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Abstract 
In this work, we study approximations of supercritical or suction vortices in 
tornadic flows and their contribution to tornadogenesis and tornado main-
tenance using self-avoiding walks on a cubic lattice. We extend the previous 
work on turbulence by A. Chorin and collaborators to approximate the statis-
tical equilibrium quantities of vortex filaments on a cubic lattice when both 
an energy and a statistical temperature are involved. Our results confirm that 
supercritical (smooth, “straight”) vortices have the highest average energy 
and correspond to negative temperatures in this model. The lowest-energy 
configurations are folded up and “balled up” to a great extent. The results 
support A. Chorin’s findings that, in the context of supercritical vortices in a 
tornadic flow, when such high-energy vortices stretch, they need to fold and 
transfer energy to the surrounding flow, contributing to tornado maintenance 
or leading to its genesis. The computations are performed using a Markov 
Chain Monte Carlo approach with a simple sampling algorithm using local 
transformations that allow the results to be reliable over a wide range of sta-
tistical temperatures, unlike the originally used pivot algorithm that only 
performs well near infinite temperatures. Efficient ways to compute entropy 
are discussed and show that a system with supercritical vortices will increase 
entropy by having these vortices fold and transfer their energy to the sur-
rounding flow. 
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1. Introduction 

During the formation stage of a tornado, long narrow vortices often appear 
spontaneously in the region of tornado formation, then fold up and dissipate. 
These vortices also appear in other stages of the tornado’s existence. An example 
of such vortices in a strong tornado is shown schematically in Figure 1 [1]. As 
indicated in the figure, such vortices are called suction vortices. These vortices 
are straight and narrow, locally concentrating a lot of kinetic energy. Their size 
is often below that detectable by a radar and even by mobile radars. They are 
transient and often fold up and dissipate within one complete revolution around 
the main tornadic flow. Evidence for them can be seen in tornado videos or in 
the damage surveys done after the tornado has passed. In these surveys, such 
vortices leave behind tracks, where grass in lawns or plants in farmers’ fields 
have been ripped from the ground, indicating their high energy density [2] (see 
Figure 2), sometimes followed by debris dropped along the end of the tracks, 
due to dissipation of the vortices. Such strong, narrow vortices have been ana-
lyzed in [3] as so-called supercritical vortices. Their formation is related to the 
breakdown in the cyclostrophic balance, where the pressure-gradient force do-
minates, and the vortex collapses to a narrow filament; as the vortex collapses, 
the energy density increases and the entropy density decreases. This mirrors the 
behavior of negative-temperature vortices studied by A. Chorin in his work on 
turbulence [4] [5] [6] [7] [8]. In these works, the negative-temperature vortices 
are straight and as they transfer energy to the surrounding flow, they fold up and 
dissipate. The similarity between the behavior of supercritical vortices studied in 
[3] and negative-temperature vortices studied by Chorin is striking and is one of 
the motivations for this paper. Our results will support and illustrate this phe-
nomenon as well.  

Recent progress in radar observations and numerical modeling of tornadoge-
nesis and maintenance has revealed the importance of small-scale vorticity’s 
contributions to development of the large-scale rotation. For example, Figure 11 
in the radar observations study [9] shows a stream of small-scale vortices-flow- 
ing into the region of a developing tornado. Similarly, Figure 5 and Figure 6 in 
the numerical modeling study [10] show rivers of vorticity forming in response 
to surges in outflow. Specifically, it is stated on p. 3044: “There are distinct rivers 
of cyclonic (and anticyclonic) shear vorticity that originate from the base of 
downdrafts. Near-ground tornado-like vortices are fed by such cyclonic ζ  riv-
ers during their genesis.” 

Another study references [9] [10] and the rivers of vorticity but argues for 
further study of the phenomenon [11]: “other examples may be available but are 
not widely recognized. However, these rivers are yet to be seen definitively in  
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Figure 1. A visualization of a flow in a strong tornado with multiple strong suction vor-
tices due to Tetsuya “Ted” Fujita [1]. 
 

 

Figure 2. Tracks left in corn fields showing vortices spiraling into tornadoes and then 
dissipating. Locations and dates of occurrences are: (a) Decatur, Illinois tornado, April 3, 
1974; (b) Magnet, Nebraska tornado, May 6, 1975; (c) Homer Lake, Indiana tornado, 
April 3, 1974. © American Meteorological Society [2]. 
 
multiple-Doppler-radar analyses, to the best of the authors’ knowledge, perhaps 
because they are too small scale to be detected (owing to the inherent smoothing 
during the analysis procedure) or because they occur only over a very shallow 
layer near the ground, where data collection can be difficult.” 

The recent paper [12] considers the supercell environment, it discusses physi-
cal processes producing horizontal vorticity and mechanisms for re-orienting it 
into the vertical, leading to tornadogenesis. The paper suggests ways of using 
output from a numerical simulation to test for the origins of vorticity in the si-
mulation, thus giving insight into the process of tornadogenesis. 

Many storm chaser videos show small-scale vortices entering tornadoes. Ex-
amples of small-scale vortices can be seen, for example, in the video in [13] be-
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tween the times of 2:20 and 2:50 minutes. Small vortices entering the tornado 
can be seen at two separate instances in the video in [14], one at 0:35 to 0:40, and 
one at 0:52 to 2:14 minutes. One also sees the filament-like vortices folding up 
and dissipating as would be expected for negative-temperature filament-like vor-
tices; this point is one of the main observations of this study. 

Supercritical or suction vortices also play an important role in tornadogenesis 
and tornado maintenance. A deeper discussion of this idea appears in [15] [16] 
and numerical evidence is provided in the state-of-the-art simulation [17]. A 
snapshot of the simulated dynamical behavior of these vortices appears in Fig-
ure 3, in which intense, narrow, vertical vortices to the right of the developing or 
existing tornado move into the region where the tornado is forming or has 
formed. In the simulation, these vortices eventually fold and dissipate and trans-
fer their energy to the surrounding flow. The physical existence of several  
 

 

Figure 3. A computer-simulated time evolution of a tornadic storm in which vertical vorticity is provided to the tornado by in-
tense, narrow, vertical vortices moving into it [17]. Those vortices then fold up, transfer their energies to the larger tornadic flow 
and dissipate. Physical times shown are (a) t = 5470 s, (b) t = 5706 s, (c) t = 6580 s, and (d) t = 9120 s. © American Meteorological 
Society [17]. 
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intense multiple vortices within the larger flow is revealed by the radar data of 
the May 31, 2013, El Reno, OK tornado obtained by a Doppler on Wheels mo-
bile radar [18]. Analysis and discussion of such smaller, violent vortices within a 
large tornadic flow is provided in [19]. Finally, a whole hierarchy of vortices 
within vortices is discussed in [20].  

Energy and entropy serve as fundamental descriptors of any thermodynamic 
system with applications in physics, atmospheric science, biochemistry, bio-
physics, and more. A recent example, reaching as far as DNA genetic mutations, 
is [21]. Motivated by Chorin’s results, our goal is to reliably compute the energy 
and entropy of vortex filaments on a cubic lattice and use this knowledge in the 
context of supercritical suction vortices and their behavior. To this extent, we 
employ the model developed in [4] [5] [6] [7] [8], in which a vortex filament is 
modeled as a self-avoiding walk (SAW) on a cubic lattice and its energy is readi-
ly computed. This model was further extended to vortex structures with Brow-
nian cores and fractal cross sections [22] and to Brownian semimartingales [23]. 
Another model rigorously studies an ensemble of nearly parallel vortices, how-
ever, under the restriction that the vortex filaments cannot fold [24], a restric-
tion that is detrimental to our consideration of vortices that fold up and dissipate. 
The cubic lattice SAW model used by Chorin has yielded results in a narrow 
range of statistical temperatures due to the employment of a Markov chain 
Monte Carlo (MCMC) algorithm (the pivot algorithm [25] [26]) that is well 
suited for polymers (infinite temperature or maximum entropy case), but fails to 
deliver reliable results when this is not the case. We utilize a more flexible algo-
rithm that alleviates most of the problems experienced by the pivot algorithm. 
This algorithm allows us to compute equilibrium average energies that can be 
validated when exact values are known, and at the moment we do not have any 
indication that the results are significantly off in general. Having computed 
energies that appear reliable, we also propose an efficient way to compute the 
entropy of the system whose accuracy is mainly affected by how accurately the 
average energies have been computed. 

2. Background Mathematics 

Atmospheric flows can be modeled using Euler’s equations relating velocity, 
pressure, and mass density of the fluid and external body forces. Typical flows 
are usually incompressible, so the divergence of the velocity field is zero. Isen-
tropic flows are nearly incompressible when one of two scenarios occurs: either 
the flow speeds or the local changes in flow speeds along streamlines are small 
compared to the speed of sound in the medium [27]. A numerical study of in-
tense tornadic compressible and incompressible isentropic flows has shown little 
difference in results [28]. 

With u  being the fluid’s velocity, ρ  its mass density, p its pressure, and 
b  an external body force, all functions of position 3∈x   and time t∈ , the 
governing equations for an incompressible fluid flow are  
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1 , 0, 0,D Dp
Dt Dt

ρ
ρ

= − ∇ + ∇ ⋅ = =
u b u                (1) 

where ( )Df f f
Dt t

∂
= + ⋅∇
∂

u  denotes the material derivative of a scalar function f . 

When applied to a vector function, the operator 
D
Dt

 applies component wise. 

The vorticity field ξ  of the velocity field u  is given by the curl of u , i.e., 
= ∇×uξ . By applying curl to the first equation in (1) one can obtain an equa-

tion for ξ ,  

( ) 2
1 .p

t
ρ

ρ
∂

= ∇× × + ∇ ×∇ +∇×
∂

u bξ ξ  

In this equation, the first term in the right-hand side corresponds to the “ba-
rotropic” generation of vorticity (capturing the advection, stretching, and tilting 
of the vertical vorticity; see, e.g., [29]), while the second term corresponds to the 
“baroclinic” generation of vorticity, i.e., vorticity generation due to the misa-
lignment of the gradients of mass density and pressure. The body force is often 
conservative (e.g., due to gravity), in which case ∇× =b 0 . 

In what follows, we will focus on flows in which vorticity is supported on long, 
narrow vortex tubes embedded in a larger irrotational flow. These may be baroc-
linic or barotropic in origin, and may demonstrate themselves, e.g., as the suc-
tion vortices discussed earlier [2]. 

Given a sufficiently fast decaying vorticity field ( )xξ  in 3 , the system  
, 0= ∇× ∇ ⋅ =u uξ  

can be solved for the velocity field [30]  

( ) ( ) ( )
3 3

1 d .
4

′ ′−
′

′−π
×

= − ∫
x x x

u x x
x x

ξ
 

This expression is known as the Biot-Savart law. From this, one has an expres-
sion for the kinetic energy of the flow [31]  

( ) ( )

( ) ( ) ( ) ( ) ( )( ) ( )

3

3 3 3 3

21 d
2
1 1d d d d .

8 8

E ρ

ρ
ρ

× ×

=

′∇ × ⋅′⋅
′ ′

′− −π π
= +

′

∫

∫∫ ∫∫



   

x u x x

x u x xx x
x x x x x

x x x x
ξξ ξ

 

For a homogeneous fluid the second term above vanishes and if density is 
rescaled so that ( ) 1ρ ≡x , the expression for the kinetic energy becomes [8]  

( ) ( )
3 3

1 d d ,
8

E
×

′⋅
′=

′−π ∫∫
x x

x x
x x 

ξ ξ
                 (2) 

where we note, however, that the integral can be taken over supp supp×ξ ξ , so 
the integrals are evaluated over the vortex tubes only. 

Following Chorin’s work, we now define an approximation to the energy (2) 
for an infinitely thin vortex filament, a “vortex line”. The assumption is that the 
vortex tube can be approximately divided into N narrow circular cylinders iI  
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of equal length, for which we then have  

( ) ( )

( ) ( ) ( ) ( )

3 3

1 d d
8

1 1d d d d ,
8 8i j i iI I I I

i j i i

E
×

≠

π

π π

′⋅
′=

′−

′ ′⋅ ⋅
′ ′= +

′ ′− −

∫∫

∑∑ ∑∫ ∫ ∫ ∫

 

x x
x x

x x

x x x x
x x x x

x x x x

ξ ξ

ξ ξ ξ ξ
 

where the first term in the last expression corresponds to interactions of one of 
the cylinders with the others and is referred to as interaction or exchange energy, 
while the second term is referred to as self-energy and gives the contribution to 
the kinetic energy arising from interactions of nearby points along the vortex fi-
lament. In Chorin’s work, the self-energy term is neglected. For discussions of 
this term see, e.g., [5] [6] [7] [8]. 

Finally, for an infinitely thin vortex line, the exchange energy is approximated 
in the following way. Assume that the vortex consists of N linear segments iI  
of equal length, whose midpoints are denoted by iM . Since vorticity along a 
vortex line is parallel to it, let iξ  denote the “vorticity” vector on the segment 

iI , which is in the direction of iI  and has magnitude equal to the length of the 
segment iI . Then the exchange energy is approximated by  

1 .
8

i j

i j i i j

E
≠

⋅

−π
= ∑∑ M M

ξ ξ
                     (3) 

This scaling corresponds to the vortex having circulation equal to one [5] [6]. 
In the next section we will discuss the cubic lattice approximation, in which the 
individual segments iI  connect two nearest neighbors on a cubic lattice, so on-
ly angles of 90˚ and 180˚ between neighboring segments will be allowed. Notice 
that due to the dot products in (3) the largest contribution to the energy comes 
from nearby segments oriented in the same direction, smallest (negative) con-
tribution from nearby segments oriented in the opposite direction, and ortho-
gonal segments contribute zero to the energy. That is, the largest energy will 
correspond to straight vortices, while smallest energy will likely correspond to 
very folded up vortices. 

3. Vortex Filaments on a Cubic Lattice  

To simplify the set of all possible configurations of a line vortex in 3D, we only 
consider those constrained to a cubic lattice 3  with lattice constant one [4] [5] 
[6] [7] [8]. The vortex filament will then correspond to a self-avoiding random 
walk (SAW) on this lattice, a concept of great interest in the polymer and pro-
tein community (see, e.g., [32]). Even with this simplifying assumption, the 
problem of studying various vortex configurations is intractable exactly, since 
the number of all possible SAWs of N segments appears to grow exponentially as 
a function of N [33] [34] [35]. The exact enumeration of all possible configura-
tions has been achieved for only small values of N and the number has been in-
creasing slowly with time (N = 26 in 2000 [33] and N = 36 in 2011 [35]). In Ta-
ble 1 we show the number of SAWs of N steps on a cubic lattice for 1, ,9N =  , 36 
(all exact), and 1000 (an estimate based on a best-fit formula [35]).  
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Table 1. Number of SAWs on length N on a cubic lattice. The values for 36N ≤  are 
exact [35] and the value for 1000N =  is an estimate based on a best-fit curve [35]. 

N M, the number of SAWs of length N 

1 6 

2 30 

3 150 

4 726 

5 3534 

6 16,926 

7 81,390 

8 387,966 

9 1,853,886 

… … 

36 2,941,370,856,334,701,726,560,670 ≈ 2.9 × 1024 

1000 ≈1.5 × 10671 

 
In this paper we demonstrate an improvement of the computation of average 

energy and entropy compared to previous attempts, and thus fairly small values 
of N (≤1000) will be considered. These are small values compared to the com-
putational state of the art, however the numbers of distinct SAWs, M, are still 
large, ranging from 6710M ≈  for 100N =  to 67110M ≈  for 1000N =  [34] 
[35]. As such, a statistical approach to our problem is required and an appropri-
ate Monte Carlo technique with a suitable sampling procedure is usually em-
ployed. 

In the next sections we describe the relevant statistical mechanics and the al-
gorithm used to obtain accurate results. 

4. Statistical Mechanics Background  

We now briefly review relevant concepts from statistical mechanics. Given a 
positive integer N corresponding to the number of segments in a self-avoiding 
walk on a cubic lattice, we denote by M the total number of possible SAWs 
starting at the origin. We denote by ix , 1, ,i M=  , the possible SAWs, or vor-
tex configurations of length N. The vortex configurations ix  represent indi-
vidual states in the system { }: 1, ,N ix i M= =  . 

The energy of each configuration, a state energy, will be denoted by ( )i iE E x=  
with E defined in (3). As introduced in [6] [7] [8] and re-derived in [15] [16], the 
probability ip  that a system will be in state ix  is given by the Boltzmann 
probability distribution  

1

e , e ,
i

i
E M

E
i

i
p Z

Z

β
β

−
−

=

= =∑                      (4) 
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where Z is called the (canonical) partition function and 1

Bk T
β =  is sometimes  

referred to as “coldness” as it is proportional to the reciprocal of the (statistical) 
temperature, T. The Boltzmann constant, kB, will be assumed equal to 1 in sub-
sequent computations but we will use it in the general results in this section. 
Note that when 0β =  all states are equally likely and 1ip M=  for 1, ,i M=  . 
This is sometimes referred to as the polymeric case as equally likely configura-
tions are considered when modeling the behavior of polymers [32]. 

Notice that the relationship 1

Bk T
β =  can be also used to define the temper-

ature 1

B

T
k β

= . Consider β increasing from −∞ to +∞. When β increases from  

−∞ to 0, this corresponds to T decreasing from 0 to −∞; when β increases from 0 
to +∞, this corresponds to T decreasing from +∞ to 0. Put together, when one 
considers the temperature T, temperature first increases from 0T =  to 
T = +∞ ; considering the one-sided limits as 0β → , one can identify T = +∞  
with T = −∞  and simply write T = ∞ . Then temperature further increases as 
T changes from T = ∞  through negative values towards 0. Thus negative tem-
peratures are higher than positive temperatures in this sense. (This idea corres-
ponds to traversing a circle obtained by transforming the real number line into a 
circle by identifying +∞ and −∞, both for β and T; this identification is a special 
case of the Möbius transformation of the complex plane.) Another explanation 
for why negative temperatures are higher than positive ones is based on energy 
(and entropy) considerations. For further details, see [15] [16] [36]. 

Using the Boltzmann distribution (4), we can now define in a standard way 
the average of any function of the states i Nx ∈  for any finite β. For example, 
the average energy E  of the system N  at a given β (or temperature T) is 
given by  

1
.

M

i i
i

E p E
=

= ∑                           (5) 

One of the goals of this paper is to reliably approximate E  for any finite β, 
which would extend the results of Chorin (see, e.g., [6] [7] [8]) that appear relia-
ble only for a small interval of values of β containing zero. 

The Gibbs entropy of the system N  at a given β is given by  

1
log ,

M

B i i
i

S k p p
=

= − ∑                        (6) 

which can also be viewed as an average quantity, since one can write  

( )
1 1

log
M M

i B i i i
i i

S p k p p S
= =

= − =∑ ∑  

and view logi B iS k p= −  as an “entropy” of the state ix . Also note that if 
0β = , then, since 1ip M= , we have logBS k M= , which corresponds to 

Boltzmann’s definition of entropy. 
Taking a partial derivative of the logarithm of the partition function in (4) 
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with respect to β , we obtain  

1

log 1 e .i
M

E
i

i

Z E E
Z

β

β
−

=

∂
− = =

∂ ∑                    (7) 

Using (4), expression (6) can be written as  

( )
1

log log ,
M

i B i B B B
i

S p k E k Z k E k Zβ β
=

= + = +∑  

and differentiating it with respect to E  and using (7) gives the well-known 
result  

log 1 .B B B B
S Zk E k k k
E E E T

β ββ β
β

∂ ∂ ∂ ∂
= + + = =

∂ ∂ ∂ ∂
         (8) 

Finally, the Helmholtz free energy of the system is  

( )
1

log ,
M

i i B i
i

F E TS p E k T p
=

= − = +∑  

where, in view of (4) and the relationship between β and T, the term in paren-
theses equals logBk T Z− , i.e., a constant independent of i, and hence the ex-
pression for the Helmholtz free energy gives  

log for any 1, , .i B iF E TS E k T p i M= − = + =           (9) 

In particular, this means that the entropy (and also the Helmholtz free energy 
and the partition function) can be computed from β, E , iE , and ip  for any 
i provided these values are known since (9) can be rewritten as  

( )log for any 1, , .B i iS k E E p i Mβ β= − − =          (10) 

Equations (8) and (10) will be used later in Section 7, where we discuss ap-
proximating the entropy of the vortex filament system. 

5. The MCMC Algorithm  

In order to reliably compute various statistical quantities of interest, such as the 
average energy (5) or the entropy (6), one usually employs Markov chain Monte 
Carlo (MCMC) techniques, since the space N  of possible configurations of 
the vortex filament of length N is too large for direct enumerations. As men-
tioned in Section 3, complete enumerations have been achieved only for small 
values of N up to date [33] [35]. 

Here we briefly review the Metropolis-Hastings algorithm that we use in this 
work. We will consider two configurations, x and x’, their energies E and E’ giv-
en by (3), and their probabilities ( )P x  and ( )P x′  given by (4). We define 
( )|g x x′  to be the probability of proposing a transition from configuration x to 

configuration x’; ( )|A x x′  to be the probability of accepting a transition from x 
to x’; and ( )|P x x′  to be the probability of transitioning from x to x'. Note that 
( ) ( ) ( )| | |P x x A x x g x x′ ′ ′=  and that we can easily compute the ratio  
( ) ( ) ( )e eE E EP x P x β β′− − − ∆′ = =  since the difficult-to-compute partition function 

Z cancels out. 
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The detailed balance condition states that at equilibrium, each elementary 
process is in equilibrium with its reverse process, so we require  

( ) ( ) ( ) ( )| | .P x x P x P x x P x′ ′ ′=  

Since ( ) ( ) ( )| | |P x x A x x g x x′ ′ ′= , the detailed balance condition can be re-
written as  

( )
( )

( )
( )

( )
( )

( )
( )

| | |
e .

| | |
EA x x P x g x x g x x

A x x P x g x x g x x
β− ∆′ ′ ′ ′

= ⋅ = ⋅
′ ′ ′

 

A typical way to satisfy this condition is to choose  

( ) ( )
( )

|
| min 1,e ,

|
E g x x

A x x
g x x

β− ∆ ′  ′ = ⋅ ′  
                (11) 

and an alternative choice is [37]  

( ) ( )
( )

|1| .
|1 e E

g x x
A x x

g x xβ∆

′
′ = ⋅

′+
                 (12) 

Note that sometimes ( ) ( )| |g x x g x x′ ′≠  and the ratio of the proposal prob-
abilities has to be computed and retained in the algorithm. Either of the two ac-
ceptance probabilities (11) or (12) is then compared to a random number picked 
uniformly from ( )0,1  and based on the comparison the proposed transition is 
accepted or not. In this way one is able to generate a sequence of configurations 
{ }0 1, , Nx x ⊂   in which each consecutive configuration is either the one re-
sulting from an accepted transition, or a repeat of the previous configuration if 
the transition was rejected. The sequence can then be used to approximate the 
underlying probability distribution and its properties, and a good set of possible 
transitions is essential for fast and reliable performance. 

Another requirement for the MCMC algorithm to work properly in sampling 
the configuration space is that it is ergodic, i.e., it is able to propose a finite se-
quence of transitions from any configuration 1 Nx ⊂   to any other configura-
tion 2 Nx ⊂  . 

An algorithm for proposing new configurations from old ones used in the 
previous works [5] [6] [7] was the pivot algorithm designed to generate a se-
quence of “effectively independent” SAWs. It was proposed by Lal in 1969 [25] 
and analyzed and popularized by Madras and Sokal in 1988 [26]. In this algo-
rithm, given an N-step SAW, one randomly (usually uniformly) picks a point on 
it as a “pivot” and applies a transformation from the symmetry group of the cu-
bic lattice to the points subsequent to the pivot, using the pivot point as the ori-
gin. The part of the SAW before the pivot stay intact. If the resulting walk is 
self-avoiding, it is accepted as the new element of the sequence; otherwise it is 
rejected and the original walk is repeated in the sequence. The symmetry group 
of the cubic lattice is the octahedral group Oh with 48 elements including the 
identity. The algorithm is ergodic and satisfies the condition of detailed balance 
[26]. In the works that motivated our paper [5] [6] [7] only a small range of val-
ues of β near 0 (or large in absolute value temperatures T) was explored. 
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In the context of our problem the pivot algorithm will not perform well in 
many scenarios due to the involvement of the vortex filament energy (3) in (4) 
and (5) and due to the fact that the pivot transformations are not local—in any 
given step all of the points after the pivot are expected to change position leading 
to a possibly large change in the filament energy. As commented in [6], “For 
values of T  between 0.4 and 1 […], the results are unreliable but suggestive, 
and for 0.4T <  they are completely unreliable.” This leaves only a small range 
of β values close to 0 where the authors in [6] feel confident in their results and 
leaves much room for improvement. Therefore, different algorithms to compute 
the average energy (5) more accurately across the whole spectrum of tempera-
tures are needed. 

Various modifications of the pivot algorithm have been considered in the li-
terature for various reasons. For example, additional possible moves useful in 
modeling polymers are discussed in [32] and include “end flips,” “corner flips,” 
and “crankshaft moves.” Other modifications to speed up the algorithm have 
been described, for example, in [38] [39]. Algorithms for random walks with 
fixed endpoints have also been proposed [40]. More recently, other approaches 
have appeared in the polymer literature that aim to address finding the mini-
mum energy configurations. They include “pull moves” [41], “re-bridging moves” 
[42], and “connectivity changing moves” [43] and appear to work well in the 
context of modeling the folding of HP polymers [44] [45]. 

6. The Localized Transformations Algorithm 

The rigidity of the pivot algorithm for problems that involve energy and the 
Boltzmann distribution away from the polymeric case ( 0β =  or T = ∞ ) im-
plies that a different approach is needed. In cases with 0β   the transforma-
tions need to be local enough so that much of the shape of the current SAW re-
mains the same, thus preserving much of the SAWs energy, and only a small 
part should be changed. 

We have found that a very simple algorithm that we describe below works 
well for this problem across a wide spectrum of the values of β. The algorithm 
will use two types of transformations: one designed specifically to help with 
straightening out non-straight configurations at negative values of β, and one 
designed to help with compressing configurations in order to lower their energy 
at positive values of β. We next describe these two types of transformations and 
later we comment on their relationship to others existing in the literature. 

For large (in absolute value) negative values of β, the pivot algorithm is very 
unlikely to straighten out a configuration with all but one segment in one direc-
tion (or similar, more complicated configurations), since in order to remove the 
“kink,” the whole part after the kink has to be temporarily transformed as well, 
resulting in a significant change in energy. An easy solution is to simply modify 
the one non-aligned segment while keeping the directions of the other segments 
the same. This still modifies the positions of the points after the kink, but it re-
sults in a small change in the filament energy because the relative positions of 
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the points stay the same. We generalize this idea to the following algorithm for 
an N-step SAW:  

First Reconstruction Algorithm: 
1) Randomly select a number n_steps between 1 and N of consecutive steps to 

be modified. 
2) Randomly select a subwalk of length n_steps to be modified. 
3) Randomly reconstruct the selected subwalk. 
4) Connect the reconstructed subwalk to the remaining one or two pieces by 

translation.  
This algorithm is clearly ergodic since the reconstruction can be done on the 

whole SAW. Inverses of transformations are included and selected with equal 
probabilities, so the algorithm satisfies the detailed balance condition as well 
when the usual Monte Carlo acceptance probability is used. Practical considera-
tions here include the choice of probability distributions in steps 1) and 2) (we 
used an exponential distribution in 1) to emphasize shorter reconstructions and 
a uniform distribution in step 2) and how much care should go into step 3) (e.g., 
random reconstruction vs. constructing a true SAW; we used a random recon-
struction). It is easy to see that the configurations with one misaligned segment 
are easy to transform into a straight configuration with little energy change. 

For large positive values of β, the filament configurations are expected to have 
small energy and be folded up and “balled up” to some degree in order to lower 
their energy. The first reconstruction algorithm is not an ideal candidate here 
due to the fact that the part of the filament after the reconstructed subwalk is 
likely to be translated during the reconnection, likely leading to self-intersections 
of already balled up configurations. Motivated by transformations proposed for 
configurations with fixed endpoints [40], we propose a second reconstruction 
algorithm that reconstructs a subwalk while keeping its endpoints fixed:  

Second Reconstruction Algorithm: 
1) Choose a number K between 2 and N for maximum number of allowed re-

constructed steps. 
2) Randomly select a number n_steps between 2 and K of consecutive steps to 

be modified. 
3) Randomly select a subwalk of length n_steps to be modified. 
4) Permute the selected steps to generate a new subwalk. 
5) Connect the reconstructed subwalk to the remaining one or two pieces.  
Combining the two reconstruction algorithms results in an algorithm that is 

ergodic due to the ergodicity of the first algorithm. The second algorithm also 
clearly satisfies the detailed balance condition. Practical considerations here in-
clude the following. The number K can be chosen arbitrarily, but we found that 

2 3K N≈  not only roughly corresponds to the number of surface points in a 
perfectly “balled up” configuration, it also appears to lead to reasonably small 
minimum energy values. For the probability distributions in 1) and 2), we again 
used an exponential and a uniform distribution, respectively. The permutation 
in 3) could be a random permutation; we found that choosing a (uniformly) 
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random cyclic permutation led to good results. In general, even though we never 
attempted to directly compute minimum energies, we found that our lowest- 
energy configurations in the range 100 100β− ≤ ≤  had energies below or 
within a fraction of a percent of the predicted minimum values as shown in Sec-
tion 7.5. 

We note that the first algorithm includes many of the standard simple trans-
formations mentioned earlier, like the end flips, corner flips, and crankshaft 
moves. Some of the pull moves from [41] designed to find minimum-energy 
configurations are included in the first algorithm as well. Transformations that 
change the length of the SAW, such as those in the BFACF algorithm [46] [47], 
are not suitable for our problem and are not part of this algorithm. For the same 
reason, the transformations of the join-and-cut algorithm [48] are not included 
either. This algorithm does not include any of the re-bridging moves [42] used 
in the modeling of HP polymer folding [44] [45]. 

It is worth pointing out that an alternative approach to our work exists and 
consists in approximating the density of states using Wang-Landau sampling 
[49], as done, for example, in [44] [45]. Such an approach, if successful in the 
context of our problem, would then allow for the computation of average ener-
gies across the whole temperature spectrum while avoiding the possibility of be-
ing “trapped” in some states due to the energy considerations. The utility of this 
approach is unclear in our case with an almost continuous energy spectrum, 
since in the context of HP polymers there are only a small number of energy le-
vels to be explored. We hope to investigate this approach in the future and 
compare to our current results. 

7. Numerical Results 

In this section we present numerical results for the computation of the average 
energy E  and the entropy S as a function of the length of the vortex filament, 
N, and the inverse temperature, β. These results extend the results presented in 
[6] [7] [8] (and the references within) to cover a much broader range of values of 
β than done previously. One of the goals is to demonstrate the improved quality 
of the results, not to extend them to the largest possible lengths of the filaments. 
Thus our results extend only up to 1000N = , but the range of values of β, for 
which we believe our results are reliable, is significantly extended compared to [6] 
[7] [8]. 

In the individual subsections we present and discuss the validation of the al-
gorithm in cases where the exact results are known, results for the average ener-
gy (5) for various lengths of the filaments, we also discuss and compute the en-
tropy of the system, and we present some observations related to the minimum 
energy configurations, even though that is not the main focus of this paper. 

7.1. Validation of the Algorithm 

Without knowing the exact values of the average energy (5), it is impossible to 
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assess the accuracy of the computed results. Due to the growth rate of the num-
ber of SAWs as a function of the number of steps N (see Table 1), it is only rea-
listic to compare computed results to exact values for small values of N. To this 
end we completely enumerated all SAWs for 3, ,9N =   and obtained exact 
values of E  for various values of 100 100β− ≤ ≤ . 

To demonstrate the capabilities of the MCMC algorithm, we perform the fol-
lowing test. Given N and β, start with a straight configuration but first perform 
10N iterations with 0β =  to get away from it. Next, first perform 100,000 ite-
rations with the given β to forget history and then perform 200,000 averaging 
iterations to approximate E  for that β. Repeat with various values of β in the 
interval of interest. The computed results, together with the exact values, are 
shown in Figure 4. The computed approximations of E  for each integer β 
are shown as dots, and the exact values, computed with increments 0.1β∆ = , 
are shown as curves. Notice how the computed results agree well with the exact 
values, showing that the algorithm is flexible enough to handle both positive and 
negative values of β. We note that the pivot algorithm will not recover the 
straight configurations for N = 7, 8, and 9 (not shown here) even with 300,000 
iterations, and there are also signs of struggle to approximate well the lowest- 
energy configurations (seen in the bottom left part of the plot).  

7.2. Average Energy Computations for 100, ,1000N =   

In this section, we present the numerical results for computing the average energy, 
E , given in (5), using the proposed algorithm with localized transformations 

that comprises of the first and second reconstruction algorithms described in the 
previous section. 

The implementation details are as follows. As in [6], our Monte Carlo simula-
tions are started from straight filaments of N steps, which, for a given N, are also 
the largest-energy configurations with energy 
 

 

Figure 4. Results for the average energy E  for filaments of lengths 3, ,9N =  . 

Computed results (dots) overlay exact values (solid curve). 
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In light of (4), the straight configurations are the most likely configurations 
for negative temperatures ( 0β < ), and we expect maxE E≈  when β is large 
(in absolute value) negative. Therefore, we start our computation at one such β 
( first 20β = −  for the results below) and compute an approximation of the aver-
age energy for this value of β using the straight configuration as a starting point. 
We then increase β by a small increment ( 0.5β∆ =  in the results below), use 
the last configuration from the computation with the previous value of β as a 
starting point, and compute E  with the new β. We continue this way until a 
stopping value of β has been achieved ( last 100β =  in the results below). 

The average energy for each value of β is computed by first allowing for a 
number of “burn-in” transformations to forget recent history and then by per-
forming a different number of averaging transformations to compute E . The 
numbers of iterations depend on N and β and vary between 10,000 and 55,000 
for burn-in and between 500,000 and 1,500,000 for averaging. 

During each averaging iteration, either the first or the second reconstruction 
algorithm is selected randomly with probability 1/2, which could conceivably be 
modified based on the value of β. For the first reconstruction algorithm a ratio 

( ]1 0,1r ∈  is passed in and a geometric probability distribution with the ratio 1r  
is constructed for the numbers 1 through N. (If 1 1r = , the distribution is uni-
form.) A random number n_steps is drawn from the set { }1, , N  according to 
this probability distribution. Clearly, for 1 1r <  it is more likely to reconstruct 
shorter subwalks than longer ones. Finally, a starting point of the subwalk to be 
reconstructed is chosen randomly uniformly from possible candidates. For the 
second reconstruction algorithm, a similar process is followed. With a ratio 

( ]2 0,1r ∈ , first a geometric probability distribution with the ratio 2r  is con-
structed for the numbers 2 through K, where K is the integer nearest to N2/3. 
Then a random number n_steps is drawn from the set { }2, , K  according to 
this probability distribution. Finally, a starting point of the subwalk to be recon-
structed is chosen randomly uniformly from possible candidates. At this point, a 
reconstruction of the subwalk is performed according to steps 3) - 4) in the rele-
vant reconstruction algorithm and the new filament is tested for self-avoidance 
and for acceptance in the MCMC algorithm. If it is self-avoiding and accepted 
using the Boltzmann probability criterion, the newly constructed filament be-
comes the new filament in the Markov chain; otherwise the current one is re-
peated. 

In Figure 5 we show the computed results with 100N =  through 1000N = . 
We note that in this and subsequent figures β intentionally runs from positive 
values on the left to negative values on the right so that temperature, ( )1 BT k β= , 
increases from left to right. For each value of N, the computation was repeated 
six times and averaged results are graphed. For each N, the average energy in-
creases with temperature and, as expected, it levels off at its maximum value  
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Figure 5. Computed average energies (5) for 100, ,1000N =  . 
 
when 0β <  and is large in absolute value. Specifically, for [ )20, 10β ∈ − −  the 
average energies are near their maximum values (13), corresponding to, on av-
erage, straight configurations. As temperature is lowered in the computation, 
average energy decreases as expected in light of (4). Due to the finite lattice 
spacing, for each N there is a minimum energy a filament of N steps can achieve, 
so it is not surprising that the average energies level off as β →∞ . This is 
demonstrated in Figure 5 and its zoomed-in version in Figure 6. We do not 
have an explicit expression for the minimum energy similar to (13), but we pro-
vide some insights in Section 7.5. Notice that from (13) the maximum energies 
grow like logN N , which is illustrated in Figure 6, but the computed results 
suggest a linear decay in the minimum energies. In Figure 6 we also display er-
ror bars for one standard error of the averaged results to illustrate that, not sur-
prisingly, there is more variability in the computed results closer to the infinite 
temperatures, but very little variability for β large positive. The same is true for β 
large negative, but that observation is trivial and hence not displayed here. 

An important point to be emphasized here is that the vortices start folding 
when β (and the temperature) is still negative. Note first that for 0β <  the 
straight configuration has the largest probability (4) of occurring, but as β ap-
proaches 0, the probability density is becoming more and more uniform. There-
fore, the average energy decreases as seen in Figure 5 and a typical configuration 
with energy near the average value is not straight. To quantify such configura-
tions, one can imagine fitting them into a smallest possible rectangular prism on 
the cubic lattice and measuring its longest dimension. This number will be be-
tween roughly N1/3 and N for a filament of length N, or, when expressed relative 
to the maximal length, between N−2/3 and 1. In Figure 7 we display these relative 
longest dimensions for 100N =  and 200N =  over the range 12 0β− ≤ ≤ .  
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Figure 6. Same results as in Figure 5 but displayed only for 0β >  and with one-stan- 
dard-error for the averaged results. 
 

 

Figure 7. Illustration of the folding of the vortex as (negative) β approaches 0, displayed as a fraction of the maximal length. 
Means of 6 configurations near the mean energy are displayed together with ±1 standard deviation. 

 
Each displayed result is a mean of 6 configurations that are within 1% of the 
mean energy for each β. The error bars show ±1 standard deviation of the 6 re-
sults. We can see how the average lengths of the filaments decrease as 0β −→ , 
corresponding to the folding of the filaments.  

7.3. Entropy Approximations 

In Chorin’s work [6] [8], entropy of the system at various temperatures is esti-
mated using an algorithm based on an earlier work by Meirovitch [50]. The idea 
is to enumerate all possible very short SAWs (150 SAWs of length 3 are used in 
[6]) and then use their relative frequencies in a Monte Carlo run to approximate 
the probabilities needed to evaluate an entropy expression similar to (6). A result 
for entropy per unit length of the ensemble of vortex filaments, S/N, as a func-
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tion of 1.5 2.5β− ≤ ≤ , is shown in Figure 8, where 351N =  is used (repro-
duced from [6]). It is observed that “S has a maximum at T = ∞  ( 0β = ), as 
expected. The slope of S is much smaller on the positive T side than on the nega-
tive T side, as can be expected from the larger values of E for 0T <  and from 
the relation 1T S E− = ∂ ∂ . Further, note that S/N varies little with N in the range 
where the calculation can be trusted, and thus S increases with N. The larger the 
filament, the larger its entropy.” 

In order to validate these results and extend them to a larger range of β, we 
used as benchmarks the cases for which we had the complete enumerations 
( 3, ,9N =  ). The exact entropies for these cases are shown in Figure 9. As dis-
cussed in Section 4, for cases where exact enumeration is possible the entropy 
for 0β =  is easy to evaluate as logS M= , where M is the number of SAWs of 
a given length. Self-avoiding walks on a cubic lattice have been enumerated for 
lengths up to 36N =  [35], and this data can be used to construct approximate 
expressions M  for M as a function of N for 36N > . While the reference [35] 
is missing one parameter value ( 1c ), its arXiv.org version [51] provides a slightly 
different, but completely described formula to approximate M. For completeness, 
we reproduce it here,  

( )( )1 1 ,NNM M A N cN k Nθ αµ −∆ −≈ = + + −             (14) 

where 1.1951966888A = , 4.6840041570µ = , 0.1597395125θ = ,  
0.1227360755c = , 1.4315024046∆ = , 0.0619076482k = − , and  
1.8985141134α = . We note that the relative errors resulting from this formula 

for 14, ,36N =   are all below 2 × 10−6; this results in absolute errors for the 
entropy, log logM M− , to be of the same order. Consequently, the resulting 
approximation 
 

 

Figure 8. The computational results of entropy of a vortex filament per unit length, S/N, 
as a function of β for a filament of length 351N =  [6] [8]. Figure reproduced from [6]. 
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Figure 9. Exact values of entropy per unit length for 3, ,9N =  . The curve ordering is 
best seen for large negative β values where S/N decreases as N increases. 
 

( ) ( )log logS N M N M N= ≈                    (15) 

is expected to be quite good and perhaps improve for longer filaments due to the 
N in the denominator.  

Using (14) and (15) to approximate S/N for 351N = , we obtain  
1.54733S N ≈ , which appears significantly below the maximum value of about 

1.67 estimated from Figure 8. In fact, as N →∞ , the quantity ( )log M N  
eventually monotonically decreases and approaches log 1.54415µ ≈ . Note that 
even for 9N =  we have ( )log1853886 9 1.60364S N = ≈ . Clearly, a better 
algorithm for computing entropy than the one used in [6] is needed. 

Improvements of the Meirovitch algorithm have appeared in the literature 
more recently and have been applied to magnetic systems, polymers, peptides, 
and liquids (see, e.g., [52] [53] [54] and references within). A possible promising 
approach would be to use a variant named the hypothetical scanning Monte 
Carlo (HSMC) method, which approximates the probability, ( )p x , of a given 
filament configuration, x, of length N in the configuration space N  at a given 
β . We provide here a brief sketch of the algorithm, which is described more 
fully in the references. 

The approximation to ( )p x , denoted by ( )HSMCp x , is computed as a prod-
uct of conditional “transition” probabilities that the kth step of the filament is in 
the given position as in x, given that the previous 1k −  steps are fixed as in x. 
To generate these probabilities, we would keep the first 1k −  steps fixed and 
apply our algorithm as used to compute E  by allowing reconstructions only 
between the nodes k through N. The transition probability would then be ap-
proximated by the ratio of the filaments that agree with the kth step of x versus 
all filaments generated in the Monte Carlo run. Clearly, this process would be 
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computationally intensive, since 1N −  Monte Carlo runs (progressively shorter 
and shorter) would have to be performed to compute a single ( )HSMCp x . On 
the other hand, ( )p x  could be approximated arbitrarily closely by allowing 
sufficiently long simulations if a good sampling algorithm is used. 

With the computed ( )HSMCp x  the Helmholtz free energy, F, could be ap-
proximated via (9),  

( ) ( )HSMC HSMC1 log ,F F E x p x
β

≈ = +  

where ( )E x  is the easily computed energy of the filament x. Subsequently, the 
entropy could be approximated through the relationship F E TS= −  if the 
average energy has been computed, as shown in (10),  

( ) ( ) ( )( )HSMC HSMC HSMClog .B BS S k E F k E E x p xβ β β≈ = − = − −  

It follows that the absolute error in the entropy computation, HSMCS S− , 
will be affected both by the accuracy of the HSMC computation of ( )HSMCp x  
as well as the accuracy of the computed E ; more precisely, it will be roughly 
bounded by the sum of the relative error in approximating ( )p x  and β  
times the absolute error in approximating E  (all multiplied by Bk ). 

Note that to compute the entropy of the system of filaments of length N for 
many possible values of β (such as shown in Figure 9 for example) requires 

1N −  Monte Carlo simulations for each value of β and thus a significant 
amount of CPU time. We have performed such computations for 3, ,9N =   
for validation purposes, but since in the next section we will present an alterna-
tive, and much more efficient, approach, we will not present the results here. 

7.4. Entropy Computations Based on Energy Values 

A very efficient alternative to computing the entropy can be used if good ap-
proximations to E  have been computed across an interval of β values and a 
single value for entropy is known. Recall the relationship (8), restated here for 
convenience:  

.B
S k
E

β∂
=

∂
                         (16) 

If the β interval is partitioned with values iβ , the corresponding (average) 
energies are denoted by iE , and the (sought) entropies by iS , then, provided S 
is smooth enough, (16) can be discretized as  

( )3 3
1

3
1

1 2 48
ii i

B i
i i E e

S S Sk
E E E

β
β+

+
+

=

∆− ∂
= +

− ∂


 

for some e  between iE  and 1iE + , where ( )11 2 2i i iβ β β+ += +  and  

1i i iβ β β+∆ = − . This then leads to the following Euler-like method for approx-
imating the entropy,  

( )1 21 1 ,i i B i i iS S k E Eβ+ + += + −                   (17) 
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provided at least one of the values iS  is known to start the recursion. Since, as 
discussed above, the entropy when 0β =  can be computed for small N or ap-
proximated for larger N by logBk M  using (14), a starting value is readily 
available. Alternatively, one can use the HSMC algorithm to approximate the 
entropy for any one value of β, for example 0β = . 

To validate this approach, we first apply it to the cases with 3, ,9N =   and 
with exact (average) energy values provided at equidistant values of β with 

0.5β∆ = . The results are shown in Figure 10. The exact value of entropy at 
0β =  is taken as log M  with M from Table 1. The Euler algorithm (17) is 

applied to compute the remaining entropy values. As shown in the figure, the 
computed values (large dots) agree well with the exact values (underlying 
curves). We also see that even after 100 steps in each direction away from 

0β =  the agreement is excellent.  
For 100,200, ,1000N =  , we use (14) and (15) to get an approximation for 

the entropy at 0β = , and apply algorithm (17) with the precomputed average 
energy values. For the values of E  shown in Figure 5, the results for the 
scaled entropy, S/N, are shown in Figure 11. Here, 0.5β∆ =  as in the valida-
tion case shown in Figure 10. As expected, the scaled entropy has a maximum 
value when 0β =  and the rate of increase for 0β >  is smaller (in absolute 
value) than the rate of decrease for 0β < . Notice how the proximity of the ten 
curves suggests that entropy S increases linearly with the length of the filament, 
N. We note that as β → −∞ , we have log6S →  since for each N there are six 
straight configurations with highest probability, each probability approaching 
1/6. Therefore, for large enough (in absolute value) negative values of β we have 
lim 0N S N→∞ =  as illustrated in Figure 11. On the other side, as β →∞ , the  
 

 

Figure 10. Approximate values of entropy per unit length for 3, ,9N =   computed 
using the algorithm (17), exact energy values, and 0.5β∆ = . Approximate values (large 
dots) overlay exact values (curves). 
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Figure 11. Approximate values of entropy per unit length for 100, ,1000N =   com-
puted using the algorithm (17), values of E  from the continuation LT algorithm, and 

0.5β∆ = . 
 
fact that S/N appears to be approaching a finite limit suggests that the number of 
energy minimizing configurations grows exponentially as N →∞  or that an 
exponentially growing number of configurations can be found in the vicinity of 
the minimum-energy configurations.  

To make a comparison to the results in [6] and shown in Figure 8, in Figure 
12 we show a zoomed-in version of the computed entropies using an interval 
similar to that in Figure 8. Notice that qualitatively the results are similar. The 
results in Figure 8 are for 351N = , so our results for this N would appear be-
tween the third and the fourth curves from the top. Quantitatively we notice dif-
ferences in both the slopes on the two sides of the maximum, as well as the 
maximum value itself.  

7.5. Minimum Energy Results 

Even though we do not have a direct comparison to exact values of the average 
energy (5) for large values of N, it appears that our algorithm allows for accurate 
approximation of the average energies for negative values of β and for values 
close to 0. How accurate the computed energies for large positive values of β are 
is less clear. It follows from (4) that for such values the probabilistically preferred 
configurations are those with lowest energies, but it is not clear what the lowest 
possible energy is. This is in contrast with the largest possible energy value that 
is clearly associated with the straight filament and its value is easily computable 
via (13). 

Intuitively, the energy expression (3) suggests that the lowest energy will be 
associated with a filament folded in such a way that individual segments line up 
close to each other in an antiparallel way, resulting in large negative contribu-
tions to the energy, and also in such a way that there are many right angles  
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Figure 12. Same as in Figure 11 but displayed on a shorter interval for comparison with 
Figure 8. 
 
which contribute zero energy. From a fluid mechanics point of view this is also 
intuitive since antiparallel vortices with the same circulation should contribute 
negligible kinetic energy away from the vortices. 

Even though this isn’t one of the goals of this paper, to assess how well our 
algorithm with localized transformations can reconstruct the low-energy confi-
gurations, we first computed the lowest possible energies for short filaments. We 
fully enumerated all filaments of lengths up to 18N = , and then based on these 
results we made simplifying assumptions to extend the results up to 21N = . 
These results (with 6 significant digits) are shown in Table 2.  

Looking at the limited set of data, it appears to exhibit a strong linear pattern. 
The best fit line has the equation ( ) ( )min ~ 0.604671 1.13186 4E N− + π  and 

2 0.996184R = . We then used our Monte Carlo algorithm and attempted to lo-
cate the minimum-energy configurations for larger values of N. Since these have 
not been validated by another approach, we will not report them here. These 
computed energies follow the linear trend and when using them to generate a 
best-fit line, we obtain the equation  

( )min
1~ 0.612418 1.19011

4
E N− +

π
                (18) 

with 2 0.998585R = . Using this slightly steeper line to generate predictions for 
the minimum energies for 100, ,1000N =  , we obtain the results in the col-
umn labeled “Predicted minE ” in Table 3. The next two columns of the table 
show the lowest energies encountered during the computations of the average 
energies for each N shown in Figure 5, together with their percentage propor-
tions with respect to the predicted minima. Notice how these values track the 
predictions in the second column of the table.  
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Table 2. Minimum energy values for filaments of length N on a cubic lattice (up to the 
factor of 4π). Results up to 18N =  are exact minima; results for 18N >  are obtained 
using an assumption based on the empirical observation that the endpoints of the fila-
ment are in the same unit square on the cubic lattice. 

N ( )min4 E Nπ×  

2 0 

3, 4 −1 

5 −2 

6 −2.29289 

7 −3.58579 

8 −3.45603 

9 −4.32627 

10 −4.86986 

11 −5.80649 

12 −5.86948 

13 −6.94895 

14 −7.14629 

15 −8.10289 

16 −8.37101 

17 −9.17890 

18 −9.63666 

19 −10.6340 

20 −10.9049 

21 −11.7208 

 
Table 3. Predicted minimum energy values minE  computed using (18) and currently 
found lowest energies encountered during the computations of the average energy values 
(5) for filaments of length N. A percentual comparison of each energy pair is in the last 
column. 

N Predicted minE  Best found minE  % of minE  

100 −4.77876 −4.97778 104.16 

200 −9.65223 −9.76269 101.14 

300 −14.5257 −14.8185 102.02 

400 −19.3992 −19.4220 100.12 

500 −24.2726 −24.4001 100.53 

600 −29.1461 −29.6006 101.56 

700 −34.0196 −34.2256 100.61 

800 −38.8930 −38.9554 100.16 

900 −43.7665 −43.7911 100.06 

1000 −48.6400 −48.3705 99.45 
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To illustrate the idea of low-energy configurations being folded and com-
pressed, we show in Figure 13 the lowest-energy configuration encountered 
during the simulation with 1000N = . Notice how this configuration is “com-
pressed” into a relatively small volume, suggesting that the true energy-mini- 
mizing configurations might also be volume minimizing in some sense. This is 
also the case for smaller values of N (not shown here). As the figure suggests, the 
shown configuration is likely not a minimum as there are clearly visible regions 
where more “folding” could occur, likely bringing the energy further down. As 
finding minimum configurations wasn’t the goal of this project, we didn’t pur-
sue it any further.  

It is also interesting to point out that all the lowest-energy configurations, 
whether exact or found approximately in our simulations, ended up with their 
endpoints in the same unit square on the cubic lattice as illustrated in Figure 13. 
This observation has not been reported in any of the related works [4] [5] [6] [7] 
[8] and it has several consequences. First, any of the quantities computed in [4] 
[5] [6] [7] [8] based on the distance between the endpoints of the filaments (de-
noted by 1,Nµ , 2,Nµ , µ , 1D , D , γ , etc. in the references) need to be com-
puted in a different way, and therefore we will not attempt to reproduce those 
results here. Second, it is likely that this observation is a general attribute of 
energy-minimizing configurations and worth proving analytically. We have not 
succeeded in this effort. Third, the numerical search for energy-minimizing con-
figurations may perhaps be done more efficiently using this observation. It limits 
the set of possible filament configurations that need to be considered, but it also 
offers a different point of view: consider such filaments as closed (also known as 
self-avoiding polygons) and then remove one or two segments, depending on the 
parity of N. We used the first idea to slightly expand the list of values in Table 2 
to obtain the results for 19 21N≤ ≤ , which were then matched by the results of  
 

 

Figure 13. Lowest-energy configuration found for 1000N = . Notice how the endpoints 
end up the shortest possible distance from each other and also how the SAW is “com-
pressed” into a relatively small volume. 
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our numerical algorithm. Although not presented here, some preliminary work 
has also been done on considering these configurations as subwalks for 
self-avoiding polygons. 

8. Conclusions 

In this paper we explore vortices using a statistical mechanical approach. We 
consider vortices in negative, infinite, and positive temperature states, a concept 
previously studied in [15] [16]. This novel approach gives explanations of the 
role played by suction or supercritical vortices in tornadogenesis by extending 
the investigations of A. Chorin and his collaborators [4] [5] [6] [7] [8] in under-
standing turbulence. Supercritical vortices are straight, narrow, and high-energy 
vortices that are transient in the tornadic flow, and they are approximated in the 
model by self-avoiding vortex filaments (or self-avoiding walks, SAWs) on a cu-
bic lattice. We were able to reliably compute equilibrium energies of such vor-
tices for a wide range of temperatures (or inverse temperatures), significantly 
extending the range in the previous works. Having approximated the energy 
values, we also proposed and utilized an efficient way to compute equilibrium 
entropy for all temperature values. 

Our results confirm that the supercritical vortices (modeled by straight fila-
ments) correspond to the highest kinetic energy of the flow and also correspond 
to negative temperatures in this model. The lowest-energy configurations are 
folded up and compressed to a great extent. From the point of view of the flow 
of energy, the negative-temperature, high-energy supercritical vortices are ex-
pected to lose (some of) their energy to the surrounding flow, which can now be 
understood as a natural process of increasing the entropy of the system. In [8] 
Chorin states: “The Euler and the Navier-Stokes equations cause filaments to 
stretch and fold, and N increases. The energy is an increasing function of both T 
and N; if energy is conserved and N increases T must decrease.” Consequently, 
in the context of supercritical vortices in a tornadic flow, when such high-energy 
vortices stretch, they need to fold. As can be seen in our results in Figure 5: with 
a fixed energy E  and at negative temperatures, longer vortices (larger N) are 
farther away from their maximum energies than shorter vortices, and thus 
farther away from straight configurations, which corresponds to more folds 
present along such vortices. This is in agreement with the results shown in Fig-
ure 7. 

Our results are not intended to simulate the dynamics of supercritical vortices, 
only their corresponding statistical equilibrium energies. From this point of view, 
the results show that a more folded vortex corresponds to a flow with lower ki-
netic energy. Hence, if a vortex of a fixed length folds, the flow would lose some 
of its kinetic energy, and this loss would have to be interpreted as a transfer of 
the energy to the surrounding flow. 

We also see that since entropy is highest for 0β =  (T = ±∞ ), a system con-
taining a supercritical vortex, which corresponds to high negative temperatures, 
would be naturally driven towards the state where 0β =  and thus lower the 
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energy associated with the vortex. This corresponds to the vortex folding and 
energy being transferred to the surrounding flow. 

In this work we proposed and utilized a simple algorithm for the computation 
of statistical equilibrium quantities on a cubic lattice when both an energy and a 
statistical temperature are involved. This was a consequence of the fact that the 
pivot algorithm used in [5] [6] [7] works well only for a small range of tempera-
tures near the polymeric case, but it fails in other situations. Specifically, non- 
straight configurations at large (in absolute value) negative values of β (for 
which the Boltzmann probability distribution (4) strongly favors high-energy, 
straight configurations) are extremely unlikely to straighten out in the pivot al-
gorithm MCMC simulation since intermediate steps with non-local transforma-
tions are required that greatly affect the energy. Similarly, when starting with a 
straight configuration (that can be viewed as corresponding to a large, in abso-
lute value, negative β), the same need for an intermediate transformation with a 
large energy change affects the results at smaller (in absolute value) values of β. 

At the other end of the inverse temperature spectrum, when the values of β 
are large positive, the Boltzmann probability distribution strongly favors lowest- 
energy configurations, very much folded up and compressed into a small volume. 
While the maximum-energy configurations are obviously the straight configura-
tions with their energies easily computed for any N, the exact minimum-energy 
configurations are not known to us, nor are the actual minimum energies. 
However, the pivot algorithm MCMC simulation struggles to get anywhere close 
to the hypothesized minimum values, thus begging for a different approach to 
the problem. Some possibilities might include a statistical approach studied, for 
example, in [55], or a quantum variational approach proposed in [56]. 

The algorithm utilized in this work seems to perform well for all possible 
temperature values. It uses two types of transformations: one designed specifi-
cally to help with straightening out non-straight configurations in order to in-
crease their energy at negative values of β, and one designed to help with com-
pressing configurations in order to lower their energy at positive values of β. The 
latter was motivated by previous work for generating self-avoiding walks with 
fixed endpoints [40]. The algorithm includes many transformations used in pre-
vious works, such as the end flips, corner flips, crankshaft moves, and some of 
the pull moves. Transformations used in the literature to find minimum-energy 
configurations, such as the pull moves [41] or the re-bridging moves [42], are 
not specifically included because the goal of our work is not energy minimiza-
tion, but their addition is worth exploring in a future work. A new discovery, not 
reported in any earlier work, is that the lowest-energy configurations have the 
initial and terminal points on the same unit square of the cubic lattice, hence re-
sembling a self-avoiding polygon (SAP). The meaning of this discovery is worth 
further exploration. 

Having reliably approximated the values of equilibrium energy, we also pro-
posed an efficient way to compute equilibrium entropy for all temperature val-
ues using an algorithm that mimics the midpoint Euler’s method for numerically 
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approximating solutions of differential equations in that it approximates the so-
lution to BS E k β∂ ∂ =  instead of computing the entropy directly. The algo-
rithm requires the knowledge of E  for a range of values of β, as well as an in-
itial value of the entropy S for one value of β. This value (for 0β = ) was readily 
estimated using existing works on approximate number of possible N-step 
self-avoiding walks on a cubic lattice. As far as we are aware, we have not seen 
this approach used in any previous work. 

In this work we have not addressed some of the other concepts approximated 
in the earlier works of Chorin et al. [4] [5] [6] [7] [8], such as the computation of 
the fractal dimensions, the Flory exponents, etc. Since these concepts were based 
on end-to-end distance in the vortex and since the endpoints tend to end up 
close to each other at lower temperatures, this approach does not seem reasona-
ble in this case. We hope to revisit this subject in a future work. The idea of us-
ing the Wang-Landau algorithm to approximate the density of states [49] might 
also be attempted in this case. It would be interesting to see how well this ap-
proach works in this setting, because the energy spectrum is much larger than in 
previous works, in which it might have a small, finite number of values (up to 83 
values in [45]). Finally, one might also consider the addition of the “pull moves” 
[41] or other moves designed to help with “tight,” folded configurations in order 
to see if their addition would result in any difference on the low-energy side of 
the temperature spectrum. 
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