus, 
the structural information is well presented in the Landsat 8 image and is ready 
for lithological classification. 

Before starting the lithological classification step, the extraction of endmemb-
ers helps to be near of the surface reality as much as possible. In this work, we 
chose first to study several typical cross-sections (along Oued Saquia Hamra and 
Sebkha Oum Debaa) and the geological map at a scale 1/100,000 [34]; at the 
same level, a visual interpretation on the enhanced images supported by the 
spectral profile of the pixels from the best OIF image. 

On the other hand, to attenuate the spectral similarity between endmembers, 
we used the separability of the ROI pairs to select only the most spectrally dis-
tinct. In this study, and after several attempts to collect the ROIs covering the 
same facies on all the enhanced images (PCA and MNF), we opted for a separa-
bility threshold of 2 so that the ROI pairs are acceptable. 

4.2. SID  

Due to the lithological diversity down to the pixel, this type of classification, 
based on outcrop spectra, was not very satisfactory. Figure 7 shows the resulting 
image. Indeed, examination of the image reveals large unclassified areas and a 
large disparity with the geological map. 
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For example, this classification does not allow to detect the large dune forma-
tion which is cut horizontally by the Oued Saquia Hamra and it replaces it by the 
Amgraw formation (PVlh3) and the bituminous Upper Cretaceous formation 
(Com). In the outcrop, the bituminous formations appear only along the Wadi 
and the deep sebkhas. Also, this classification does not distinguish between wa-
ter and alluvial land. 

Basically, the comparison of this classification with the geological map shows 
that the SID classification does not present a great coherence with the reality on 
the ground despite having presented good results in other works [82] [83] [84].  

 
Table 3. Percentage of information contained in each PCA bands of the studied data. 

Num Eigenvalue percentage 

1 6.61782 94.5403127 

2 0.353199 5.04570144 

3 0.016273 0.23247149 

4 0.009249 0.13212861 

5 0.00195 0.02785715 

6 0.001141 0.0163 

7 0.000366 0.00522857 

8 - - 

9 - - 

 

 
Figure 6. PCA RGB color combination (PCA1, PCA2, PCA3). 
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Figure 7. Classification map obtained by Spectral Information 
Divergence method (SID). 

 
Quantitatively, the validation test confirms these remarks and findings and 

during which the accuracy assessment is 49.6144% and the Kappa coefficient 
does not exceed 0.4398. Probably, the high lithological diversity was not very 
adequate because of the pixel resolution of the used image. 

4.3. ANN 

Unlike the SID classification, the supervised classification ANN has presented 
very adequate results (Figure 8) and an almost perfect correlation with the geo-
logical map of Laayoune where the formation was effortless recognized.  

Indeed, the dune formation is well identified by this classification as well as 
the bituminous formations of Upper Cretaceous age which constitute minor 
thickness and have been plotted along the Oued Saquia Hamra and the edges of 
Sebkha Oum Debaa. Also, the Cenozoic formations show good similitude with 
the geological map: the hammada slab (q5), the Miocene sandstone formations 
(Mla1, Mla2…). Also, it should be noted that this classification differentiates the 
water zones from the alluvial surfaces. 

The performance of these results is tested by the accuracy assessment. This as-
sessment shows that the classification displays a precision equivalent to 92.56% and 
a Kappa coefficient of 0.9143. 
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Figure 8. Classification map by the Artificial Neural Network clas-
sification. 

5. Discussion 

In order to specify which lithological classification is the most precise between 
the ANN and SID classifications, we used the landsat 8 OLI image which has 
been subjected to atmospheric and radiometric corrections. After the computa-
tion of the OIF, we obtain the highest combination of RGB bands (b6, b7, b8) 
which will perform a good presentation of the image data. Later, we calculated 
the PCA which is used to reduce the dimensionality of the satellite image and the 
MNF to separate the noise in the data, and to reduce the computational re-
quirements for further processing. 

The creation of ROIs is done, from the geological map of Laayoune, to super-
vise over the different facies in order to use it in the two classifications, then we 
calculate the parability which has values close to 2 that it is principal that we are 
correctly on the best way in our study. 

After performing the two classifications: ANN and SID, the results, based on 
the overall precision and the confusion matrix, obtained showed that the ANN 
has the highest overall precision of 92.56% with a Kappa coefficient of 0.9143 
(Figure 9). By ANN, the overlay of this classification image with the geological 
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map shows great similarity between the classes and geological formations on the 
map and allows to have a greater precision in the lithofacies classification and 

 

 
Figure 9. Accuracy assessment of the studied classi-
fications (SID and ANN). 

 

 

Figure 10. Qualitative validation with samples used with the ANN image. 

0
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presents a good contribution to the spectral analysis based on the study. Defi-
nitely, adding in situ measurements of the spectral characteristics of the typical 
formations of the region, the Landsat 8 images could present results with more 
precision in the classification of the facies. 

On the qualitative level, the validation of the results of the ANN classification 
was endorsed with outcrop images (Figure 10) with GPS position showing the 
land reality and the concordance with the ANN classification. Allegedly, the 
ANN classification shows excellent results in these very particular morphological 
conditions dominated by flat terrain and sand migration which hinder the visua-
lization of satellite images. 

6. Conclusions  

The present study was carried around the Meso-Cenozoic Tarfaya-Laayoune ba-
sin (Saharian domain, Morocco). The studied area represents an arid region 
which corresponds to a vast plateau (hamada) not presenting major reliefs, ex-
cept for depressions (known as sebkhas) which does not rarely show most Me-
so-Cenozoic formations (mainly along oueds and edges of sebkhas). 

In this work, we have examined two methods of classification (ANN and SID) 
and compared them with the current map using an entire image processing 
process starting with atmospheric and radiometric correction, the georeferenc-
ing of the image and the geological map then performing the OIF, PCA, MNF 
calculations and creating the ROIs on which the separability calculation was 
performed. 

After the creation of classifications input, the results were confirmed with the 
calculation of the confusion matrix and the Kappa index, which inform that the 
ANN classification is the most accurate method with an overall accuracy per-
centage of 92.56% and kappa index of 0.9143. 

To conclude, the remote sensing processing on Landsat 8 OLI data can allow 
better precision in the lithofacies classification, and it gives geologists a very 
good opportunity to improve their investigations in areas of difficult access. This 
will be a major contribution to the spectral analysis based on the study. Indeed, 
with a good improvement of these images by the multiple methods currently 
available and an adapted classification (ANN for our case) one can easily draw 
up a very precise lithofacies map. 
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