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Abstract 
In this article dedicated to the modeling of vertical mass transfers between the 
biofilm and the bulk flow, we have, in the first instance, presented the me-
thodology used, followed by the presentation of various results obtained 
through analyses conducted on velocity fields, different fluxes, and overall 
transfer coefficients. Due to numerical constraints (resolution of relevant spa-
tial scales), we have restricted the analysis to low Schmidt numbers ( 0.1cS = ,

1cS = , and 10cS = ) and a single roughness Reynolds number ( * 150Re = ). 
The analysis of instantaneous concentration fields from various simulations 
revealed logarithmic concentration profiles above the canopy. In this zone, 
the concentration is relatively homogeneous for longer times. The analysis of 
results also showed that the contribution of molecular diffusion to the total 
flux depends on the Schmidt number. This contribution is negligible for 
Schmidt numbers 1cS ≥ , but nearly balances the turbulent flux for 0.1cS = . 
In the canopy, the local Sherwood number, given by the ratio of the total flux 
(within or above the canopy) to the molecular diffusion flux at the wall, also 
depends on the Schmidt number and varies significantly between the canopy 
and the region above. The exchange velocity, a purely hydrodynamic para-
meter, is independent of the Schmidt number and is on the order of 10% of 

*u  in the present case. This study also reveals that nutrient absorption by 
organisms near the wall depends on the Schmidt number. Such absorption is 
facilitated by lower Schmidt numbers. 
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1. Introduction 

To enhance the modeling of epilithic biofilm dynamics, it is necessary to prop-
erly parameterize exchanges between the canopy and the flow above it. The aim 
of this article is to analyze the evolution of a passive scalar diffusing from a hy-
draulically rough bottom subjected to turbulent boundary layer flow. The un-
derlying idea is to study the spatio-temporal evolution of a mass boundary layer 
to quantify the vertical fluxes of chemical species encountered in turbulent riv-
er-type flows, particularly in the presence of an epilithic biofilm during coloni-
zation and initial growth. The study of interactions between river biofilms and 
turbulent boundary layers is an essential area of ecological research, significantly 
contributing to our understanding of aquatic ecosystems. These interactions are 
pivotal in nutrient cycling and maintaining the health of riverine environments. 
Recent studies, such as Font et al. [1], have highlighted how environmental fac-
tors like low flow and heatwaves can alter ecosystem functioning in stream me-
socosms. Koch et al. [2] explored the impact of chronic elevated nitrate concen-
trations on river biofilm structure and function, providing insights into nutrient 
loading effects. Additionally, Boulêtreau et al. [3] investigated how temperature 
influences denitrification processes in phototrophic river biofilms, adding to the 
knowledge of temperature-dependent biogeochemical cycles. Complementing 
these studies, Nepf [4] provided a comprehensive review of flow and transport in 
regions with aquatic vegetation, elucidating the hydrodynamic interactions within 
these habitats. In this context, our work aims to bridge knowledge gaps in the 
field by examining the influence of varying Schmidt numbers on mass transfers 
in turbulent boundary layers, offering new perspectives on these complex hy-
drodynamic-biological interactions. There has been relatively limited research 
on mass transfer in hydraulically rough turbulent boundary layer flows. The 
work Calmet [5] clearly quantified the importance of the Schmidt number in 
transfer processes, notably in turbulent flow over a smooth bottom with the 
presence of a free surface. Scale laws were obtained, particularly for the evolution  

of the global transfer coefficient LK : 2 3

*

L
c

K S
u

−∝  and 1

*

2L
c

K S
u

−∝  for a smooth  

wall and a gas-liquid interface, respectively. For rough canopies, Nikora [6] de-
scribes the vertical exchange of nutrients or chemicals in the flow using the 
double mean. According to these last ones, these transfer or uptake processes are 
driven by the interaction between turbulence, viscous effects, and the complexity 
of the bottom geometry or the organisms living there. Nikora et al. [7] and 
Larned et al. [8] postulate that for mass transfer and absorption in a canopy co-
lonized by periwinkles, there are at least three distinct absorption regimes de-
fined by the interactions between the flow and the periphyton. The transfer re-
gimes at the plant canopy-flow interface are classified based on the ratio of canopy  

height ( ch ) to diffusive sublayer thickness ( 1 3
Ds cS νδ δ−= ), where cS

D
ν

=  repre-  

sents the Schmidt number, ν  is the kinematic viscosity, and D is the mass dif-
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fusivity. Vertical transfers are essential for modeling biofilm dynamics, as they 
are responsible for nutrient and oxygen supply to the biofilm and higher trophic 
levels. It is necessary to quantify them properly for different situations, as shown 
by Coundoul et al. [9]. The work presented here involves modeling biofilm ac-
tivity by the instantaneous consumption of chemical species with concentration 
denoted as “C” and, for different conditions, studying the hydrodynamic 
processes involved in matter transfer within this hydraulically rough turbulent 
flow. The manuscript is structured as follows: The “Material and Methods” sec-
tion details our numerical modeling approach, emphasizing specific parameters 
and conditions. The “Results and Discussion” section presents and analyzes our 
findings, with a focus on the impact of varying Schmidt numbers on mass trans-
fer and contextualizes our results within the existing literature. The “Conclu-
sions” section summarizes our key contributions and suggests avenues for fur-
ther study. 

2. Material and Methods 
2.1. General Solved Equations 

In our case, which involves the unsteady flow of an incompressible and Newto-
nian fluid with gravity effects neglected, the equations for mass conservation, 
momentum, and passive scalar transport (mass concentration) can be written as 
follows, respectively, by Equations (1)-(3): 

0,u∇ ⋅ =                               (1) 

( )( )T1 ,u u u p u u
t

ν
ρ

∂
+ ∇ ⋅ = − ∇ + ∇ ∇ ⋅ + ∇ ⋅

∂
              (2) 

( ) 0,C Cu D C
t

∂
+∇ ⋅ − ∇ =

∂
                      (3) 

where ( )( )Tu uν ∇ ⋅ + ∇ ⋅  represents the viscous stress tensor, u is the fluid ve-
locity vector, p is the pressure, C is the concentration of the passive scalar, ρ  is 
the fluid mass density, ν  is the kinematic viscosity of the fluid, and D is the 
mass diffusivity of the passive scalar. 

2.2. Presentation of the Digital Tool Used 

The numerical code used throughout this study is a community code known as 
Jadim. This research tool was initially developed by Magnaudet [10] at the In-
stitute of Fluid Mechanics in Toulouse (IMFT). Jadim is a finite volume method 
that solves the three-dimensional, unsteady, and incompressible Navier-Stokes 
equations (cf Tougma [11], Badahmane [12]). In recent years, new modules have 
been added to the core of the code, expanding its scope to study increasingly 
complex configurations. Jadim consists of a central core that enables the struc-
tured mesh resolution of the three-dimensional, unsteady, and incompressible 
Navier-Stokes equations. For over two decades, the research code Jadim has 
been used at IMFT in various fluid mechanics research activities, including bio-
mechanics, environmental studies, energy, and processes. In addition to the im-
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mersed boundary method module (cf. Coundoul et al. [9]) used in this study, the 
code also includes several other modules. These modules include one for simu-
lating turbulent flows using the Large Eddy Simulation (LES) approach with a 
mixed dynamic subgrid-scale model. Another module deals with mass transfer 
(passive scalar) through the resolution of an additional advection-diffusion equ-
ation. There is also a Volume Of Fluid module without interface reconstruction 
developed by Calmet [5] and Legendre [13]. Efforts have been made in recent 
years to parallelize the Jadim code, leading to the parallelization of the central 
core and most of the modules. The code can now run on several tens to hun-
dreds of processors. 

2.2.1. Spatial and Temporal Discretization 
The spatial discretization of Equations (1)-(3) is performed on a three-dimensional, 
structured, orthogonal, and staggered Cartesian grid in velocity-(pressure/passive 
scalar). The discretization follows a finite volume approach. Using this type of 
grid enhances the accuracy of flux calculations on the facets of integration vo-
lumes and provides good properties for the conservation of hydrodynamic 
quantities and the passive scalar. The three velocity components have different 
integration volumes. Pressure, concentration, and other scalars are integrated 
within the volume centered at p. A more detailed description of the spatial dis-
cretization in the code is provided in Calmet [5]. The numerical schemes used 
for time advancement of the solution to the system of Equations (1)-(3) are of 
the Runge-Kutta/Crank-Nicolson type. The advective terms and source terms 
are handled with a third-order Runge-Kutta scheme. The viscous and diffusive 
terms are treated using a semi-implicit Crank-Nicolson scheme. These scheme 
choices are particularly suitable for turbulent flows with very low diffusion. In 
Jadim, the numerical resolution of the conservation equations follows a projec-
tion method. It involves advancing the advective and diffusive terms in the first 
step and the pressure in the second step to satisfy the incompressibility condi-
tion (cf. Calmet [5]). 

2.2.2. The Immersed Boundary Method (I.B.M.) Used in Jadim 
In the JADIM code is implemented an immersed boundary method (IBM) based 
on the method proposed by Yuki et al. [14]. This method employs a body force 
proportional to a solid volume fraction for coupling the solid and the fluid. It 
allows for the simulation of high-Reynolds-number flows in the presence of 
fixed or moving objects of arbitrary shape. Here, the immersed boundary is de-
fined by the volume fraction of the solid denoted α  which is equal to 1 if the 
cell is completely in the object, 0 otherwise and 0 1α< <  if the cell is crossed 
by the immersed boundary. The expression of α  depends on the shape of the 
object. Here, a hyperbolic-tangent function is used as a surface digitizer for 
computing the volume fraction. The detailed calculation α  used in the present 
work can be found in Yuki et al. [14]. In the present case, we assume a 
no-permeability and no-slip condition at the motionless immersed boundaries 
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(representing the cobbles), so the mass and momentum equations can be written 
in the new form 

0∇ ⋅ =u                                (4) 

P H f
t

∂
= −∇ + +

∂
u                          (5) 

( )TH ν  = − ∇ + ∇ ⋅ ∇ + ∇ u u u u                    (6) 

where pP
ρ

= , and ν µ ρ= . Note that (5)-(6) are similar to the Navier-Stokes  

Equations (2) with the exception of the last (body force) term f. This new term 
allows us to modify the velocity field so as to take into account the presence of 
the immersed boundary. The simplified time-advancement scheme for u  be-
tween time t n t= ∆  and ( )1t n t= + ∆ , n being the time increment and t∆  the 
time-step, is the following. 

We first calculate a fluid predictor velocity �u   

 ( )n n nt P H= + ∆ −∇ +�u u                       (7) 

We then compute the body force f as,  

 f tα= − ∆�u                            (8) 

and update the fluid predictor velocity by  

 1n tf+ = + ∆� �u u                           (9) 

Note that for cells inside the solid hemispheres 1α = , thus according to 
(8)-(9) f t= − ∆�u  and 1 0n+ =�u  so as expected there is no motion inside the 
hemisphere, while for cells far from the hemispheres 0f = , the velocity field is 
unaffected by the immersed objects. Finally, the projection method is applied in 
order to get the new velocity field 1n+u  satisfying the incompressibility con-
straint, 1n+u  being obtained 1n+�u . 

2.3. Results Analysis 

As with the velocity field, according to Nikora [6], it is possible to decompose 
the local instantaneous concentration field C into a doubly averaged part c , a 
dispersive part c c c= −� , and a fluctuating part c c c′ = − . The transport eq-
uation for c can then be expressed using Equation (10): 

� 1 d
int

jj
jS

j j j j j f j

u cu cc c c cu D D n S
t x x x x x V x

′ ′∂∂∂ ∂ ∂ ∂ ∂
+ = − − −

∂ ∂ ∂ ∂ ∂ ∂ ∂∫∫
�

 (10) 

where 1 d
int

jS
f j

cJ D n S
V x

∂
= −

∂∫∫  quantifies the absorption of nutrients by orga-  

nisms near the bottom. D is the mass diffusivity of the passive scalar, intS  
represents the exchange surface with the rough wall, and fV  represents the vo-
lume occupied by the fluid. The vertical transfer is driven by the vertical turbu-
lent flux w c′ ′  and the dispersive flux wc� � . 
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The diffusive flux near a fixed wall pJ  is given by Equation (11): 

0

1 d
int

p jS
j

cJ D n S
V x

∂
=

∂∫∫                         (11) 

While the turbulent flux is given by Equation (12): 

turJ wc w c′ ′= +� �                          (12) 

The viscous flux is given by Equation (13): 

v
cJ D
z
∂

=
∂

                            (13) 

And the total flux by Equation (14): 

t
cJ wc w c D
z
∂′ ′= + +
∂

� �                       (14) 

For mass transfer in a hydraulically smooth turbulent boundary layer, two 
quantities are generally defined to normalize turbulent quantities: a reference 
concentration *c  given by Equation (15): 

*
*

cDc
u z

∂
=

∂
                           (15) 

And p refc c c∆ = − , the concentration difference between the wall and another 
reference concentration typically taken in the free stream. Note that these choic-
es do not account for the dispersive contribution �ju c�  in the calculation of the 
turbulent concentration flux. 

2.4. Presentation of Different Simulations 

To study the evolution of a passive scalar diffusing from a hydraulically rough 
bed subjected to turbulent flow, we conducted three numerical simulations for 
three different Schmidt numbers: 0.1cS = , 1cS = , and 10cS = . In all cases, 
the initial instantaneous velocity field is obtained from the simulation of turbu-
lent flow established under the conditions of Coundoul et al. [9], with the geo-
metry shown in Figure 1, and some parameters are listed in Table 1. This simu-
lation was chosen for the quality of its mesh, allowing spatial scales to be re-
solved at approximately 3 times the Kolmogorov scale η in the vertical direction 
and 4.65η in the transverse and longitudinal directions. The concentration field c 
is initialized uniformly to zero: ( ), 0 0c x t = =

� . 
In the study of biofilm evolution in rivers, we are interested in oxygen and 

carbon dioxide transfer. The mass diffusivities of these chemical compounds in 
water result in Schmidt numbers of 490 and 660, respectively. This leads to de-
scribing transfers with a diffusive sublayer Dδ  approximately ten times smaller 
than the viscous sublayer 1 3~ cSν νδ δ− . Therefore, it would be necessary to in-
crease the spatial resolution by a factor of 10, making the computational times 
prohibitively long. For this reason, we restricted ourselves to cases where 10cS ≤ , 
for which the same spatial resolution could be adopted. In any case, the three  
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Table 1. Control parameters for different numerical simulations. 

Paramètres Symboles Valeurs Unités 

Computational grid dimensions x y zN N N× ×  96 × 138 × 88 - 

Domain dimensions L H D× ×  7h × 8h × 6.64h m 

Initial duration - 200T s 

Time samples N 600 - 

Eddy turnover time 
*

hT
u

=  2.17 s 

Roughness Reynolds number *
*

huRe
ν

=  156 - 

Resolution relative to η ( ), ,x y z η∆ ∆ ∆  4.65 × 4.65 × 2.7η - 

Kinematic viscosity ν  1.002 × 10−6 m2·s−1 

Density ρ  1000 kg/m3 

 

 
Figure 1. 3D view and top view of the computational domain. The flow is primarily directed along x. 

 
simulations allow us to observe the influence of the Schmidt number cS  in the 
development of the diffusive boundary layer, with a reasonable spatial resolution. 
In the subsequent work of Coundoul et al. [9], these results will be used to ex-
tend the study of passive scalar transfer processes to cases of turbulent boundary 
layer flow over hydraulically rough beds. Periodic boundary conditions are im-
posed in the longitudinal and transverse directions, and a frictionless slip condi-
tion is imposed at the top of the domain, with a no-slip condition imposed on 
the obstacles and the bed. For the passive scalar, a constant concentration pc  is 
imposed on the obstacles and the bed, with periodic boundary conditions in the 
longitudinal and transverse directions. A zero-flux condition is imposed at the 
free surface. In our study, the boundary condition of constant concentration on 
the bed and obstacles, leaving the wall flux free, can lead to significant variations 
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in *c . On the other hand, the imposed zero flux condition at the free surface 
leaves the concentration at the upper boundary-free, resulting in large variations 
in concentrations at the bed and free surface over time. As we will see later *c  
and c∆  vary significantly between the different cases 0.1cS = , 1cS = , and 

10cS = , which poses challenges for normalizing statistical quantities. The choice 
of a concentration flux at the free surface has the consequence of not guarantee-
ing a steady state for the average concentration. However, it is possible to esti-
mate a characteristic time at which all the scalar is consumed and to obtain the 
spatiotemporal evolution of the mass boundary layer. The non-stationarity of 
the average concentration fields makes it impossible to directly calculate the 
dispersive concentration fluctuations c� , which are necessary to calculate the 
dispersive flux following the double-averaging technique wc� � . Additionally, as 
Coundoul et al. [9] have shown, it is necessary to have a fully established flow 
and a large number of samples to obtain statistically converged results. To ad-
dress this problem, we considered that each temporal sample ( ), , ,c x y z t  of the 
concentration field is a fluctuation of the mean concentration field. This allows 
us to decompose the fluctuating field fc  as: 

( ) ( ), , , , ,fc x y z c c c x y z t c′= + = −�                  (16) 

The dispersive flux is then given by: 

( )( ) ( )( )f fc w c c w w c c w w′ ′⋅ = − − ≈ + +� �               (17) 

f fc w c w cw c w w c′ ′ ′ ′⋅ = + + +� � � �                (18) 

The last two terms are negligible compared to the rest of Equation (18), al-
lowing us to directly deduce the turbulent flux at time t from the equation. The 
flux through the boundaries formed by the hemispheres is calculated by moving 
from a Cartesian coordinate system to a spherical coordinate system. The he-
mispherical shape of the obstacles that make up the bed makes the calculation of 
fluxes in Cartesian coordinates more complex. 

3. Results and Discussions 
3.1. Mass Transfer at the Surface of a Cylinder 

To validate the mass transfer (or heat transfer) part of the immersed boundary 
module in Jadim, a 2D numerical simulation of flow around a cylinder with a 
diameter d in the presence of mass/heat transfer was performed. The results ob-
tained with Jadim are compared with the numerical results of Kim and Choi [15] 
and the experimental results of Eckert and Soehngen [16]. The Reynolds number  

u dRe
ν
∞= , based on the cylinder diameter d and the upstream velocity u∞ , is  

120. The computational domain size is 20 50x d− < <  in the longitudinal di-
rection and 50 50y d− < <  in the vertical direction, with flow directed along 
the x direction and the cylinder’s center located at 0x y= = . The total number 
of cells is 530 × 334. The mesh is orthogonal and refined near the cylinder to ac-

https://doi.org/10.4236/ojfd.2024.141001


F. Coundoul et al. 
 

 

DOI: 10.4236/ojfd.2024.141001 9 Open Journal of Fluid Dynamics 
 

curately describe the thermal and dynamic boundary layers. The Prandtl number,  

defined as Pr
k
ν

=  (with k being the thermal diffusivity and ν  the kinematic  

viscosity of the fluid), is 0.7. Note that in the case of mass transfer, k is replaced 
by the mass diffusivity, and the Prandtl number becomes the Schmidt number. 
For the flow, a constant velocity is imposed at the domain’s inlet ( u u∞=  and 

0v = ), an outlet boundary condition is imposed at the downstream edge in the 
longitudinal direction, and slip conditions are applied in the vertical direction 
on the boundaries located at the top and bottom of the domain. An adhesion 
condition is imposed on the cylinder’s surface. For temperature (or concentra-
tion or passive scalar), a Dirichlet condition is imposed at the domain’s inlet 
( T T∞= ), and on the cylinder’s surface ( pT T= ). A Neumann condition (zero 
flux) is applied on the upper and lower boundaries. In this case, the volume frac-
tion α  of the immersed cylinder is calculated according to Yuki et al. [14]: 

( ) 1, 1 tanh
2

sx y δ
α

σλ
  = −  ∆  

                   (19) 

where: - sδ  is the distance from the center of the cylinder, - ( ),x yn n n=
�  is the 

outward normal to the cylinder’s boundary, - x yn nλ = + , - 2 2x y∆ = ∆ + ∆ , 
and - ( )20.05 1 0.3σ λ= − + . 

This choice allows a smooth transition of α  from 1 to 0 over an approx-
imately ∆  thickness through the immersed boundary. At short times, the ve-
locity field shows the separation of the fluid along the cylinder and a perfectly 
symmetrical recirculation zone. For longer times, the velocity field loses its 
symmetry in favor of the generation of Von Karman vortices in the wake of the 
cylinder (see Figure 2). The instantaneous temperature (concentration) fields 
shown in Figure 2 are in good agreement with the numerical simulations of Kim 
and Choi [15]. For comparison, we have included one of their results in Figure 3, 
corresponding to the same initial parameters ( 120Re = , pT T=  on the cylind-
er). The distribution of the Nusselt number Nu along the heated cylinder for the 
simulation with Jadim, the numerical results of Kim and Choi [15], and the ex-
perimental results of Eckert and Soehngen [16] are shown in Figure 4. The 
Nusselt number is defined by Equation (20): 

0z

p

T
rNu T T
d

=

∞

∂
∂

=
−

                           (20) 

where pT  is the temperature (concentration) at the cylinder’s wall, T∞  is the  

temperature (concentration) at infinity, d is the cylinder’s diameter, and T
r

∂
∂

 is  

the temperature (concentration) gradient at the cylinder’s wall. The results are in 
good agreement with the numerical and experimental results. The instantaneous 
temperature fields effectively illustrate the organization of flow structures in the 
wake of the cylinder in both time and space. 
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Figure 2. Temperature field at different instants. For (a), ( ) 36tu d∞ ≈  and the time separating each 

successive frame is approximately ( ) 3.5tu d∞∆ ≈ . 

 

 
Figure 3. Isocontours of temperature obtained by Kim and Choi [15]. 

 

 
Figure 4. Nusselt number distribution along the heated cylinder. The results from Jadim 
are shown as triangles ( ∆ ), those from Kim and Choi [15] as circles (o), and the 
experimental results of Eckert and Soehngen [16] as squares ( ). 
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3.2. Instantaneous Concentration Fields 

Figure 5 presents the instantaneous concentrations obtained for 0.1cS = , 1cS = , 
and 10cS =  at 50t T= . The influence of the Schmidt number cS  on the spa-
tial distribution of concentration in the flow is quite evident. In case of 1cS = , 
the mean concentration field is relatively homogeneous, suggesting that mixing 
occurs primarily through diffusion. For 1cS =  and 10cS = , the concentration 
distribution becomes more heterogeneous throughout the domain, unlike the 
case of 0.1cS = . It can be concluded that mass transfer is driven by turbulent 
fluctuations, in line with the results obtained for a hydraulically smooth bottom 
by Calmet [5]. In the case of a hydraulically rough bottom, the viscous sublayer 
is submerged within the rough sublayer characterized by high shear rates and 
strong turbulence, as discussed in Florens [17] and Coceal et al. [18]. For 
Schmidt numbers greater than 1, mass transfer is no longer controlled by mole-
cular diffusion but by turbulent structures in the rough sublayer. Therefore, it 
appears more relevant to compare the thickness of the diffusive sublayer with 
the thickness of the rough sublayer (rather than the viscous sublayer) to study 
the evolution of mean velocity profiles and mean concentration profiles in the 
case of a hydraulically rough bottom. 

3.3. Mean Concentration Fields between Patterns 

Figures 6-11 display the spatial mean concentration fields between patterns for 
0.1cS = , 1cS = , and 10cS =  at different values of T. The first three figures 

provide a view at the ( ),x z  plane at 1y h = , while the latter three offer a 
top-down view at the ( ),x y  plane at 0.5z h = . 

For all three Schmidt numbers, mixing occurs in the rough sublayer, and 
concentration maxima are located in the canopy region ( 1z h < ). In the case of 

0.1cS = , concentration iso-contours follow the upper part of the hemisphere 
and elongate in the longitudinal direction, unlike the cases of 1cS =  and 

10cS = . Notably, there is significant development of a concentration boundary 
layer downstream of the hemisphere for all three cases. However, in the case of  
 

 
Figure 5. Instantaneous concentration at 50t T=  for 0.1cS = , 1cS = , and 10cS = . The iso-surface represented is 0.97c = . 
The flow is in the x direction, and the rough Reynolds number is * 156Re = . 
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Figure 6. Contours of the spatial mean concentration between patterns for 0.1cS = . View on the median plane 
of the basic pattern at 1y h = . 

 

 
Figure 7. Contours of the spatial mean concentration between patterns for 1cS = . View on the median plane of 
the basic pattern at 1y h = . 

 

 
Figure 8. Contours of the spatial mean concentration between patterns for 10cS = . View on the median plane 
of the basic pattern at 1y h = . 
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Figure 9. Contours of the spatial mean concentration between patterns for 0.1cS = . Top-down view at 0.5z h = . 

 

 
Figure 10. Contours of the spatial mean concentration between patterns for 1cS = . Top-down view at 0.5z h = . 

 
0.1cS = , the concentration boundary layer contours are smoother and thicker 

compared to the other cases. 
These observations suggest that mixing is more efficient in the case of 

0.1cS =  than in the cases of 1cS =  and 10cS = . For 10cS = , the presence of 
concentration streaks, coexisting with lower concentration regions, is notable. 
These streaks are known as “concentration streaks” and have been highlighted 
by Calmet [5]. 

3.4. Vertical Concentration Profiles 

In Figure 12, spatially-averaged vertical concentration profiles at various cha-
racteristic times are presented for the three Schmidt numbers studied: 1cS = , 

0.1cS = , and 10cS = . As previously discussed, the mean concentration profiles 
do not converge towards a steady profile due to the imposition of a zero flux  
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Figure 11. Contours of the spatial mean concentration between patterns for 10cS = . Top-down view at 0.5z h = . 

 

 
Figure 12. Temporal evolution of spatially-averaged vertical concentration profiles c  at different times t for the three 

Schmidt numbers: 1cS = , 0.1cS = , and 10cS = . Time t is normalized by the characteristic eddy turnover time T. 

 
condition for concentration on the upper boundary. The imposition of 1c =  at 

0z h = , zero flux at 1z h = , and periodic boundary conditions in the lateral 
and longitudinal directions leads to an accumulation of material in the fluid 
column. This results in a progressive increase in the concentration field 
throughout the domain. It is noticeable in Figure 12 that, for all three Schmidt 
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numbers, the concentration gradient is maximal at the height of the hemispheres 
( 1z h = ). This is clearly visible in Figure 14 and Figure 15, where the same 
quantities as in Figure 12 are presented, but normalized by c∆  and *c , re-
spectively, and in a semi-logarithmic scale. Furthermore, mixing in the water 
column evolves differently depending on the Schmidt number, as suggested by 
the observations in Figure 5. The most surprising aspect is that this evolution is 
not consistent as the Schmidt number increases. To illustrate this point, we 
plotted the temporal evolution of the mean instantaneous concentration in the 
canopy region ( 1z h < ) and outside the canopy region ( 1z h > ) in Figure 13(b)). 
Based on these results, mixing is favored when the Schmidt number 1cS �  or 

1cS �  outside the canopy region. For 1z h < , mixing is almost the same for 
1cS =  and 10cS = . In general, mixing is more pronounced for 0.1cS = . As 

previously mentioned, there is a challenge in using c∆  and *c  to normalize 
the statistical quantities. The vertical concentration profiles demonstrate that the 
concentration is nearly stationary within the canopy, indicating that the values 
of c∆  and *c  vary significantly over time and with the Schmidt number. De-
spite our normalization choices, the concentration profiles do not overlap (see 
Figure 14 and Figure 15). Nevertheless, a logarithmic behavior is observed for 
the mean concentration profiles obtained for Schmidt numbers 1cS =  and 

10cS = . This can be explained by the fact that for Schmidt numbers greater than 
1, transfer is governed by turbulent agitation, whereas for Schmidt numbers less 
than 1, purely diffusive effects dominate. 

 

 
Figure 13. (a) Temporal evolution of the diffusive concentration flux near the wall pJ  (kg·m−2·s−1) for the three 

Schmidt numbers: 0.1cS = , 1cS = , and 10cS = . (b) Temporal evolution of instantaneous concentration mean in 
the canopy region ( 1z h < ) and outside the canopy region ( 1z h > ) for the three Schmidt numbers: 1cS = , 0.1cS = , 
and 10cS = . Time t is normalized by the characteristic eddy turnover time T. 
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Figure 14. Temporal evolution of spatially-averaged vertical concentration profiles c  at different times t for the three 

Schmidt numbers: 1cS = , 0.1cS = , and 10cS = . Time t is normalized by the characteristic eddy turnover time T. The 
profiles are normalized by c∆ . 

 

 
Figure 15. Temporal evolution of spatially-averaged vertical concentration profiles c  at different times t for the three 

Schmidt numbers: 1cS = , 0.1cS = , and 10cS = . Time t is normalized by the characteristic eddy turnover time T. The 
profiles are normalized by *c . 

https://doi.org/10.4236/ojfd.2024.141001


F. Coundoul et al. 
 

 

DOI: 10.4236/ojfd.2024.141001 17 Open Journal of Fluid Dynamics 
 

3.5. Concentration Diffusive Flux 

In Figure 13(a)), the temporal evolution of the diffusive concentration flux pJ  
(kg·m−2·s−1) within the canopy region ( 1z h < ) is presented. It is evident that 

pJ  is higher at 0t =  and gradually decreases over time to approach a constant 
flux. Moreover, it decreases as the Schmidt number increases. The fluxes for 
Schmidt numbers 1cS =  and 10cS =  appear to converge, unlike the case with 

0.1cS = . The initial peak in diffusive flux can be attributed to a significant initial 
concentration gradient, which decreases over time due to the imposition of a 
constant concentration on the domain’s bottom and hemispheres. The conver-
gence to constant flux values is observed for cases with Schmidt numbers 1cS =  
and 10cS =  is a result of diffusive transfer being limited by turbulent transfer. 
Therefore, the plateau is reached more quickly 10cS =  than for 1cS = . In the 
case of 0.1cS = , diffusive effects dominate over turbulent effects, leading to a 
continuous decrease in diffusive flux. It’s worth noting that for longer times, 
such as 50t T = , the ratios between the diffusive fluxes obtained for 0.1cS = , 

1cS = , and 10cS =  are approximately 4 and 2, respectively. 

3.6. Turbulent Concentration Flux 

For a turbulent boundary layer flow, it is expected that, far from the wall, the  

viscous flux v
cJ D
z
∂

=
∂

 is negligible compared to the turbulent flux w c′ ′   

and the dispersive flux wC�� . In Figure 16, vertical profiles of the total flux tJ  
(kg·m−2·s−1), turbulent flux turJ  (kg·m−2·s−1), and viscous flux vJ  (kg·m−2·s−1) 
are presented for the three Schmidt numbers 1cS = , 0.1cS = , and 10cS =  at 

50t T = . It can be observed that the contribution of the viscous flux to the total 
flux is very low for 1cS =  and 10cS = . However, 0.1cS = , this contribution is 
higher, and it is not negligible, even comparable to the turbulent flux within the 
canopy region ( 1z h < ) and in the upper part of the domain. Figure 17 depicts 
the temporal evolution of the total flux tJ  (kg·m−2·s−1) normalized by the diffu-
sive flux near the wall, pJ  (kg·m−2·s−1), for the three cases of 1cS = , 0.1cS = , 
and 10cS = . The same quantities are presented at different times in Figure 18. 
For short times ( 1t T < ), these results indicate that the total flux is equivalent to 
the diffusive flux, and the maxima of turbulent flux are localized in the rough-
ness sublayer (between 1 2z h< < ). In the case where diffusive transfer domi-
nates over turbulent transfer, i.e., 0.1cS = , the ratio between the total flux and 
diffusive flux decreases over time, reaching 0.25 at 50t T = . Although the dif-
fusive flux pJ  decreases, this is not primarily responsible for the significant 
reduction in the total flux tJ . For the cases 1cS =  and 10cS = , an increase in 
the total flux tJ  is observed, as shown in Figure 13(a)). In these cases, the dif-
fusive flux remains constant for longer times. The accumulation of concentra-
tion flux observed mainly in the roughness sublayer is more significant for 

1cS =  than for 10cS = , with 65t pJ J =  and 30, respectively. This difference 
is also visible in the curve of the evolution of the instantaneous concentration  
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Figure 16. Vertical profiles of total flux tJ  (kg·m−2·s−1), turbulent flux turJ  (kg·m−2·s−1), and viscous flux vJ  (kg·m−2·s−1) 
for three Schmidt numbers 1cS = , 0.1cS = , and 10cS =  at 50t T = . 

 

 
Figure 17. Temporal evolution of total flux tJ  (kg·m−2·s−1) normalized by the diffusive flux near the wall pJ  (kg·m−2·s−1) 

for three Schmidt numbers 1cS = , 0.1cS = , and 10cS = . 
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Figure 18. Temporal evolution of total flux tJ  (kg·m−2·s−1) normalized by the diffusive flux near the wall pJ  (kg·m−2·s−1) 

at different times scaled by T for three Schmidt numbers 1cS = , 0.1cS = , and 10cS = . 

 
averaged within the canopy and above it, where a faster evolution of concentra-
tion is observed for 10cS =  compared to 1cS = . The appearance of streaks in 
the case of 10cS =  could explain this difference. According to Calmet [5], the 
dynamics of the concentration field is related to streaks in the case of sheared 
walls, and structures with large scale parallel to the flow direction (but often 
small in the vertical direction) govern the transfer. 

3.7. Global Transfer Coefficients and Exchange Velocity 

For given hydrodynamic conditions, the diffusive flux of concentration at the 
wall, pJ  (kg/m2·s), is related to the transfer velocity, LK  (m/s), and the con-
centration disequilibrium, c∆  (kg/m3), by Equation (21): 

p
L

J
K

c
=
∆

                            (21) 

The temporal evolution of LK , normalized by *u , is presented in Figure 19, 
along with that of the local Sherwood number, hS , defined by Equation (22): 

p
h

J h
S

D c
=

∆
                          (22) 

As expected, the transfer coefficient decreases as cS  increases. In the case of 
a wall, Calmet [5] found values of 0.633

*L cK u S −≈  close to the theoretical value  
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Figure 19. Temporal evolution of the local Sherwood number ,h CS  (a), ,h ES  (b) and the transfer coefficient *LK u  (c) for the 

three Schmidt numbers 1cS = , 0.1cS = , and 10cS = . ,h CS  is the Sherwood number calculated using the concentration 

disequilibrium within the canopy p cc c c∆ = − , and ,h ES  is calculated using the concentration disequilibrium between the 

canopy bottom and the outside p slc c c∆ = − , where cc  and slc  are the instantaneous average concentration within the 

canopy and the concentration at the free surface level. 
 
of *

n
L cK u S −≈  with 2 3n = − . When considering the temporal evolution of 

LK , the found values of n encompass −2/3. The temporal evolution of hS  for 
the three Schmidt numbers shows an increase over time for 0.1cS = , unlike the 
cases of 1cS =  and 10cS = . The choice to calculate the concentration disequi-
librium c∆  within the canopy and outside is justified by the fact that even 
though concentration profiles do not converge to a steady-state profile in the 
upper part of the domain, they seem to do so within the canopy. ,h CS  and ,h ES  
can be interpreted as the ratios between total mass transfer and mass transfer by 
diffusion within the canopy and in the free flow. It is observed that within the 
canopy, the values of ,h CS  are relatively close (ranging between 2 and 3) for the 
three Schmidt numbers. In the upper part of the domain, mass transfer by diffu-
sion is lower for all Schmidt numbers. For 1cS =  and 10cS = , ,h ES  quickly 
evolves towards a constant value (around 20) for both, contrary to 0.1cS = , 
where ,h ES  increases indefinitely. In the latter case, ,h ES ‘s gradual increase 
over time can be explained by a less significant concentration disequilibrium due 
to greater mixing. In addition to the values of LK  and hS , we have also calcu-
lated the exchange velocity between the canopy and the flow above. This para-
meter is purely hydrodynamic and does not depend on the Schmidt number. For 
the three cases studied, we found very close values (see Table 2). 
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Table 2. Exchange velocity for the three Schmidt numbers 1cS = , 0.1cS = , and 10cS = . 

 0.1cS =  1cS =  10cS =  

Exchange velocity *EU u  0.0963 ± 6.17 × 10−4 0.0956 ± 6.9354 × 10−4 0.0965 ± 6.3177 × 10−4 

4. Conclusion 

This comprehensive study of mass transfer in the interaction between river bio-
film and a turbulent boundary layer unveils complex and varied dynamics. Our 
numerical simulations, constrained to relatively low Schmidt numbers and a 
specific roughness Reynolds number, have highlighted several key aspects of 
these mass transfers. Firstly, we observed that the concentration profile above 
the canopy follows a logarithmic trend, with a relative homogenization of con-
centration over extended durations. This characteristic suggests a dynamic inte-
raction between the biofilm and the flow above, influenced by turbulence and 
the morphology of the biofilm surface. Secondly, our analysis revealed that the 
contribution of molecular diffusion to the total flux varies significantly with the 
Schmidt number. While this contribution is almost negligible for Schmidt num-
bers equal to or greater than 1, it becomes comparable to the turbulent flux for a 
Schmidt number of 0.1. This observation underscores the importance of mole-
cular diffusion in low Schmidt number regimes. Moreover, the local Sherwood 
number, representing the ratio between the total flux and the molecular diffu-
sion flux at the wall, also depends on the Schmidt number. This dependency in-
dicates that nutrient absorption by organisms near the wall is facilitated by lower 
Schmidt numbers. Interestingly, the exchange velocity, a purely hydrodynamic 
parameter, proved to be independent of the Schmidt number. In our case, it is 
on the order of 10% of the friction velocity ( *u ). This finding suggests a funda-
mental interaction between the flow structure and the mass transfer process, re-
gardless of specific diffusion properties. In conclusion, our study significantly 
contributes to the understanding of mass transfer mechanisms in river biofilm 
systems, highlighting the complex interaction between flow dynamics, molecular 
diffusion, and biofilm structure. These results pave the way for future research 
that could explore broader ranges of Schmidt and Reynolds numbers, to expand 
our understanding of these crucial ecological systems. 
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