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Abstract 
Since the Industrial Revolution, humanity has been intensifying the burning 
of fossil fuels and as a consequence, the average temperature on Earth has 
been increasing. The 20th century was the warmest and future prospects are 
not favorable, that is, even higher temperatures are expected. This demon-
strates the importance of studies on the subject, mainly to predict possible 
environmental, social and economic consequences. The objective of this work 
was to identify the interference of the increase in ambient temperature in the 
dynamics of fluids, such as ocean waves advancing over the continent. For 
this, thermal energy was considered in the Saint-Venant equations and com-
putational implementations were performed via Lax-Friedrichs and Adams- 
Moulton methods. The results indicated that, in fact, depending on the 
amount of thermal energy transferred to the fluid, the advance of water to-
wards the continent can occur, even in places where such a phenomenon has 
never been observed. 
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1. Introduction 

In recent decades, discussions about climate change have been in evidence, 
mainly because its consequences are causing urgent environmental, social and 
economic problems. 

The Intergovernmental Panel on Climate Change (IPCC) was created in 1988, 
within the framework of the United Nations, to synthesize and disseminate the 
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most advanced knowledge on the subject. The United Nations Conference on 
Climate Change, COP 21, took place in 2015 in Paris, where an agreement was 
adopted to strengthen the global response to the threat of climate change and to 
strengthen the capacity of countries to deal with the impacts arising from these 
changes. In 2022, at COP 27 in Egypt, the representatives of several countries 
gathered, aiming to reaffirm and expand the goals for reducing global warming. 

These conferences highlight extreme weather events that populations may be 
increasingly exposed to, such as severe droughts, storms with intense flooding, 
cyclones, tornadoes and tsunamis in places where such phenomena were not 
common. 

The emission of greenhouse gases from human activities, such as burning, 
deforestation and pollution, covers the Earth and retains the Sun’s heat, leading 
to global warming and climate change. The world is currently warming faster 
than at any other time in recorded history [1]. 

The month of July 2023 was confirmed as the hottest month in the recent his-
tory of the Planet, following data released by the Copernicus Climate Change 
Service of the European Union. The average temperature was 16.95˚C, one and a 
half degrees above the level recorded in pre-industrial times. It is unlikely that 
the July record will remain an isolated fact this year [2].  

A large amount of recent research points to the possibility of severe impacts 
arising from an increased frequency of extreme weather events. Scientists are al-
ready observing that the increase in the average temperature of the planet has 
raised sea levels due to the melting of the polar ice caps, which can cause the 
disappearance of islands and densely populated coastal cities. There are predic-
tions of serious consequences for human populations and natural ecosystems, 
such as the extinction of animals and plants [1].  

The oceans absorb more than 90% of the extra energy accumulated by retain-
ing heat, due to greenhouse gases, and in the last few decades, since 1991, the 
temperature of the oceans has been increasing much faster [3]. As an effect, 
there are changes in the extent of sea ice, in the salinity of the sea and this nega-
tively impacts all marine biota [4]. Furthermore, analyzes of oceanic data indi-
cate that this energy gain has been modifying the behavior of the circulation of 
marine currents, the intensity, height and frequency with which the waves ma-
nifest themselves [5] [6] [7].  

It thus becomes important to characterize the fluid dynamics in a warming 
climate. The classic Saint-Venant equations are widely used to describe fluid 
dynamics applied to many physical problems such as dam failure [8] [9], flood-
ing [10], tsunami [11], urban drainage [12], and river flow [13], among others. 

Usually, the solutions of these equations require the use of numerical and 
computational methods. Furthermore, the hyperbolic characteristic of the partial 
differential equations demands extra care to avoid spurious errors that impair 
the quality of the numerical solutions [14]. 

This article aimed to verify the influence of global warming on the dynamics 
of incompressible fluids, through the insertion of thermal energy in the Saint- 
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Venant equations. More specifically, the objectives were to computationally im-
plement, via own codes in Octave, a finite volume method of the Lax-Friedrichs 
type, coupled to an Adams-Moulton type scheme, to simulate the temporal evo-
lution of ocean waves; to involve the dynamics of the fluid in a medium charac-
terized by the Earth’s Troposphere and consider the transfer of thermal energy 
from the medium to the fluid in two distinct moments: first, without effects of 
global warming and then with effects of global warming. 

The paper is organized as follows. Section 2 was intended for a brief presenta-
tion of the Saint-Venant equations, highlighting the modifications made to add 
the equations involving thermal energy and the distribution of ambient temper-
ature. In Section 3, we describe the methods used to discretize the equations. 
The implemented simulations are in Section 4. Finally, in Section 5 we have the 
conclusions. 

2. Modeling Mathematical 

The classical Saint-Venant equations describe the flow of water as an incompres-
sible, non-viscous and non-heat conducting fluid subject to free-surface gravity 
flow [8] [9]. 

The law of conservation of mass equation takes the form,  

 ( ) 0,h uh
t x

∂ ∂
+ =

∂ ∂
                         (1) 

where ( ),h x t=  is the total depth of the fluid (water height) whose reference is 
the bottom topography, and ( ),u u x t=  is the velocity of the fluid in x-direc- 
tion. 

The conservation of momentum is given by,  

 ( ) ( )2 ,zhu hu p gh
t x x
∂ ∂ ∂

+ + = −
∂ ∂ ∂

                 (2) 

in which the pressure term p is defined by 21
2

p gh=  under gravitational forces,  

g is the constant acceleration due to gravity and ( )z z x=  describes the bottom 
topography. 

The Equations (1) and (2) are also called the Shallow Water Equations. In this 
system can also be possible to consider another balance equation to describe the 
balance of energy [15],  

 ( )( ) ,E zu E p ghu
t x x

∂ ∂ ∂
+ + = −

∂ ∂ ∂
                 (3) 

where ( ),E E x t=  is energy of system. 
In this work, to add the influence of the increase in the temperature of the en-

vironment on the fluid dynamics, we will consider a fluid that receives thermal 
energy and is capable of changing its movement [16]. 

In this sense, we assume the dynamics of the fluid described by the Saint-Ve- 
nant equations immersed in a medium. In this research, the interest is to inves-
tigate the propagation of ocean waves reaching the Earth’s surface, so we adopted 
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the physical characteristics of the Earth’s Troposphere and, therefore, the waves 
have heights that are compatible with this region. Most of the atmospheric phe-
nomena are concentrated in the Troposphere and, in the neighborhood of its 
base, the atmospheric dynamics are complex, however, if we consider that, while 
the dynamics of the ocean wave develop, the atmospheric conditions remain 
static, we can use as a reference the International Standard Atmosphere (ISA) 
based on the U.S. Standard Atmosphere [17], which is a static atmospheric ma-
thematical model, for describing the dependence of temperature, density and 
pressure on altitude. 

In the atmospheric static model, in the Troposphere, the temperature of the 
medium in relation to altitude is given by an affine function and as we move 
away from sea level, the temperature decreases with height, creating a tempera-
ture distribution along the altitude. 

At all times, the oceanic fluid will be in contact with the medium. We consider 
that such a medium behaves as a thermal reservoir, that is, the medium will 
transfer thermal energy to the fluid in a way that its temperature distribution is 
not affected. The heat transfer from the medium to the fluid adds energy to the 
system of Saint-Venant equations, influencing the horizontal displacement of 
the fluid and increasing the total energy of the system. 

For this, the right side of Equation (2), adds to the kinematic heat flux given 
by Fourier’s Law [18],  

,TQ h
y

κ ∂
= −

∂
 

in which κ  is the kinematic thermal conductivity of the fluid (water) and 
( )T T y=  is the ambient temperature or environmental temperature. Further-

more, on the right side of Equation (3) thermal energy gain was included, trans-
ferred from the environment to the fluid by the term ( )ambT Tαβ= − − , which 
α  is the heat exchange coefficient and ambT  is the average temperature of the 
environment (Earth planet) at sea level, in case ambT  (Kelvin). 

To represent the different temperatures according to the height of the fluid, 
we defined a linear temperature distribution ( ) 50ambT y T yβ= −  to be influ-
enced by ambT . A modification ambT  causes both the temperature distribution 
and   to be affected by a factor β . 

In this way, we can rewrite Equations (1), (2) and (3) on a system of partial 
differential equations in the form of a law of balance as follows  

 ( ) ( ) ,t x
+ =U F U S U                       (4) 

with  

 ( ) ( )

( )

2 2

2

0
1, and .
2
1
2 amb

huh
z Thu hu gh gh h
x y

E
zu E gh ghu T T
x

κ

αβ

   
   
    

∂ ∂    = = + = − −     ∂ ∂        ∂   + − − −      ∂  

U F U S U  (5) 
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Equation (4) is a balance law whose vector U  has the conserved variables, 
( )F U  is a flux vector and ( )S U  is the source term vector. Except for very 

specific situations, analytical solutions are not available for the Saint-Venant 
equations and, basically, one numerical treatment is necessary to solve the Sys-
tem (4). When ( ) 0=S U , we obtain a conservation law that is a non-linear 
hyperbolic system of partial differential equations (PDEs) can be able to admit 
non-smooth solutions, requiring a lot of attention in choosing the numerical 
method [14]. 

The System (4) becomes well-posed when is defined initial and boundary 
conditions. The initial condition will represent a column of water at rest whose 
movement is started by gravitational forces and its function will be described in 
Section (4). On the boundaries, we have Neumann conditions, but under the 
bottom topography is necessary to put a hydrostatic equilibrium condition [10] 
given by  

 21 .
2

zgh gh
x x
∂ ∂  = − ∂ ∂ 

                      (6) 

3. Numerical Methods 

From a computational point of view, the challenge to obtain numerical solutions 
for System (4) is in the basic conservation law,  

 ( ) 0.t x
+ =U F U                         (7) 

The source term ( )S U  has a numerical treatment standard, that is, we can split 
a partial differential equation (PDE) with source term in coupled equation: a homo-
geneous PDE and an ordinary differential equation [8]. For instance, we consider 
one-dimensional balance law ( ) ( )t x

+ =U F U S U , Equation (4), and split it in  

 
( )

( )
1

0

,
t x n

n
nx t

+
 + = ⇒

=

U F U
U

U U
                    (8) 

and  

 
( )

( )
1

d
d ,

,

n

n
n

t
x t

+

 = ⇒
 =

U S U
U

U U
                     (9) 

in which, first, to execute the temporal evolution of the EDP with source term, 
for a time nt  até 1nt + , the numerical solution of the homogeneous EDP is ob-
tained (8), represented by 1nu + . Then the numerical solution is updated by 
solving the ODE within the same time interval and using the solution 1nu +  as 
initial condition. Finally, we obtain the numerical solution of the EDP (4) not 
homogeneous in time 1nt + . 

To solve Equation (8), we use a finite volume method with the numerical flow 
of the Lax-Friedrichs type and Equation (9) was solved by the two-stage 
Adam-Moulton method. 
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3.1. Lax-Friedrichs Scheme 

A Conversation Law (7) can be discretized in a control volume  

( )1
1 2 1 2, ,n n

i it t x x+
− +  ×   the following conservative form [8] [9] [14]  

 1
1 2 1 2 ,n n n n

i i i i
tU U F F
x

+
+ −

∆  = − − ∆
                 (10) 

in which ( )1 2 1, , ,n n n
i i p i p i qF U U U+ − − + += �  is a numerical flux defined by each 

method which considers a regular partition of the spatial domain  

1 1: ,x i Nx x x +Ω < < < <� �  

with N subintervals in which  

1 ,i ix xx
N

+ −
∆ =  

for any value of i existent. The i-th average cell or the i-th finite volume is de-

fined by, ( )1 2 1 2,i i ix x− +Ω =  where 1
1 2 2

i i
i

x xx +
+

+
= ; note that each average cell 

has the size of the spacing x∆ , because 1 2 1 2i ix x x+ −− = ∆ . 

Representing the conservation law with respect to the analytical solution by 
( ) ( )t x

u f u s u+ = , the values  

 ( ) ( )
1 2

1 21 1, d , d
i i

in
i n nx

U u x t x u x t x
x x−

+

Ω
≅ =
∆ ∆∫ ∫            (11) 

and  

 ( )( )1
1 2 1 2

1 , d .n

n

tn
i it

F f u x t t
t

+

+ +≅
∆ ∫                 (12) 

are respectively, the approximate average value of the quantity u on the finite 
volume iΩ  in time nt  and the average value of the flow through 1 2ix +  be-
tween times nt  and 1nt + . The Lax-Friedrichs Method in the context of finite 
volume methods consists of approximating the flow ( )f u  as a piecewise con-
stant function, see Figure 1, that is,  
 

 
Figure 1. Graphical representation of the Lax-Friedrichs method where ( )f u  is con-

stant within each average cell iΩ .  
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( ) ( )1 2 1 2, , ,n
i i i ip x U x x x− += ∈  

where ( ) ( )0 ,0i ip x U u x= =  with ( )1 2 1 2,i ix x x− +∈ , matches the initial condi-
tion.  

In this way, it is possible to obtain approximations for the integrals defined in 
Equations (11) and (12), and obtain the classical form of the Lax-Friedrichs type 
finite volume method in conservative form (Classical Lax-Friedrichs),  

( )1
1 1 1 2 1 2

1
2 2

n n n
i i i i i

tU U U F F
x

+
− + + −

∆  = + − − ∆
 

 ( ) ( ) ( ) ( )( )1 2 1 1 1
1, .

2 2
n n n n n n

i i i j j j j
xF F U U U U f U f U
t+ + + +

∆
= = − + +

∆
     (13) 

Details of the procedures for constructing the method can be found in [8] [9] 
[14]. 

3.2. Adams-Moulton Scheme 

When considering the source term, we need to solve an ordinary differential eq-
uation for each point of the spatial mesh. For this, without loss of generality, we 
adopt an Initial Value Problem (IVP), known as Cauchy problem, defined by:  

 
( )

( ) 0

d , ,
,d

0

x f t x t I
t

x x

 = ∈ ⊂

 =

�
                  (14) 

where :f I × →   is a known function and ( )x x t= , :x I → , the func-
tion to be found [19]. 

In the implicit two-point, second-order Adams-Moulton scheme, the ap-
proximate solution 1iξ +  is defined by  

 ( ) ( )1 1 1, , , 0, , 1.
2i i i i i i
h f t f t i Nξ ξ ξ ξ+ + + = + + = −  �          (15) 

This method is also known as the Implicit Trapezoidal Method. Note that in 
this method it is not possible to isolate 1iξ +  so that it is possible to obtain 1iξ +  
recursively (iterative), causing a linear system associated with the Equation (15), 
which must be solved to find the values iξ , 1, , 1i N= −� . The range of abso-
lute stability is given by ( ),0J = −∞ , [20]. 

An alternative to not having to solve the linear system is to use the prediction 
and correction technique. The technique consists of estimating 1iξ +  which is on 
the right side of Equation (15), through an explicit scheme and replacing it in 
the expression defining the implicit method. In this way, the predictor-corrector 
Adams-Moulton 2 Method whose prediction is performed by the Adams-Bash- 
forth 2 method is as follows,  

 
( ) ( )

( ) ( )

1 1

1 1

3 , ,
2 , 1, , 1.

, ,
2

pred i i i i i

i i i pred i i

h f t f t
i N

h f t f t

ξ ξ ξ ξ

ξ ξ ξ ξ

− −

+ +

  = + −  = −
  = + + 

�         (16) 

This procedure will cause the range of absolute stability to change ( )2,0J = − . 
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Thus, splitting the Balance Law (4) in the Conservation Law (8) and the Or-
dinary Differential Equation (9), applying the classical Lax-Friedrichs Scheme 
(13) in (4) and the Adams-Moulton Method (16) in (9), we are able to make 
numerical simulations to analysis the impact of ambient temperature under the 
water displacement dynamics describes by Saint-Venant equations. 

4. Simulations and Results 

In this section, three scenarios are performed, according to the following situa-
tions: Scenario 1 considers the Classical Saint-Venant equations, Equations (1) 
and (2) with bottom topography equal to zero and the initial condition for water 
level equal to a Gaussian function; Scenario 2 adopts a topography equal a 
hyperbolic tangent function and a constant initial level for water and Scenario 3 
take the complete system, that is, the Sain-Venant equation with energy balance 
including the thermal energy transferred from environmental to water. In this 
last scenario, the bottom topography is equal to Scenario 2 and the water level is 
equal to Scenario 1. 

All simulations have spatial domain computational given by [ ]50,300− , with 
350 1024x∆ = . For time discretization was taken 0.01t x∆ = ∆  in order to keep 

the numerical methods stable. 

4.1. Scenario 1 

Initially, the water level is described by  

 ( ) 2 8,0 0.2 e xh x −= +                        (17) 

whose initial velocity is zero. Also, in this case, the topography is ( ) 0z x = . In 
Figure 2, we plotted the initial water level by magenta color and performed its 
temporal evolution to 100tN = , 500, 1000, 2000 and 5000 interactions, represented 
by blue color.  
 

 
Figure 2. Initial condition (magenta color) and numerical solutions for classical Saint- 
Venant equations (blue color).  
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In Figure 2, the initial column water (magenta color) starts to be influenced 
by gravitational forces and its maximum point is diminished, making to waves 
that displace to opposite sides. Such behavior is expected and is in accordance 
with the literature, showing that the developed code itself is robust. 

4.2. Scenario 2 

In this scenario we have a bottom topography and an initial flat water level and 
such a description can be to represent a flood problem when we initially have 
immersed all bottom topography. The initial water suffer influences of the gra-
vitational forces and the geometry of bottom topography, making the system 
dynamic. 

For this example, it is necessary to include the hydrostatic equilibrium on to-
pography, Equation (6), otherwise, the gravitational forces will able to dig the 
water in topography and, it is not desirable at this moment. Such topography is 
taken  

 ( ) ( )0.1 0.1tanh 50 ,z x x= + −                  (18) 

and it is plotted in black color on the Figures 3-6. For this instance, the initial 
water level is ( ),0 0.2h x = .  

Figure 3 shows the interactions between 100tN = , 500 and 1000. Notice that, 
the gravitational forces attract the water to the bottom topography, creating a 
valley at 50x =  and moving the fluid in opposite directions. The hydrostatic 
equilibrium condition prevents water from penetrating into the ground. When we 
continue the simulation, it is noticed that, when pulling the fluid downwards, a 
ridge is formed to the right, which continues its movement until it leaves the spatial 
domain, leaving a small elevation of water at the bottom of the topography. This is  
 

 
Figure 3. Initial condition (magenta color) and numerical solutions for classical Saint- 
Venant equations (blue color).  
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Figure 4. Initial condition (magenta color) and numerical solutions for classical Saint- 
Venant equations (blue color).  
 

 
Figure 5. Initial condition (magenta color) and numerical solutions for complete Saint- 
Venant equations without global warming (blue color).  
 
seen in Figure 4, which contains the interactions 100tN = , 500, 1000, 2000, 
3000, 5000, 10,000, 20,000 and 30,000. 

4.3. Scenario 3 

This scenario considers the Saint-Venant equations complete, that is, with terms 
involving thermal energy, System (4) with bottom topography and its hydrostat-
ic equilibrium condition, Equation (6). For initial water level and for topography, 
we adopt the non-zero functions of Scenarios 1 and 2, respectively. 

The realization of the temporal evolution of ocean waves in this scenario de-
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pends on the characterization of the medium where the fluid dynamics are in-
serted. In Section (2) we describe such a medium adopting the profile of the 
Earth’s Troposphere, whose temperature distribution in this medium is represented 
by the function ( ) 50ambT y T yβ= − .  

The history of an average ambient temperature of 297 K ( 24 CambT = ˚ ) is 
compatible with some regions of planet Earth located between the tropics of 
Cancer and Capricorn, and this region of the planet is the one that is more sus-
ceptible to the consequences of climate change [1] [7].  

If such a temperature is associated with an average that has not yet changed 
due to global warming, then the factor β  does not have the effect of ampli-
fying the temperature gradient and, therefore, we have 1β = . The values 

0.61k =  and 1α =  are characteristic of the water fluid [16] [18].  
Based on the assumptions described, a first simulation was performed. Figure 

5, 100tN = , 500, 1000 and 2000, shows an initial Gaussian wave (magenta color) 
influenced by the gravitational force, decreasing its peak and subdividing it into 
two oceanic waves, moving in opposite directions. As the dynamic develops, the 
contact between the water and the soil suffers a retreat, forming a valley in 

50x ≅ . The part of the initial wave that started to move to the right, reaches the 
region of the valley and tries to overcome it. 

The continuity of the dynamics is in Figure 6, 2000tN = , 3000, 4000 and 
10,000, where it is verified that the sea wave begins to expand through the valley 
(decreasing its depth), arrives close to the terrestrial level of 0.2y = , but cannot 
advance and it ends up being reflected to the left, not reaching the continent 
(represented by the topography of 0.2y = ).  

In this simulation, the potential energy of the falling initial wave is converted 
into the kinetic energy ocean wave at right, in addition to the thermal energy  
 

 
Figure 6. Numerical solutions for complete Saint-Venant equations without global warming 
(blue color).  
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transferred from the medium to the fluid displacement, did not generate wave 
dynamic capable of invading the continent.  

For a second simulation, when considering the effects of global warming, the 
ambient temperature is changed and consequently the temperature gradient of 
the system. In the reference [21], it is estimated that for every degree change in 
the average temperature of the environment, the temperature gradient is 
doubled. Thus, if we consider that global warming has raised the average tem-
perature of the environment we are considering by two degrees, we will have 

299 KambT =  and 4β =  (two units for each degree raised). 
Initially, we have the same wave (magenta color) from the previous simulation, 

Figure 7 for 100tN = , 500 and 1000. However, when developing the fluid dy-
namics in this new configuration of the medium, decreasing the peak and subdi-
viding it into two waves, a displacement to the right is noticed due to the extra 
gain of thermal energy, converted into kinetic energy.  

This way, the wave has enough energy to reach and overcome the valley, 
reaching and advancing over the continent in 0.2y = , see Figure 8, 1000tN = , 
2000, 3000, 4000 and 10,000. 

The results obtained evidence that the advance of water on the continent is 
due to the increase in the average temperature of the environment, arising from 
global warming. 

This reveals what can happen if established authorities do not take action to 
slow down climate change and global warming. Such effects can be verified in 
more detail in Figure 9, which is a zoom of Figure 8.  

Catastrophic implications can emerge with the advance of ocean waters over 
the continent. Coastal cities tend to disappear, forcing the displacement of pop-
ulations; natural nurseries of different species will be eliminated; flooding and 
destruction of food cultivation areas, among others. 

 

 
Figure 7. Initial condition in magenta color and numerical solutions in blue color for 
complete Saint-Venant equations with global warming.  
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Figure 8. Initial condition (magenta color) and numerical solutions for complete Saint- 
Venant equations with global warming (blue color).  

 

 
Figure 9. Numerical solutions for complete Saint-Venant equations with global warming 
(blue color).  

5. Conclusions 

Currently, the populations in different countries and continents are experiencing 
changes in temperature and climate patterns. These changes may be natural, 
however, since the 18th century human activities have been the main cause of 
climate change, mainly due to the burning of fossil fuels (such as coal, oil and 
gas), which produce gases that retain heat. As a consequence, increases in aver-
age ambient temperatures are taking place. 

The purpose of this research was to add thermal energy to the Saint-Venant 
equations, which model the displacement of a fluid under the action of gravita-
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tional force, in order to analyze the impact caused by global warming on the dy-
namics of the system. 

Scenario simulations were implemented via the Lax-Friedrichs method 
coupled with the two-stage Adams-Moulton method. The results obtained in 
scenarios 1 and 2 showed that the numerical methods are robust, which made it 
possible to determine stable numerical solutions. Scenario 3 considers a com-
plete system, with a description of the thermal energy capable of modeling the 
increase in temperature distribution in the environment. The transfer of thermal 
energy from the environment to the fluid can cause to advance of water towards 
the continent, in regions where this did not previously occur. 

In this sense, it is important that measures are taken by the authorities of the 
countries, in order to brake the increase in temperatures on the planet. 
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