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Abstract 
The significant advantage of the complex resistivity method is to reflect the 
abnormal body through multi-parameters, but its inversion parameters are 
more than the resistivity tomography method. Therefore, how to effectively 
invert these spectral parameters has become the focused area of the complex 
resistivity inversion. An optimized BP neural network (BPNN) approach 
based on Quantum Particle Swarm Optimization (QPSO) algorithm was pre-
sented, which was able to improve global search ability for complex resistivity 
multi-parameter nonlinear inversion. In the proposed method, the nonlinear 
weight adjustment strategy and mutation operator were used to enhance the 
optimization ability of QPSO algorithm. Implementation of proposed QPSO­ 
BPNN was given, the network had 56 hidden neurons in two hidden layers 
(the first hidden layer has 46 neurons and the second hidden layer has 10 
neurons) and it was trained on 48 datasets and tested on another 5 synthetic 
datasets. The training and test results show that BP neural network optimized 
by the QPSO algorithm performs better than the BP neural network without 
initial optimization on the inversion training and test models, and the mean 
square error distribution is better. At the same time, a double polarized ano-
malous bodies model was also used to verify the feasibility and effectiveness 
of the proposed method, the inversion results show that the QPSO-BP algo-
rithm inversion clearly characterizes the anomalous boundaries and is closer 
to the values of the parameters. 
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1. Introduction 

CR (Complex resistivity) method, also known as SIP (Spectrum Induced Polari-
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zation) method, is one of the geophysical prospecting methods that is based on 
the different induced polarization characteristics of rocks and ores in the fre-
quency domain. Multi-parameter is the main feature of complex resistivity in-
version [1]. The essence of inversion theory is to study the theory and method of 
mapping the observed data in Geophysics to the corresponding geophysical 
model [2]. For the complex resistivity inversion problem, its essence is a nonli-
near problem. The nonlinear problem is easy to fall into the local extremum by 
using the traditional linear or quasi-linear method, so it needs to be solved by 
the nonlinear method. 

In the inversion of electrical resistivity tomography, the neural network has 
become one of the most widely used complete nonlinear inversion methods be-
cause of its strong nonlinear mapping ability and easy construction. 

Ahmad Neyamadpour et al. used the artificial neural network to study the in-
version imaging of 2D DC resistivity data and created a Matlab application. The 
interpreted result shows that the trained network was able to invert 2D electrical 
resistivity imaging data obtained by a Wenner-Schlumberger configuration ra-
pidly and accurately [3]. Dai Qian-Wei et al. Completed the Nonlinear inversion 
for electrical resistivity tomography based on chaotic DE-BP algorithm, and the 
results show that the proposed method has better performance in stability and 
accuracy and higher imaging quality than least-square inversion [4]. Trong Long 
Ho used a back-propagation neural network to research 3D inversion problem 
of borehole-to-surface electrical data. The result shows that the most successful 
learning algorithm in this network is the Resilient Propagation (RPROP) [5]. 
The above researchers have made a lot of contributions in resistivity nonlinear 
inversion, but they have not introduced the nonlinear method into the complex 
resistivity inversion. 

However, for the complex resistivity method, which requires multi-parameter 
inversion, the application of a neural network is rare. The inversion methods are 
mostly linear or quasi-linear methods. Loke et al. introduced the regularization 
method and adopted the smooth constrained least square method to carry out 
the inversion of 2.5D complex resistivity method with ignoring the electromag-
netic coupling effect, and obtained the parameters of Cole-Cole mode, but the 
inversion of the boundary is not as expected [6]. Son et al. proposed a new com-
plex resistivity inversion algorithm based on DC resistivity, which was calculated 
in the complex domain. In order to directly invert the complex resistivity of 
multi-frequency points, the algorithm decomposes the Cole-Cole model para-
meters of multi-frequency complex resistivity [7]. Blaschek et al. introduced the 
minimum gradient regularization algorithm to study the inversion problem of 
complex resistivity [8]. Routh et al. studied the complex resistivity inversion of 
the smooth model under the condition of considering electromagnetic coupling 
[9]. Hönig et al. adopted a forward algorithm similar to DC resistivity, then in-
troduced the zero-frequency smoothing constraint of complex resistivity, and 
studied the regularization inversion of complex resistivity [10]. Zhang Zhi-Yong 
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et al. used MPI parallel algorithm to study 2D inversion problem of spectral in-
duced polarization data. The tests result suggests that the proposed parallel algo-
rithm is robust and efficient [11]. 

Based on the above research experience, this paper introduces the optimized 
neural network to solve the multi-parameters inversion problem of the complex 
resistivity method and constructs a nonlinear mapping network between appar-
ent complex resistivity and inversion parameters. We also propose a complex re-
sistivity nonlinear inversion algorithm based on QPSO-BP algorithm to try to 
solve the multi-parameter nonlinear inversion problem. 

2. Forward Modeling Theory of 2.5D Complex Resistivity  
Method 

2.1. Forward Modeling Theory 

Under the condition of ignoring the electromagnetic coupling effect, the com-
plex resistivity forward calculation is similar to the DC method. The Cole-Cole 
model is introduced to characterize the induced polarization effect. After Fourier 
transform, 2D complex potential boundary value problem in wavenumber do-
main is [12]: 
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In Equation (1), the area Ω is a three-dimensional study area, Boundary
,s ∞Γ Γ  is the boundary of a two-dimensional region. Among them, sΓ  is the 

surface boundary of area Ω, and ∞Γ  is the underground boundary of area Ω, 
As shown in Figure 1, 2σ  is the complex conductivity of the polarized me-
dium, r is the distance from the power source to the boundary, n is the outer 
normal direction of the infinity boundary, k is the wavenumber, 0K  is the ze-
ro-order Bessel function, and 1K  is the second kind of first-order Bessel func-
tion. The functional of Equation (1) is: 
 

 
Figure 1. Mode schematic of two-dimensional structure. 
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Discrete the calculation area and construct an interpolation function. The 
discrete form of Equation (2) is: 

( ) Τ Τ1
2

F K= −U U U U P                       (3) 

where P is the column vector related to the excitation point power. Solving the 
variation of the Equation (3) and making it equal to zero, then we can get the 
system of linear equations: 

K =U P                               (4) 

The wavenumber domain potential U of each point is obtained by solving the 
linear Equation (4), and the potential is obtained by inverse Fourier transform 
[13]. 
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where r is the position of the measuring point, jk  is the wavenumber and jg  
is the weighting coefficient, the values of both are shown in Table 1 [14].  

The complex resistivity produced by the induced polarization effect of rock 
and ore is expressed by Cole-Cole model [15]: 
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                  (6) 

where, 0ρ  is resistivity (0 Hz); m is charge ability; c is relaxation-constant; τ is a 
time constant. The complex resistivity forward calculation can be carried out by 
replacing the conductivity in Equation (1) and Equation (2) with the complex 
conductivity. 

2.2. Accuracy Verification of Forwarding Modeling Algorithm 

In order to verify the accuracy of the CR forward algorithm, the two-layer hori-
zontal complex resistivity model is used to verify the calculation accuracy. 

For the two-layer horizontal formation, by solving the simplified Laplace equ-
ation of the cylindrical coordinate system and power series expansion, the cal-
culation expression of the complex potential U�  at each point on the surface 
can be obtained as: 
 
Table 1. The inverse Fourier transform coefficient. 

 
j = 1 j = 2 j = 3 j = 4 j = 5 

kj 0.004758 0.0407011 0.1408855 0.393225 1.0880380 

gj 0.0099472 0.0381619 0.0980327 0.2511531 0.7260814 
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In Equation (7), ( ) ( ) ( ) ( )12 2 1 2 1K i i i iρ ω ρ ω ρ ω ρ ω= − +      , ( )1 iρ ω , 
( )2 iρ ω  is the complex resistivity calculated by Equation (6) for the first and 

second layers, r is the distance between the measuring point and the origin, 1h  
is the thickness of the first stratum. The calculation accuracy of Equation (7) 
depends on the size of the number of terms n. The larger the n is, the higher ac-
curacy of the calculation is. This calculation takes n = 200. The parameters of the 
two-layer polarization model are shown in Table 2.  

The numerical solution and analytical solution of 2.5D complex potential of 
the two-layer horizontal layer model are shown in Figure 2(a) and Figure 2(b). 
Both the amplitude and phase curves of complex potential are consistent with 
the analytical solution, which shows the accuracy of the finite element algorithm. 
The finite element algorithm provides a reliable basis for constructing BP neural 
network training database. 
 

 
(a) 

 
(b) 

Figure 2. Comparison of analytical solution of complex potential and numerical solution 
of finite element. (a) Excitation frequency is 1.25 Hz; (b) Excitation frequency is 125 Hz. 
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Table 2. Parameter table of two-layer polarization model. 

Serial number Layer thickness/m 
Electrical parameters 

ρ0/Ω∙m m c τ/s 

1 10 50 0.7 0.3 20 

2 ∞ 100 0.3 0.6 1 

3. Quantum Particle Swarm Algorithm for Training BP  
Neural Network 

3.1. Quantum Particle Swarm Optimization Algorithm 

Quantum particle swarm optimization (QPSO) absorbs the characteristics and 
advantages of PSO algorithm and quantum computing, combines the two me-
thods, and presents the solution of the problem to be optimized in the form of 
qubit probability amplitude [16]. 

Initialization: The qubit phase θ in the range of [ ]0,2π  is randomly gener-
ated by using a random number function, and the qubit can be obtained, which 
can be expressed as a probability amplitude [ ]sin ,cosθ θ Τ

. After that, the solu-
tion space is transformed by combining the upper and lower limits of each vari-
able set by the algorithm, and the qubit is transformed into the solution space to 
calculate the appropriate value. 

Update: In the QPSO algorithm, with the help of quantum rotation gates op-
eration, the individual and group optimal positions (set as cosine positions) 
found by the particle ip  in the current solution space can be expressed as: 
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The updated rules of particle state are as follows: 
The incremental update of qubit angle on particles is: 
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And ω is a random number with inertia weight; 1 2,c c  is a self-factor and a 
global factor respectively; 1 2,r r  is a random number of (0, 1). 

The probability amplitude of qubit on particles is updated as: 
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Among them 1,2, , ; 1, 2, ,i n j d= =� � , n and d are the number of popula-
tion and the dimension of unknown variables, respectively. 

Mutation: In the QPSO algorithm, quantum non-gate is used to mutate par-
ticles. First, the mutation probability mK  is set, and each particle is given a 
random number irand  between (0, 1). If i mrand K< , then [n/2] qubits are 
randomly selected, and the mutation operation is carried out by using Equation 
(11), and the memorized optimal position and rotation angle vector remains 
unchanged. 
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where 1,2, , ; 1, 2, ,i n j d= =� � . 
Weight adjustment: In particle swarm optimization, inertia weight ω is an 

important parameter. If the value of ω is increased, the global search ability will 
be enhanced. If the value of ω is decreased, the local search ability will be en-
hanced. Equation (12) is used to realize the nonlinear dynamic adjustment of 
inertia weight: 
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where f represents the real-time objective function value of particles; minf  and 

avgf  are the minimum and average moderate values of all particles. 

3.2. Back Propagation Neural Network Construction 

BP neural network modeling method: take the horizontal position, vertical posi-
tion, amplitude and phase information of measuring apparent complex resistiv-
ity as the input information of neural network, and take the parameter informa-
tion of model as the output information of the neural network. 

In order to adapt to the multi-parameter characteristics of complex resistivity 
inversion, the BP neural network model obtained through numerical test is 
shown in Figure 3. The overall neural network has 12 input nodes in the input 
layer, 56 hidden neurons in two hidden layers (the first hidden layer has 46 
neurons and the second hidden layer has 10 neurons), 4 output nodes in the 
output layer, and the overall topology is 12-46-10-4. 

3.3. Training Process of Back Propagation Neural Networks 

QPSO-BP algorithm mainly uses the global optimization ability of QPSO to op-
timize the initial weight and threshold of BP neural network. In order to obtain 
the best overall effect, BP neural network uses the optimized initial weight and 
threshold to continue training. 

The inversion algorithm flow is as follows: 
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Figure 3. Schematic diagram of neural network structure. 
 

Step 1: Determine the topology of BP neural network and the number of pa-
rameters to be optimized, and set the particle population dimension. Each indi-
vidual qubit phase θ is a D-dimensional parameter vector corresponding to the 
weights and thresholds of BP neural network. Initialize the particle population 
and set the basic parameters of the algorithm, such as ϖ  adjustment range 
[ ]min max,ω ω , self-factor 1c , global factor 2c , mutation probability mK . 

Step 2: According to the upper and lower limits of each particle, the solution 
space is transformed. Then, according to Equation (13), calculate the particle 
fitness value, select and record the individual optimal position and group optim-
al position found in the solution space. 
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where, cn is the total number of inversion parameters, k is the number of inver-
sion parameters, 1,2, ,k cn= � , n is the total number of training samples, j is 
the number of training samples, 1,2, ,j n= � . kje  and kjy  are the expected 
output and actual neural network output of the j-th training sample of the k-th 
parameter, respectively. kF  is the mean square error of the k-th parameter. if  
is the fitness value of the i-th particle. 

Step 3: particle state update, nonlinear dynamic adjustment of inertia weight, 
and qubit mutation calculation operations. 

Step 4: Compare the appropriate value of each particle in order. Then the op-
timal particle position is recorded and updated as an individual optimal posi-
tion. At the same time, the optimal position of each generation is sorted forward 
in the current evolution generation, and the optimal position of the individual is 
recorded and updated as the global optimal position. 

Step 5: Identify whether the iteration meets the end condition, if it is satisfied, 
exit the algorithm and output the result, otherwise return to step 2 to continue 
the iterative calculation. 
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Step 6: The global optimal solution is used as the initial weight and threshold 
of BP neural network. Then we continue to train the neural network by using the 
BP elastic algorithm (RPROP). When the number of algorithm iterations reaches 
the maximum or the output error satisfies the requirements, output and save the 
network. At the last, we input the data volume which needs to be inverted into 
the network to obtain the QPSO-BP algorithm inversion result. 

3.4. Performance Analysis of Inversion Algorithm 

In this paper, we construct an apparent complex resistivity database with 48 sin-
gle-polarization anomaly models. The forward simulation of the database model 
was calculated out by the finite element method described in Section 2. All the 
data are used for QPSO-BP neural network training. There are two sizes of ab-
normal models in the database; each of them has six different spatial locations. 
We also set a variety of contrast characteristics for these abnormal bodies, such 
as low resistance with high polarization, high resistance with low polarization. 
Five independent models are used to test the generalization ability of the algo-
rithm. The test data is not involved in neural network training. Part of the sam-
ple model used for training is shown in Figure 4. 

At the same time, QPSO algorithm and basic PSO algorithm are used to op-
timize the initial value and threshold of BP neural network. Set the particle pop-
ulation size of QPSO algorithm to 80, set the evolution generation to 100, 

max 0.6ω = , min 0.4ω = , 1 2 1.2c c= = , 0.35mK = . Set the particle population 
 

  
 

  

Figure 4. Schematic diagram of partial training sample model. 
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size of basic PSO algorithm to 80, set the evolution generation to 100, 0.5ω = , 

1 1.5c = , 2 2.5c = . The fitness decline curves of the two algorithms are shown in 
Figure 5(a). 

QPSO algorithm is easier to jump out of the local extreme value in the early 
calculation and converge to the global extreme value in the later calculation than 
the basic PSO algorithm with fixed weight because it has more particle number 
(sine solution and cosine solution) and nonlinear dynamic adjustment weight. 

Using the global optimal solution as the initial weight and threshold of the BP 
neural network, and using the BP elastic algorithm (RPROP) to continue train-
ing the neural network, finally, the convergence curve of algorithm training er-
ror is shown in Figure 5(b). The optimized BP neural network can converge to 
the global optimal value more quickly, and its final training MSE is lower than 
that of the non-optimized network. At the same time, Figure 6 shows the dif-
ference of MSE distribution histogram between training and test samples under 
the two algorithms. 

The BP neural network optimized by QPSO algorithm performs better than 
the BP neural network without initial optimization on the inversion training and 
test models, and the mean square error distribution is better. This shows that the 
BP neural network optimized by QPSO has a better training effect. 
 

 
(a) 

 
(b) 

Figure 5. Decline curve of moderate value and training error. (a) Fitness decline curve of 
different algorithms; (b) Training error convergence curve. 
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(a) 

  
(b) 

Figure 6. Mean square error distribution Histogram of different algorithms. (a) The QPSO-BP algorithm; (b) The BP elastic algo-
rithm (RPROP). 

4. Research on Inversion Imaging of Typical Model 

In order to verify the feasibility and accuracy of the QPSO-BP algorithm inversion, 
we established a model with two complex resistivity anomalies, and input the fi-
nite element simulation calculation data of the model as the test data into the 
algorithm for inversion; Figure 7 shows the model structure. Abnormal body 
No.1: size is 2 m × 3 m (Length × depth), 0 50 mρ = Ω⋅ , 0.6m = , 0.2c = , 

10 sτ = ; Abnormal body No.2: size is 2 m × 3 m (Length × depth), 

0 500 mρ = Ω⋅ , 0.4m = , 0.3c = , 20 sτ = , the horizontal distance between 
the two polarization anomalies is 10 m. A total of 37 electrodes are set on the 
surface, the electrode spacing is 1m, and the observation frequency points are 
10-2 Hz, 10-1 Hz, 1 Hz, 10 Hz, 100 Hz, take the apparent complex resistivity am-
plitude and phase corresponding to the observed frequency points as the input 
of the QPSO-BP network and start the inversion calculation.  

From the inversion results, as shown in Figure 8, the QPSO-BP inversion al-
gorithm can more accurately describe the spatial shape of the anomaly and the 
four parameters to be inverted by the complex resistivity method. At the same 
time, the QPSO-BP inversion algorithm has a clearer description of the boun-
dary of the abnormal body, and the inversion results are more consistent with 
the model, which reflects the strong nonlinear inversion ability of the algorithm. 

In order to analyze the inversion effect of the algorithm more intuitively, we 
extracted the result data of each parameter in the inversion result data at 

3.5 mz = −  and 8 m 29 mx≥ ≥ , and compared them with the model data. As 
shown in Figure 9, the QPSO-BP inversion result corresponds well to the model 
value, and the boundary of the inversion result is clearly described, except for 
the slight deviation of the inversion result near the anomaly. 
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Figure 7. Schematic diagram of double polarized anomalous bodies model. 
 

 

Figure 8. Inversion results of single double polarization anomalous body by using 
QPSO-BP algorithm. (a) The Resistivity; (b) The Chargeability; (c) The Relaxation-constant; 
(d) The Cole-Cole Time constant. 
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(a)                                                 (b) 

   
(c)                                                (d) 

Figure 9. Comparison of inversion results of QPSO-BP algorithm at z = −3.5 m. (a) The Resistivity; (b) The Chargeability; (c) The 
Relaxation-constant; (d) The Cole-Cole Time constant. 

5. Conclusions 

1) The BP neural network optimized by the QPSO algorithm performs better 
than the BP neural network without initial optimization on the inversion train-
ing and test models, and the mean square error distribution is better. This shows 
that the BP neural network optimized by QPSO has a better training effect. 

2) The QPSO-BP algorithm can effectively invert the four parameters of com-
plex resistivity, which corresponds well to the model value. At the same time, the 
inversion results clearly describe the abnormal boundary. 

3) BP neural network has high recognition and association ability for trained 
samples or samples with similar characteristics, but poor recognition ability for 
models with different feature types. For the actual complex data inversion, the 
method proposed in this paper has limitations. The classical algorithm should be 
used as the basis for the construction of a neural network training sample data-
base in the early inversion stage. 

https://doi.org/10.4236/ojg.2021.1110026


W. X. Zhang et al. 
 

 

DOI: 10.4236/ojg.2021.1110026 507 Open Journal of Geology 
 

4) Despite this contribution, there are many remaining challenges for future 
work. First of all, due to the complexity of multi-parameter inversion of complex 
resistivity, the selected training samples should be close to the type of model to 
be inverted as much as possible, and it is essential to choose the right training 
models with appropriate characteristics. Secondly, the inversion method pro-
posed in this paper has space limitations. The inversion of anomalous bodies 
outside the observed apparent resistivity profile needs to be further studied. Fi-
nally, using the algorithm in this paper to process the inversion of the actual 
complex resistivity data would be challenging work. 
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