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Abstract 
Deep learning, especially through convolutional neural networks (CNN) such 
as the U-Net 3D model, has revolutionized fault identification from seismic 
data, representing a significant leap over traditional methods. Our review 
traces the evolution of CNN, emphasizing the adaptation and capabilities of 
the U-Net 3D model in automating seismic fault delineation with unprece-
dented accuracy. We find: 1) The transition from basic neural networks to 
sophisticated CNN has enabled remarkable advancements in image recogni-
tion, which are directly applicable to analyzing seismic data. The U-Net 3D 
model, with its innovative architecture, exemplifies this progress by providing 
a method for detailed and accurate fault detection with reduced manual in-
terpretation bias. 2) The U-Net 3D model has demonstrated its superiority 
over traditional fault identification methods in several key areas: it has en-
hanced interpretation accuracy, increased operational efficiency, and reduced 
the subjectivity of manual methods. 3) Despite these achievements, challenges 
such as the need for effective data preprocessing, acquisition of high-quality 
annotated datasets, and achieving model generalization across different geo-
logical conditions remain. Future research should therefore focus on devel-
oping more complex network architectures and innovative training strategies 
to refine fault identification performance further. Our findings confirm the 
transformative potential of deep learning, particularly CNN like the U-Net 
3D model, in geosciences, advocating for its broader integration to revolu-
tionize geological exploration and seismic analysis. 
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1. Introduction 

Artificial intelligence, as a significant branch of computer science, was proposed 
in 1956. After more than sixty years of development, spanning early theoretical 
exploration, symbolic reasoning and expert systems, knowledge representation 
and machine learning, and deep learning, it has gradually integrated into pro-
duction environments across various fields. 

Today, artificial intelligence technologies in production environments are 
primarily dominated by two branches: machine learning and deep learning. 
Machine learning involves analyzing and learning from data, enabling computer 
systems to acquire knowledge from data and perform tasks such as decision- 
making and prediction based on the acquired knowledge. These algorithms typ-
ically rely on feature engineering, where human experts extract features from 
data and provide them as input to the model. These algorithms have relatively 
low complexity and apply to various scales and types of data. From a data pers-
pective, traditional machine learning algorithms are somewhat limited by the 
quality and quantity of data and require appropriate feature engineering to im-
prove model performance. They are primarily applied in structured data do-
mains such as text classification, recommendation systems, and regression anal-
ysis. The theory of neural networks originated in the late 19th century with the 
neuroscientist Cajal’s establishment of the neuron doctrine. Later, researchers 
drew inspiration from this theory and combined it with mathematical ideas to 
propose artificial neurons [1] (Figure 1) capable of processing multiple inputs. 
Building upon this, artificial neural networks, which simulate the workings of 
the human brain, were developed by connecting multiple artificial neurons. This 
development has significantly contributed to the advancement of deep learning. 

Deep learning [2] is a specialized form of machine learning. When the shallow 
layers of neural networks in machine learning are deepened, they evolve into 
deep learning. Deep learning learns high-level features of data through mul-
ti-layer neural network structures and optimizes network parameters using the 
backpropagation algorithm. Deep learning requires large-scale data, especially in 
fields such as image recognition and speech recognition, where a large amount of 
annotated data is needed to train models. It performs well in handling unstructured  

 

 
Figure 1. Artificial neuron model [1]. 
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data such as images, speech, and natural language. A network that connects all 
artificial neurons layer by layer, as shown in Figure 2, is called a fully connected 
neural network [3] (FCNN). CNN is generally used for image-level classification, 
while FCN can perform pixel-level classification on images, thus addressing the 
problem of semantic segmentation at the semantic level. While FCNN are highly 
flexible, they tend to capture too many data features, resulting in high computa-
tional complexity, long training times, and susceptibility to overfitting, making 
the model overly sensitive to changes in data structure and difficult to generalize. 
In the early 1960s, researchers such as Hubel and Wiesel proposed the concept 
of receptive fields [4] through the study of the visual cortex system in cats. By 
the mid-1980s, Fukushima proposed the neocognitron [5] based on the concept 
of receptive fields and abstracted the receptive field into convolutional kernels, 
which can be considered the first implementation of convolutional neural net-
works [6]. Compared to fully connected neural networks, convolutional kernels 
achieve similar functionality to visual neural receptive fields through parameter 
sharing, enabling them to learn features from one part of the input data and ap-
ply them to another part. As the network deepens(Figure 3), CNN capture tar-
get features from low to high levels in unstructured data, ultimately extracting 
the necessary information, enhancing the ability to extract main features from 
data, and reducing the number of parameters needed for training. This has 
greatly propelled the development of the computer vision field. 

In the field of oil and gas exploration, analyzing seismic data to differentiate 
 

 
Figure 2. Three-layer artificial neural network. 

 

 
Figure 3. LeNet-5 convolution neural network [6]. 
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between faults and non-faults and subsequently delineating the fault structures 
in the subsurface of a working area falls under the category of classification 
problems in the field of artificial intelligence machine learning. In the domain of 
deep learning, this task belongs to the category of semantic segmentation tasks 
in computer vision (as shown in Figure 4), typically using models based on 
convolutional neural networks. In traditional machine learning, in 1997, Dong et 
al. utilized adjacent trace cross-correlation coefficients, maximum variance norm, 
maximum amplitude, and seismic wave attributes to extract data features, which 
were then inputted into a BP neural network (a shallow neural network, for ex-
ample, only has three layers.) model (as shown in Figure 5) to achieve intelligent 
identification of small faults. However, this method is sensitive to data and heav-
ily relies on feature engineering to remove redundant data from the original da-
taset. Moreover, the model is relatively simple and cannot capture too much 
target information, resulting in weak generalization capability. In 2015, Tan et 
al. used various geometric properties of faults such as fault dip, dip angle, and 
throw as sample features inputted into a support vector machine (as shown in 
Figure 6). They used a Genetic Algorithm [7] (GA) for parameter tuning to  

 

 
Figure 4. The semantic segmentation results obtained by the FCN network [8]. 

 

 
Figure 5. BP Neural Network basic architecture. 
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Figure 6. SVM model. 

 

automatically identify faults. However, this method is suitable for a small vo-
lume of data samples; once the data volume increases, the model’s effectiveness 
will be significantly reduced. In 2017, Chen et al. utilized unsupervised learning 
methods such as similarity propagation clustering algorithms and Principal 
Component Analysis (PCA) to identify faults. This method is relatively easier in 
terms of preprocessing data and does not require much data manipulation or 
manual labeling. However, due to the lack of human intervention, the model’s 
recognition accuracy is generally average. 

With breakthroughs in deep learning theory and computational power, com-
puters have significantly enhanced their ability to process and analyze data. 
Technical personnel no longer need to perform extensive manual analysis and 
intervention on data, reducing the technical barriers and time costs associated 
with data processing. Moreover, they can capture more and deeper features of 
the data based on large datasets. In 2017, Huang et al. [9] applied Convolutional 
Neural Networks to three-dimensional seismic data, achieving certain effective-
ness in fault recognition, thus confirming the feasibility of their approach 
through internal workstations. In 2018, Zhao et al. [10] integrated the SEAM 
model with CNN and applied principles of image processing to sharpen and 
smooth three-dimensional data during the recognition process, demonstrating 
its reliability in the offshore basin of New Zealand. In 2019, Wu et al. [11] drew 
inspiration from the U-Net model designed by Ronneberger et al. [12] for cell 
recognition in medical two-dimensional images and reconstructed it into a sim-
plified end-to-end U-Net structure suitable for three-dimensional seismic data. 
This structure exhibited good performance in fault range recognition but still 
requires improvement for identifying brittle rock structures. Following the in-
troduction of the residual module by He et al. [13] in 2015, which effectively ad-
dressed the degradation of deep learning networks with increasing depth, Liu et 
al. [14] in 2020 and Zhou et al. in 2021 separately added residual modules to the 
U-Net 3D model, enhancing its depth and ability to capture high-dimensional 
features. Yang et al. combined the simplified U-Net 3D model with more com-
plex residual modules and used the Gaussian Importance Map for weighted 
stitching to eliminate edge effects and achieve continuous fault results. In sum-
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mary, convolutional neural network-based deep learning models have strong 
applicability and utility in analyzing three-dimensional seismic data and intelli-
gently interpreting faults, enjoying high recognition in the field of geological ex-
ploration. 

2. Convolutional Neural Networks 

With the deepening of network depth, when the input data is visual, the number 
of parameters that the network needs to learn is enormous. To address recogni-
tion problems in the field of computer vision, Convolutional Neural Networks 
[15] have emerged based on deep neural networks. CNN is a type of deep learn-
ing model commonly used for processing matrix data with grid structures but 
unstructured, such as images. One of the key innovations of CNN is its ability to 
directly accept raw grid matrix data as input, automatically extracting features 
without manual feature extraction. Additionally, due to the existence of convo-
lutional kernels, the network does not need to learn too many redundant para-
meters, greatly reducing the time required for training. Below are the main or-
ganizational structures of convolutional neural networks: 1) Convolutional Layer: 
The convolutional layer is one of the most important components of CNN. In 
the convolutional layer, features of the input data are extracted by applying a se-
ries of convolutional kernels (or filters) to the input data. Each convolutional 
kernel performs convolutional operations with the input data, producing a set of 
output feature maps. 2) Activation Layer: Typically, following each convolution-
al layer, there is an activation layer, such as the ReLU activation function. Its 
purpose is to introduce nonlinearity, allowing the network to learn more com-
plex features. 3) Pooling Layer: The pooling layer is used to reduce the spatial 
dimensions of the feature maps, thereby decreasing the model parameters and 
computational complexity, while enhancing the robustness of the features. 
Common pooling operations include Max Pooling and Average Pooling. 4) Fully 
Connected Layer: The fully connected layer flattens the outputs of the convolu-
tional and pooling layers and connects them to the neural network’s output 
layer. It is typically used for performing final classification or regression tasks. 

With the development of deep learning theory, depending on the application 
scenario, convolutional neural networks can appropriately add layers such as 
Dropout Layer [16] and Batch Normalization Layer [17] to improve the model’s 
performance. 

2.1. Receptive Field 

Receptive Field: Inspired by the biological visual nervous system, it refers to the 
range that a neuron or a layer of neurons can “see” or influence input informa-
tion. It describes the size of the local region from which a neuron receives in-
formation, aiding in understanding the extent to which each neuron in a neural 
network perceives local information from the input. It is a part of the input 
space, and its information can influence the output of that neuron through the 
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convolution and pooling layers of the network. The receptive field of each sub-
sequent layer’s neuron includes a larger range from the previous layers. The re-
ceptive field has several important aspects: 

1) Local Connectivity: In the primary convolutional layers, the receptive field 
is typically small (such as a 3 × 3 or 5 × 5 pixel region), allowing it to capture lo-
cal features. This design enables the network to recognize simple visual patterns 
like edges, color patches, and so on. 

2) Hierarchy: As shown in Figure 7, as the layers deepen, more and more 
shallow features are extracted and converged together, compressing the data. For 
the initial data, the receptive field of each neuron in the deeper layers gradually 
expands, covering larger areas of the input image. This allows the network to 
detect more complex, global features in higher layers, such as parts or the overall 
shape of objects. 

The concept of receptive field helps to understand how convolutional kernels 
extract features from input data and achieve hierarchical decomposition of com-
plex functions in the network structure. For example, in applications of image 
processing, lower layers may focus on textures and contours, while deeper layers 
may focus on recognizing specific objects and scenes. By designing networks 
with appropriate receptive fields, models can better adapt to different data fea-
tures and learning tasks. 

2.2. Convolutional Kernel 

The convolutional kernel, also known as a filter, is essentially the embodiment of 
the receptive field concept in CNN. It is a parameter matrix whose size is speci-
fied based on the specific problem. In the convolution operation, the kernel 
slides over the input data with a certain stride and performs element-wise mul-
tiplication with the local region of the input data. The results are then summed 
to obtain the output. This process effectively extracts local features from the  

 

 
Figure 7. Feature extraction layer by layer [18]. 
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input data, and different kernels can extract different features. It has the follow-
ing characteristics: 

1) Size: The convolutional kernel is a small matrix. For data represented as flat 
surfaces (such as images), a two-dimensional convolutional kernel is used; for 
data represented as volumes (such as three-dimensional seismic data), a three- 
dimensional convolutional kernel is used. This has the following implications: a) 
Receptive Field Size: As shown in Figure 7, the size of the convolutional kernel 
determines the receptive field of the neuron. A larger convolutional kernel can 
cover a larger area, capturing more extensive features, but may lose some details. 
Smaller convolutional kernels focus on smaller areas, capturing finer features. b) 
Parameter Count: A larger convolutional kernel size will increase the number of 
parameters in the model, which may lead to overfitting, especially when the 
training data is limited. Additionally, larger convolutional kernels also increase 
computational complexity. In contrast, smaller convolutional kernels, while re-
ducing the number of parameters and computational load, may require more 
layers to cover the same receptive field range. c) Feature Learning Capability: 
Larger convolutional kernels may be more suitable for learning global features, 
such as overall shape and structure, while smaller convolutional kernels are bet-
ter suited for learning local details, such as edges and textures. By carefully se-
lecting the convolutional kernel sizes, the network can effectively extract useful 
features while maintaining lower computational complexity. 

Common convolutional kernel sizes include 1, 3, 5, and 7 units. Convolutional 
kernels with a size of 1 unit are typically used for cross-channel information fu-
sion and dimensionality reduction without altering the spatial dimensions of the 
feature maps. Kernels with a size of 3 units are one of the most used kernel sizes, 
providing a good balance between effectively extracting local features while 
maintaining lower computational complexity. Kernels with sizes of 5 and 7 units 
can capture a wider range of features but increase computational complexity. 

2) Depth: The depth of a convolutional kernel is an important concept in 
Convolutional Neural Networks, and it, along with the size (width and height) of 
the kernel, determines the overall dimensionality of the kernel. The depth of a 
convolutional kernel refers to its size along the channel dimension of the input 
data, essentially representing the depth or number of channels considered in the 
convolution operation. In the context of processing color images (composed of 
red, green, and blue color channels in the RGB color space, typically represented 
by three channels), as shown in Figure 8, the convolutional kernel also has three 
channels, with each channel dedicated to processing the corresponding channel 
of the input image. Its functionality and impact are as follows: a) Feature Inte-
gration: By applying different channels of the convolutional kernel to the cor-
responding channels of the input data and summing the results, the convolution 
operation can integrate feature information from different input channels. This 
mechanism enables CNN to effectively handle multi-channel data, such as color 
images, while capturing inter-channel feature correlations. b) Parameter Fea-
tures: The increase in the depth of the convolutional kernel directly affects the  
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Figure 8. Extracting features from a color image using convolutional kernels [19]. 

 
number of parameters in the model. For a given size of the convolutional kernel, 
the greater the depth, the more parameters it contains, which may lead to an in-
crease in computational cost. However, it also enhances the model’s ability to 
capture inter-channel features. c) Feature Map Depth: In the convolutional layer, 
the depth of the output feature map is determined by the number of convolu-
tional kernels in that layer, rather than the depth of the kernels. Each convolu-
tional kernel generates one feature map, so using more kernels can produce 
deeper feature maps, enhancing the model’s ability to capture different features. 

The depth of the convolutional kernel is an important hyperparameter in the 
design of convolutional neural networks. Unlike parameters, which are typically 
optimized during network training, kernel depth influences the number of pa-
rameters, computational costs, and the model’s feature extraction capabilities. By 
carefully designing the size, depth, and number of convolutional kernels, effi-
cient and powerful CNN models can be constructed. 

3) Quantity: The quantity of convolutional kernels refers to the number of 
kernels used in the convolutional layer of a Convolutional Neural Network. In 
CNN, multiple different kernels are typically used at each layer, with each kernel 
responsible for extracting specific features. In Figure 8, there are at least four 
kernels depicted. By employing multiple kernels, the network can learn features 
at different scales and abstraction levels, thereby enhancing its understanding of 
the input data. For instance, in image classification tasks, the kernels in the first 
layer might learn to extract low-level features such as edges and textures, while 
kernels in subsequent layers might learn to extract higher-level features such as 
shapes and object parts. 

The quantity of convolutional kernels is typically specified by the user and 
needs to be adjusted based on the complexity of the task and the characteristics 
of the dataset when designing the network architecture. Increasing the number 
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of kernels can increase the network’s parameter count and computational com-
plexity, but it can also enhance the network’s feature extraction and representa-
tion capabilities. Therefore, appropriate trade-offs and adjustments need to be 
made in practice. 

2.3. Convolutional Layer 

The convolutional layer is the core component of Convolutional Neural Net-
works, and the convolutional kernel is the key to enabling the powerful feature 
extraction capability of the convolutional layer. It is used to automatically extract 
features from the input grid-like data matrices. Taking the example of two-di- 
mensional grid data, such as images in the context of image processing, the 
convolutional layer applies a series of learnable convolutional kernels to each re-
gion of the input image in a sliding manner to identify different spatial hierar-
chical structures such as edges, color patches, and textures. 

As shown in Figure 9, taking image data as an example (with only height, 
width, and channels), the computation of feature extraction by the convolu-
tional kernel (or filter) involves a process of weighted summation of the input 
data, typically including a bias term. Eventually, a numerical value is computed, 
representing a pixel point after convolution. This process can be simplified and 
represented by the following formula: 

[ ] [ ] [ ]
1 1

0 0
, , ,

M N

m n
X i m j n mY i K n bj

− −

= =

⋅= + + +∑ ∑              (1) 

where [ ],Y i j  represents the output feature map at the i-th row and j-th col-
umn, M and N are the number of rows and columns of the convolutional kernel 
K respectively, [ ],X i m j n+ +  denotes the element at the (i + m)-th row and (j 
+ n)-th column of the input data X, [ ],K m n  refers to the element at the m-th  

 

 
Figure 9. Feature extraction by weighted sum of convolutional kernels [20]. 
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row and n-th column of the convolutional kernel K, and b is the bias term. 
This formula represents the basic principle of convolution operation: it in-

volves element-wise multiplication of the local region of the input data with the 
convolutional kernel, followed by summation of the results, resulting in the val-
ue of the corresponding element in the output feature map.  

As the convolutional kernel slides over the data matrix, it sequentially cap-
tures feature information from different regions. During the feature extraction 
process, as more features are extracted, the number of channels increases, while 
the data volume decreases. Taking an image as an example, suppose the size of 
the input data is in in inW H D× × , and the spatial dimensions of the output fea-
ture map are defined. Here, inW  represents the width of the input data, inH  
represents the height of the input data, and inD  represents the depth of the in-
put data (number of channels). Let’s assume the size of the convolutional kernel 
is inF F D× × , where F is the width and height of the kernel, P is the amount of 
padding (to mitigate edge effects), and S is the stride length, The convolution 
kernel moves horizontally first along the width dimension. When one row is fi-
nished, it moves vertically along the height dimension, opening a new row. The 
formula for the reduced volume is as follows: 

2
1in

out
W P

W
F
S

− + ×
= +                     (2) 

2
1in

out
H P

H
F
S

− + ×
= +                     (3) 

where outW  is the width of the output data, outH  is the height of the output 
data, and outD  is the depth of the output data (number of channels). 

2.4. Pooling Layer 

The Pooling Layer is an important component of Convolutional Neural Net-
works, implementing downsampling in deep learning. It is used to reduce the 
size and parameter count of feature maps while retaining the most important 
feature information regardless of geometric transformations applied to the orig-
inal data. Typically following convolutional layers, the Pooling Layer is inde-
pendently applied to each depth slice of the feature maps, reducing dimensional-
ity and sampling the features extracted by the convolutional layers. The size of 
the pooled feature maps is usually determined by the pooling size and stride. 

The main functions of the Pooling Layer include the following aspects: 
1) Dimensionality reduction and parameter reduction: Pooling operations 

reduce the size of feature maps, thereby decreasing the computational complex-
ity of subsequent layers. This helps to reduce the number of model parameters 
and computational burden, while enhancing the training efficiency of the model. 

2) Maintaining feature invariance: Pooling operations, often performed using 
methods like max pooling or average pooling, compute the maximum or average 
value within local regions, thereby preserving important features. This helps the 
network to exhibit a degree of invariance to transformations such as translation, 
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rotation, and scaling of the input data. Max pooling focuses on capturing the 
predominant features within the receptive field. The formula is as follows: 

[ ] [ ]( ),, m x ,a m nY i j X S m j S ni= × + × +               (4) 

where [ ],Y i j  denotes an element in the output feature map, S represents the 
stride, and m and n respectively represent the position of the pooling window. 

The average pooling focuses on capturing global changes within the receptive 
field, and the formula is as follows: 

[ ] [ ]( )
1 1

0 0

1 ,,
F F

m n
SY m j S

F
j X

F
i i n

− −

= =

× += × +
× ∑∑             (5) 

where [ ],Y i j  represents an element in the output feature map, S denotes the 
stride, F indicates the single-side length of the pooling window, and m and n re-
spectively represent the position of the pooling window. 

3) Improve model generalization: Pooling operation effectively reduces the 
size of the feature maps while retaining the most significant features, thereby 
reducing the risk of overfitting and enhancing the model’s generalization capa-
bility. This helps the model adapt better to new, unseen data. 

In summary, convolutional neural networks can be seen as an extension of 
basic deep neural networks. They capture the most significant features in the raw 
data with minimal parameters through training. After passing through convolu-
tional and pooling layers, the specific output data type required for the target 
task is adjusted. Figure 10 depicts the classification operation after pooling and 
flattening the data. 

3. U-Net 3D Model 

U-Net [12] is a convolutional neural network initially designed by Olaf Ronne-
berger, Philipp Fischer, and Thomas Brox in 2015 for medical image segmenta-
tion tasks. The architecture of U-Net (as shown in Figure 11) is specifically  

 

 
Figure 10. Working principle of CNN [21]. 
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Figure 11. U-Net basic model structure [12]. 
 

designed to effectively handle small datasets, hence its name. It improves model 
performance and generalization by employing extensive data augmentation 
techniques. U-Net belongs to the category of semantic segmentation models, 
aiming to differentiate between target and non-target points in the original data 
(as depicted in Figure 4). The original U-Net model consists of three main com- 
ponents: the encoder, the decoder, and skip connections. The encoder typically 
comprises multiple convolutional layers and pooling layers, aimed at progres-
sively reducing the spatial dimensions of the feature maps while increasing their 
depth. This helps the network capture contextual information from the input 
images. The decoder consists of a series of upsampling operations and convolu-
tional layers, used to gradually restore the spatial dimensions of the feature maps 
while reducing their depth. The goal of the decoder is to reconstruct the precise 
details of the images and segmentation boundaries. Skip connections combine 
the feature maps from the encoder with those from the corresponding layers in 
the decoder. Through this mechanism, the model can preserve more detailed 
information in the output segmentation maps. 

In 2019, Wu et al. [11] simplified the traditional U-Net model by reducing the 
number of skip connections from 4 layers to 3 layers. They also modified the orig-
inal input data from 2D images to 3D seismic data volumes (as shown in Figure 
12) and compressed the edge length of the data from 572 to 128. The U-Net 3D  
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Figure 12. 3D Convolution. 

 

 
Figure 13. End-to-end U-Net model structure [11]. 
 

model (Figure 13) exhibited good performance in constructing relatively simple 
working areas. 

In practice, despite the significant potential demonstrated by U-Net in seismic 
fault identification, it still faces some challenges in real-world applications: 1) 
Data Preprocessing: The quality and consistency of seismic data have a signifi-
cant impact on the performance of the model, requiring effective data prepro-
cessing to enhance the model’s generalization ability. 2) Acquiring annotated 
data: High-quality annotated data is crucial for training accurate models, but 
manually annotating faults in seismic data is a time-consuming and specialized 
task. 3) Model generalization: Seismic data may vary significantly across differ-
ent regions and conditions, posing a challenge to developing models with good 
generalization capability. 

4. Conclusions 

In conclusion, our comprehensive review of convolutional neural networks 
(CNN), particularly focusing on the U-Net 3D model for fault identification in 
seismic data, highlights a significant shift towards leveraging advanced deep 
learning techniques in the realm of oil and gas exploration. This shift is not 
merely a reflection of technological advancement but marks a pivotal change in 
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how geoscientists approach data interpretation and analysis. 
The evolution from manual feature extraction and traditional machine learn-

ing algorithms to sophisticated CNN architectures signifies a broader acceptance 
of AI’s potential to transform complex, labor-intensive tasks into more efficient, 
automated processes. Our examination of various CNN approaches, culminating 
in the adaptability and effectiveness of the U-Net 3D model, underscores deep 
learning’s remarkable ability to handle voluminous, unstructured seismic data-
sets, enhancing fault detection accuracy while reducing human intervention. 
This review elucidates the importance of ongoing research and development in 
deep learning for geoscience applications. It emphasizes the need for continual 
improvement in models to address challenges such as data quality, annotation 
scarcity, and generalization across diverse geological settings. Our discussion on 
the inception of CNN, their structural nuances, and their pivotal role in auto-
mating seismic fault interpretation serves as a testament to the transformative 
impact of deep learning in geosciences. Looking forward, future work must ex-
plore more intricate network architectures, innovative training strategies, and 
comprehensive models tailored to diverse geological conditions. By doing so, we 
can further enhance fault identification performance, contributing to more ef-
fective exploration strategies and a deeper understanding of the Earth’s subsur-
face. The promising results reviewed here lay a solid foundation for such ad-
vancements, steering the geoscience community towards a more integrated, 
AI-driven future in geological exploration and analysis. 
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