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Abstract 
With respect to flows in a two-dimensional sudden expansion and contrac-
tion channel having a pair of cavities, numerical simulation was performed by 
imposing inlet/outlet boundary conditions giving a velocity distribution to 
the inlet. Periodic flows have been reproduced, which have a discrete spec-
trum about frequency. A fundamental wave occupies most part of the dis-
turbance components, but higher harmonic waves are also included. The 
disturbance is excited by Kelvin-Helmholtz instability in a cavity section, 
where only the fundamental wave is generated. A wavenumber is regulated by 
a channel length under a periodic boundary condition, but there is no restric-
tion in a main flow direction under the inlet/outlet boundary conditions, and 
therefore, some wavenumbers can occur. Therefore, an arbitrary frequency 
component of disturbance is a synthesized wave composed of various wave 
numbers. There are two kinds of components constituting this synthesized 
wave: a maximum of a velocity distribution is near a wall and in the center 
of the channel, which are called as wall mode and central mode in linear sta-
bility analysis of the plane Poiseuille flow. The synthesized wave composed of 
some modes shows a tendency to lower wavenumbers at the center of the 
channel. 
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1. Introduction 

Flow paths with abrupt changes in cross-sectional area can be found in a variety 
of objects such as fluid machinery and chemical plants. Examples of laminar 
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flow paths include injection molds and etched fabrication of printed circuit 
boards. Such channels are prone to flow separation and self-sustained oscilla-
tions. In recent years, transport phenomena in laminar flow paths have attracted 
attention for applications in medical engineering, such as compact analytical de-
vices and artificial organs. One such application is the use of autonomous oscil-
lations of fluids to promote heat and mass mixing [1] [2]. 

In a 2-D channel with only a suddenly expanding or suddenly contracting sec-
tion, the flow is steady at a Reynolds number on the order of 100 and transitions 
abruptly from a steady flow to an irregular oscillatory flow [3]-[7]. In contrast, 
in channels with cavities consisting of both suddenly expanding and suddenly 
contracting sections, the transition from steady flow to periodic oscillatory flow 
is known by 2-D numerical analysis and experiments [8] [9]. This oscillatory 
flow is a Tollmien-Schlichting (T-S) wave excited by the Kelvin-Helmholtz 
(K-H) instability in the cavity section [10]. The critical Reynolds number for the 
change from steady to oscillatory flow depends on the boundary conditions as 
well as the expansion ratio of the flow channel and the aspect ratio of the cavity 
section. There are two types of boundary condition settings depending on the 
treatment of the inlet and outlet surfaces: cyclic boundary condition and in-
let/outlet boundary condition. In the latter case, the velocity distribution is spe-
cified at the inflow surface, and the outflow surface is used as a free boundary 
condition. Assuming that the cavity is single and symmetrical about the channel 
center axis, with an expansion ratio Ex = 3 and aspect ratio As = 7/3, the critical 
Reynolds number Rec = 843 for the inlet/outlet boundary condition [11] [12], 
while Rec = 48.7 for the periodic boundary condition [13]. The definitions of the 
parameters are described below. 

Just as linear stability analysis is used for a plane Poiseuille flow, linear stabili-
ty analysis can be applied to a two-dimensional flow in a suddenly expanding 
and contracting channel [14]. In a plane Poiseuille flow, the wavenumber com-
ponent of the disturbance in the main flow direction is included in the exponen-
tial part. In contrast, in a flow in a suddenly expanding and contracting channel, 
the angular frequency and time-decay rate can be obtained, but not the wave-
number directly, because the waveform distribution is in two variables, one in 
the main flow direction and the other in the vertical direction. Nevertheless, un-
der periodic boundary conditions, the wave number is defined by the channel 
length. In fact, the time series distribution of velocity at an arbitrary point re-
vealed that the disturbance is a monochromatic wave [15]. However, in the in-
flow/outflow boundary condition, there are no restrictions on the direction of 
the main flow, which can lead to multivalence in the wavenumber of the ex-
cited disturbance. Although vibration characteristics have been investigated in 
the downstream entrance region, only the time evolution of velocity at a specific 
point has been obtained [11]. 

In this study, two-dimensional numerical simulations were performed for the 
flow in a suddenly expanding and suddenly contracting channel under inflow 
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and outflow boundary conditions. By analyzing the structure of the obtained pe-
riodic oscillatory flow, the various characteristics of the oscillatory flow, espe-
cially the specific structure of the wave number, are clarified.  

2. Methods 
2.1. Governing Equations 

In this study, a two-dimensional incompressible viscous fluid is considered. The 
governing equations are the continuity Equation (1) and the Navier-Stokes Equ-
ation (2), expressed in terms of pressure p and velocity u = (u, v) with time t and 
space x = (x, y) as parameters. 

0∇ ⋅ =u                              (1) 

( ) 21 p
t

µ
ρ ρ

∂
+ ⋅∇ = − ∇ + ∇

∂
u u u u                    (2) 

where the density ρ and kinematic viscosity μ/ρ are constants. 
Figure 1 shows the channel geometry, related parameters, and coordinate 

system. The x-axis is in the main flow direction, and the y-axis is perpendicular 
to the x-axis. The origin O of the coordinate system is set on the center axis of 
the flow path at the center of the cavity section. The channel geometry was set to 
an expansion ratio of Ex = 3h/h = 3 and an aspect ratio of As = L0/3h = 7/3, in 
accordance with previous studies. The lengths of the entrance regions were set to 
be upstream L1/h = 13 and downstream L2/h = 33, which are sufficiently long so 
that boundary conditions do not affect the flow. 

The Reynolds number is defined as Re = ρUmax h/2μ. Here, the reference ve-
locity Umax is the maximum value of the theoretical solution for a plane Poi-
seuille flow, and the characteristic length h/2 is half the channel height in the 
auxiliary section before and after the cavity section. By fixing each value at Umax = 
1 [m/s] and h/2 = 1 [m], the physical quantities were made virtually dimension-
less, and Re was determined by varying the kinematic viscosity coefficient μ/ρ 
[m2/s]. 

2.2. Numerical Solutions 

In this study, OpenFOAM was used as the simulation tool [16], and unsteady 
numerical simulations were performed. Many numerical simulations using this 
software have been reported so far [17] [18] [19]. The application to flow in a  
 

 
Figure 1. A geometry with parameters and coordinate system. 
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3-D suddenly expanding duct in a transition zone has been reported [20] [21] 
[22]. 

OpenFOAM discretizes the governing equations using the finite volume me-
thod. The numerical scheme used is the Crank–Nicolson method for time, and 
central difference and Gaussian integration for space. Although the Quadratic 
Upstream Interpolation for Convective Kinematics (QUICK) method could 
have been chosen for the convection term, it was found to be unsuitable due to 
significant numerical oscillations in the calculations. The algorithm was the 
Pressure-Implicit with Splitting of Operators (PISO) method. The solvers are 
the Geometric-Algebraic Multi-Grid (GAMG) method for the pressure and 
Gauss-Seidel for the velocity. Iterations were performed until the residuals 
reached 10−10. 

The boundary conditions are described below. The inflow condition is a theo-
retical solution for a plane Poiseuille flow with a maximum velocity of Umax = 1 
[m/s]. The outflow boundary condition was set to zero for the mean pressure 
and the Sommerfeld radial boundary condition for the velocity [23]. The velocity 
boundary condition was compared between the free boundary condition and the 
Sommerfeld radial boundary condition. The free boundary condition increased 
the root mean square (RMS) of the velocity component v by up to about 20% 
compared to the Sommerfeld radial boundary condition. The no-slip boundary 
condition was specified for the wall. The other boundary conditions were set to 
zero gradient in the normal direction. 

The computational domain is meshed with equispaced-structured mesh ele-
ments at a spacing of Δx = Δy. The mesh spacing is expressed as a percentage of 
the channel height h = 2 [m]. In this study, a mesh with Δx/h = 1/40 was mainly 
used. The time interval was set to Δt = 0.005 [s]. The validity of these settings is 
discussed in detail in Section 3.4. 

3. Results 
3.1. Flow Patterns 

The flow in a suddenly expanding and contracting channel transitions from a 
steady flow to an oscillatory flow above a critical Reynolds number. In this study, 
the critical Reynolds number was determined to be Rec = 1027. The validity of 
this value is discussed below in Section 3.5. 

Figure 2(a) and Figure 2(b) show examples of streamlines based on the ve-
locity u at a certain instant. This was represented by finding the contour lines of 
the flow function. At Re = 1030, which is near the critical Reynolds number, 
there are only a few oscillations that can be read from the stream plots, while at 
Re = 1200, the meandering of the main flow can be clearly seen. 

The streamlines of time-averaged velocity um shown in Figure 2(c) and Fig-
ure 2(d) resemble a stable symmetric steady flow, with the mainstream slightly 
widening as it moves downstream in the cavity section and abruptly shrinking 
before the steeply contracting section. 
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Figure 2. Streamlines (a) and (b) for velocity u, (c) and (d) for time mean velocity um, and (e) and (f) for disturbance ve-
locity u' at an instant. Although cellular vortices are confirmed in (e) and (f), their shapes are distorted as wavenumber of 
disturbance varies depending on a position. The disturbance shows a tendency to decrease its wavenumber at a center of 
the channel. 
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Figure 2(e) and Figure 2(f) show streamlines of the time-varying velocity u'. 
At Re = 1030, cellular vortices like those of a plane Poiseuille flow were observed 
in the downstream entrance region, the vortices gradually became distorted, and 
then vortex pairs appeared as if they were filling the gaps. At Re = 1200, the dis-
tortion of the vortices becomes more and more pronounced, and the vortex pat-
tern cannot be called cellular after a while downstream from the steeply de-
creasing section. 

In a plane Poiseuille flow, a cellular vortex pattern appears when streamlines 
are drawn in a fluctuating velocity field. If the periodic boundary condition is 
imposed in the main flow direction, the wavenumber is an integer multiple of 
the inverse of the channel length, and the boundary between the vortices is per-
pendicular to the wall surface. If periodic boundary conditions are imposed in 
the main flow direction, even for the flows in a suddenly expanding and con-
tracting channel, the possible wave number is defined by the length of the chan-
nel. A non-periodic boundary condition with Dirichlet boundary conditions at 
the inlet and outlet results in an arbitrariness in wavenumber. Therefore, the 
wavenumber changes in a complex manner as one moves downstream. A similar 
case is that in a parallel-plate flow with multiple cavities, two types of waves with 
different phase velocities are generated at about Re = 58, resulting in an irregular 
arrangement of cellular vortices [24]. 

3.2. Time-Averaged Velocity Distributions 

Figure 3(a) plots the time-averaged velocity component um. At x = 7, which is  
 

 
Figure 3. Scatter diagrams of time mean velocity um along x-axis at Re = 1200. In the entrance region on the down-
stream side, a position y where vm is maximum is not constant. In conjunction with Figure 7 described later, the 
phase of disturbance velocity is influenced by the change in time mean velocity. 

https://doi.org/10.4236/ojfd.2023.135018


T. Masuda et al. 
 

 

DOI: 10.4236/ojfd.2023.135018 238 Open Journal of Fluid Dynamics 
 

the boundary between the cavity and the entrance region, the velocity reaches a 
minimum at 0 ≤ y ≤ 0.5, which is close to the center axis of the channel, while 
the velocity increases at 0.6 ≤ y ≤ 0.9. Moreover, a bulge is observed around x = 
7, and the closer to y = 1, the larger the rise is. The mean velocity distribution 
approaches a uniform distribution at 5 ≤ x ≤ 7, and then the distribution be-
comes parabolic as it proceeds downstream through a steeply decreasing area. 

Figure 3(b) and Figure 3(c) show the distribution of time-averaged velocity 
component vm as in Figure 3(a). The vm has a more regular distribution than um. 
The mean velocity component is vm = 0 at y = 0 along the channel center axis, 
reflecting the fact that the disturbances are all symmetric. In the cavity section, 
the position of the vm maxima is consistent regardless of y. The farther away 
from the channel center, the larger the maximum value of vm is. The location of 
the vm maxima in the cavity section is related to the vortex configuration. For 
example, the maxima are particularly large at x ≈ 5 and x ≈ 6.5, which corres-
pond to the periphery of the most downstream vortex, where the velocity com-
ponent v is particularly large. In the downstream entrance region, vm reaches a 
maximum around y = 0.5, though the position is not stable. The smooth curves 
begin to intersect after x = 6, and gradually decay while intertwining with each 
other after passing the steeply expanding section. 

3.3. Frequency Spectrum 

To characterize the oscillatory flow, the spectrum of velocity component v was 
analyzed by discrete Fourier transform (DFT). To obtain a dimensionless fre-
quency interval of Δf = 0.001 with N = 2000 samples, the data output interval 
was set to t = 0.5 in dimensionless time, requiring a data for 1000 dimensionless 
times. In the actual computation, a data for 3000 dimensionless times was set 
aside to check the degree of convergence, and a spectral distribution was created 
based on a data for the latter 1000 dimensionless times. The time required was 
approximately three days with one processor for Δx = 1/40, and approximately 
one week with four processors for Δx = 1/80. To further refine the frequency of 
disturbance, the number of samples was set to 100 (N = 1901 - 2000), and DFT 
were performed on all samples. Therefore, the frequency with the largest ampli-
tude of the fundamental wave was selected. 

Figure 4 shows the spectral distribution of the amplitude A with respect to the 
frequency f obtained by the DFT of the velocity component v at (x, y) = (10, 0.5). 
Depending on the number of samples, though the distribution may be conti-
nuous at the root of the peak, a discrete spectral distribution can be obtained by 
selecting an appropriate number of samples. It was found that the disturbance 
includes not only the fundamental wave but also harmonics. The frequency of 
the fundamental wave tends to increase slightly in proportion to Re. As Re in-
creases, the amplitude of the disturbance also increases. 

In the following descriptions, the velocity components of the nth harmonic, 
which constitute the velocity components u and v, are denoted as Un and Vn.  
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Figure 4. Spectrum of amplitude A of velocity compo-
nents v with respect to frequency f at a point (x, y) = (10, 
0.5). Frequency f(V1) and amplitude A(V1) of a funda-
mental V1 are shown in these figures, which have a dis-
crete spectrum and contains harmonics as well as a fun-
damental. 

 
The frequency f, amplitude A, and phase θ of the harmonics are defined as de-
pendent variables of Un and Vn. 

3.4. Discretization Error Evaluation 

Spatial discretization errors are caused by the structure and fineness of the mesh 
and have a significant impact on the characteristics of the computation results. 
In this section, we evaluate the spatial discretization error due to mesh size, re-
ferring to the work of Ferziger and Perić [25]. If the physical quantity of interest 
converges monotonically when the mesh size is systematically made finer, then 
the lattice dependence is sufficiently small. In the case of equally spaced meshes, 
it is best to reduce the mesh size by half. Although discretization errors are in-
evitable in simulation results, if the physical quantities of interest tend to con-
verge monotonically, the reproducibility of qualitative features is at least guar-
anteed. Based on the results obtained from the three models with systematically 
finer mesh sizes, the scheme order o can be obtained. When the scheme order o 
is a positive real number, the results converge monotonically to the true value. 

Table 1 shows the mesh dependence evaluated by making the mesh size pro-
gressively finer at Re = 1200. The meshes are equally spaced with Δx = Δy, and 
three mesh sizes are available: Δx = 1/20, 1/40, and 1/80. The time step was set to  
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Table 1. Comparison of discrete precision of three kinds of mesh size Δx with distur-
bance velocity v' at Δt = 0.005, (x, y) = (10, 0.5) and Re = 1200. Amplitude of disturbance 
velocity A(v'), its fundamental harmonic A(V1), second one A(V2), and third one A(V3) 
are compared. 

Δx A(v') A(V1) A(V2) A(V3) 

1/20 0.066646 0.059664 0.011485 0.003035 

1/40 0.097889 0.076774 0.026605 0.004304 

1/80 0.109645 0.077270 0.032644 0.009783 

Order o 1.34118 5.10626 1.32410 −2.11059 

 
Δt = 0.005. In addition to the amplitude A(v') of the fluctuation velocity com-
ponent v', the amplitudes A(V1), A(V2), and A(V3) of the fundamental, second 
harmonic, and third harmonic waves were selected as the physical quantity of 
interest, and the data at (x, y) = (10, 0.5) were used. Based on these, the order ο 
of the scheme was calculated according to Equation (3) [26] [27]: 

2 4

2

ln

ln

l l

l lo
r

ϕ ϕ
ϕ ϕ

 −
 − =                           (3) 

Here, r represents the rate of increase of the mesh, r = 2. The φ is an arbitrary 
physical quantity, and the amplitude A(v') of the fluctuating velocity component 
or the amplitude A(Vn) of the nth harmonic was assigned to φ. 

The order of the fluctuation velocity component v' was 1.34. For each har-
monic, the order o of the fundamental V1 was 5.11, which is sufficiently large, 
while the accuracy dropped sharply to 1.32 for the second harmonic V2 and −2.11 
for the third harmonic V3. Because the higher harmonics are more strongly af-
fected by the spatial discretization accuracy, the higher frequency disturbances 
are at the same time higher wavenumbers. 

Table 2 examines the effect of time step Δt. Using the method for evaluating 
discrete errors in space, the convergence was evaluated for decreasing time in-
crements of Δt = 0.01, 0.005, and 0.0025. The mesh spacing was Δx = 1/40, and 
the other conditions are the same as in Table 1. In obtaining the order o of the 
scheme, l in Equation (3) was replaced by the smallest time increment Δt = 
0.0025. The amplitude A(v') of the fluctuating velocity component converges to 
a constant value, and thus can be said to adequately reproduce the characteristics 
of the target. The amplitude A(V1) of the fundamental wave decreased once and 
then began to increase as the time step Δt decreased. The order o of the scheme 
could not be determined, because the change was not monotonic. Although the 
order o of the amplitude A(V3) of the third harmonic exceeds that of the ampli-
tude A(v') of the fluctuation velocity component, this is considered to be a fake 
order, considering that the spatial discretization accuracy is not sufficiently en-
sured as shown in Table 1. It is judged that the variability velocity component 
after the third harmonic lacks reproducibility qualitatively. 
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Table 2. Comparison of discrete precision of three kinds of time increment Δt with dis-
turbance velocity v' at Δx = 1/40, (x, y) = (10, 0.5) and Re = 1200. This is same as Table 1 
about the compared objects. 

Δt A(v') A(V1) A(V2) A(V3) 

0.01 0.0990054 0.0768718 0.0275299 0.0048540 

0.005 0.0978892 0.0767742 0.0266057 0.0043044 

0.0025 0.0974420 0.0767999 0.0260408 0.0042592 

Order o 1.31960 NA 0.710085 3.60249 

3.5. Bifurcation Diagram 

Figure 5 is a bifurcation diagram based on the DFT result of the velocity com-
ponent v at position (x, y) = (10, 0.5). The mesh spacing was set to Δx = 1/40. 
The initial value is of an oscillatory flow at Re larger than the target Re, and the 
computation is continued until the oscillations are sufficiently damped. The 
condition for convergence was that the peak value of the velocity component v 
be within 1% of the amplitude in the range of 1000 dimensionless times. 

The critical Reynolds number was obtained by drawing an approximate curve 
using the seventh-order least-squares method based on the plotted points of the 
amplitude A(V1) of the fundamental wave, and its value was found to be Rec = 
1027. In the article by Mizushima et al. [12], the critical Reynolds number is given 
as Rec = 843. Comparing the two numerical solution methods, the previous study 
discretized the time term with first-order accuracy and the other terms with 
second-order accuracy, while the present study adopted a second-order accuracy 
scheme for all terms. Although the time interval of the present study is Δt = 0.005 
compared to Δt = 0.0005 in the previous study, the steady flow condition was 
maintained even when Δt = 0.0005 was used at Re = 1000, which refers that the 
order of the scheme was dominant. Furthermore, as shown in Table 2, the time 
increments have little influence on the results. Therefore, the dependence on the 
value of the critical Reynolds number is not due to a lack of discretization accu-
racy, but rather to the characteristics of the numerical solution method. 

The approximate curves for the second and third harmonics are drawn by 
means of a type of cubic spline interpolation, the Akima spline interpolation, 
assuming that the critical Reynolds number obtained from the fundamental is 
common to the other harmonics. From this approximate curve, it can be read 
that the fraction of harmonics in the disturbance increases with the Reynolds 
number. From the viewpoint of bifurcation theory, when a stationary flow such 
as a plane Poiseuille flow becomes unstable and transitions to an oscillatory flow, 
it is the Hop bifurcation, in which a branch of the oscillatory flow vertically 
branches off from a branch of the stationary flow at a critical point. A similar 
bifurcation structure should exist for suddenly expanding and suddenly con-
tracting channel flows. In fact, the bifurcation diagram based on the amplitude 
A(V1) of the fundamental suggests that it is the Hop bifurcation. However, for 
the harmonics, the bifurcation is an incomplete Hop bifurcation, with a branch  
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Figure 5. A bifurcation diagram based on amplitude of the fundamental harmonic A(V1), 
the second one A(V2) and the third one A(V3) of velocity components v with respect to 
Reynolds numbers Re. The critical Reynolds number is of Rec = 1027. An approximate 
curve of the fundamental wave was drawn by least-squares method with seven parame-
ters. In proportion to Reynolds numbers, not only the amplitude of velocity components 
v but also a proportion of harmonics in disturbance increases. When a steady flow be-
comes unstable and transitions to an oscillatory flow, it is a Hopf bifurcation, but with 
respect to the harmonics it becomes an incomplete Hopf bifurcation. 
 
of the oscillatory flow extending tangential to the branch of the stationary flow. 
If this result is taken as is, the cascade down of disturbances is activated in pro-
portion to the Reynolds number, with a very little activity near the critical Rey-
nolds number. Nevertheless, high-frequency disturbances have high wavenumb-
er at the same time, and there is a concern about the effects of numerical errors 
due to mesh coarseness. 

3.6. Amplitude Distributions 

Figure 6 shows the amplitude distribution of each harmonic with respect to the 
velocity components u and v. By applying the DFT to the velocity distribution 
over the entire flow field, the characteristics of the disturbance were evaluated. 

The amplitudes A(Un) and A(Vn) of the harmonics are even or odd functions 
with respect to the channel center axis at the symmetry of the oscillatory flow. 
For the fundamental wave, A(U1) is an odd function, and A(V1) is an even func-
tion. Such disturbances with parity are called antisymmetric disturbances and 
are expected to be initially unstable with respect to the flow field. These proper-
ties are consistent with those of a plane Poiseuille flow. For the nth harmonic, 
A(Un) is even-functional for even-order harmonics, and A(Vn) is even-functional 
for odd-order harmonics. 

To evaluate the contribution of each harmonic to the overall disturbance, the 
ratio of the maximum amplitude of each harmonic in the flow field to the repre-
sentative velocity was compared. At Re = 1030, the maximum values of the am-
plitude distribution of the fundamental wave are A(U1) = 0.0377 and A(V1) = 
0.0415, while those of the second harmonic are A(U2) = 0.00208 and A(V2) =  
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Figure 6. Distributions of amplitude for some frequency components of disturbance. There are points where the amplitude tem-
porarily becomes very weak at a downstream side of the channel, which are like a clause generated by superposition of waves. The 
disturbance is a synthesized wave which consists of waves having different wavenumbers. 
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0.00152, less than 10% of those of the fundamental wave. At Re = 1200, the 
maximum values of the variation velocity component u' are 0.217, 0.071, 0.030, 
0.019, 0.011, and 0.005 from the fundamental to the sixth harmonic, in that or-
der, while those of the fluctuation velocity component v' are 0.197, 0.042, 0.027, 
0.013, 0.009, and 0.006. The fraction of fundamental waves in the disturbance is 
high. Furthermore, the amplitude distribution of the fundamental is qualitatively 
in good agreement with the RMS distribution of the fluctuation velocity com-
ponents u' and v'. Therefore, the behavior of the disturbance is represented by 
the fundamental waves. 

The maximum amplitude for the fluctuation component of u' is located near x ≈ 
10, slightly downstream of the suddenly contracting part. The amplitude peaks 
extend from the corners of the suddenly contracting section. This amplitude 
distribution is assumed to be caused by the compression of the vibration in the 
y-direction during the development of a boundary layer from the wall surface 
due to viscous action after the vibration flow excited in the cavity section enters 
the downstream parallel plate space. In contrast, the amplitude of v' peaks at x = 
7, when the flow path is suddenly contracting. This is thought to be because the 
vibration in the y-direction is suppressed between the downstream parallel 
plates, resulting in a gradual damping. 

3.7. Phase Distributions 

As the wavenumber k is the reciprocal of the wavelength λ, the wavenumber k 
can be obtained from the relation Δθ/Δx = 2π/λ = k based on the phase θ shift 
between the two points. The phase is obtained by the DFT. Based on the phase 
distribution, the wavenumber distribution of each harmonic can be estimated by 
reading the rate of change of the phase Δθ/Δx. 

Figure 7 shows the distribution of phase θ obtained by applying the DFT to 
the velocity components u and v as in Figure 6. However, if the phase θ is ex-
pressed as it is in a contour plot, a discontinuity surface is created between π and 
−π, making the plot difficult to understand. Therefore, the phase is treated as sin 
θ using a trigonometric function so that continuous contours can be drawn. 

As the period of rotation of the vortex in the cavity corresponds only to the 
period of the fundamental wave, the second and subsequent harmonics are 
judged to have been generated by cascading down. Moreover, as the frequency 
increases, the spacing of the phase distribution becomes narrower, while the 
disturbance of the high-frequency component is simultaneously higher in wa-
venumber. This is supported by the process of cascading down the disturbances 
defined by the trigonometric functions of the convective term in the Navi-
er-Stokes equations [28]. 

For the velocity component u, the phase velocity of the disturbance increases 
in the center of the channel, whereas the phase velocity is almost constant and 
does not change near the wall. Therefore, a boundary parallel to the channel can 
be observed in the phase distribution, which is clearly visible at Re = 1200 and  
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Figure 7. Distributions of phase for some frequency components of disturbance. Since a fault line is confirmed in the phase 
distributions of the fundamental wave, the fundamental wave is composed of at least two modes: a maxima of an amplitude 
distribution along the y-axis is near a wall and at a center of the channel. 
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even at Re = 1030, where the oscillations are very small. The fundamental wave 
has a clear boundary at y ≈ 0.7, and multiple boundaries can be seen at higher 
harmonics. 

For the velocity component v, the phase distribution becomes non-uniform 
with respect to the Reynolds number. At Re = 1030, the contour lines of the 
phase distribution are approximately perpendicular to the channel wall. At Re = 
1200, the contours of the phase distribution run obliquely, and their slopes vary 
irregularly. The phase of the disturbance changes randomly as the flow progresses. 
The phase distribution is almost constant near the wall, while it changes more ir-
regularly as the flow approaches the center of the channel. The fact that the phase 
distribution varies from place to place clearly indicates that the wavenumber is not 
constant. 

4. Discussion 

Based on the above results, the wavenumber of disturbance in the oscillatory 
flow is discussed. As the channel under consideration here is not under a peri-
odic boundary condition, the wavenumber can take any value. In fact, the phase 
distribution in Figure 7 shows that the wavenumber is not uniform; varies from 
place to place. This chapter discusses the mechanism of this phenomenon. 

The fact that the phase varies from place to place suggests that the disturbance 
in the oscillatory flow is not a monochromatic wave. Furthermore, as shown in 
Figure 6, the amplitude distribution of the fundamental wave of the velocity 
component v has a point where the amplitude temporarily becomes very small at 
the center of the downstream channel. This is like a node generated by the su-
perposition of stationary waves. Since a single wavenumber does not produce a 
node, the disturbance is a composite wave composed of multiple wavenumbers. 
Even in the cavity section, the distribution of wavenumbers is not uniform and 
includes several combinations of wavenumbers that are not integer multiples at 
this point. As shown in the stream diagram in Figure 2, the cavity generates 
multiple vortex pairs that are responsible for the generation of disturbances. The 
effect of their different sizes is thought to generate multiple disturbances with 
different wave numbers. 

5. Conclusions 

In this study, two-dimensional numerical simulations of the flow in a suddenly 
expanding and suddenly contracting channel were performed to reproduce pe-
riodic flow in the range of 1020 < Re ≤ 1200. The following conclusions were 
obtained regarding the oscillatory characteristics of the periodic flow. 

The frequency of the periodic flow is a discrete spectrum. The fundamental 
wave accounts for most of it, though harmonics are also included. The propor-
tion of harmonics in the frequency spectrum increases with Reynolds number. 
In the cavity section, only the fundamental oscillations are excited by the Kel-
vin-Helmholtz instability, while the harmonics are generated by cascading down. 
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Disturbances consist of multiple wavenumbers with arbitrary frequency 
components. The amplitude and phase of the disturbance are extracted by 
Fourier transform in the form of a composite wave at a specific frequency. The 
amplitude distribution has nodes due to the superposition of waves with differ-
ent wavenumbers. The phase distribution is non-uniform and tends to be lower 
in the center of the channel. Therefore, the streamlines of the velocity field of the 
disturbance are distorted so that the cellular vortex protrudes at the center of the 
channel. 

As the phase distribution of the fundamental wave shows boundaries, the dis-
turbance of the fundamental wave consists of at least two types: one with a small 
attenuation rate and the maximum value of the y-directional velocity distribu-
tion near the wall, and the other with the maximum value at the center of the 
flow path. These correspond to the wall mode and the center mode in the linear 
stability analysis of a plane Poiseuille flow. 

The magnitude of the wavenumber is linked to the change in the time-averaged 
velocity. The time-averaged velocity component um promotes low wavenumber 
in the center of the channel as it develops into a parabolic distribution in the en-
trance region. The time-averaged velocity component vm does not have a fixed 
maximum position in the entrance region, which makes the phase distribution 
of the time-varying velocity component v' irregular. 

In summary, the periodic flow excited in the cavity section consists of mul-
tiple disturbances with different wavenumbers and velocity distributions for all 
frequency components, and the wavenumbers change irregularly in the down-
stream region due to differences in attenuation rates and changes in mean veloc-
ity. 
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