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Abstract 
Many applications in fluid mechanics require the numerical solution of se-
quences of linear systems typically issued from finite element discretization of 
the Navier-Stokes equations. The resulting matrices then exhibit a saddle 
point structure. To achieve this task, a Newton-based root-finding algorithm 
is usually employed which in turn necessitates to solve a saddle point system 
at every Newton iteration. The involved linear systems being large scale and 
ill-conditioned, effective linear solvers must be implemented. Here, we de-
velop and test several methods for solving the saddle point systems, consi-
dering in particular the LU factorization, as direct approach, and the precon-
ditioned generalized minimal residual (GMRES) solver, an iterative ap-
proach. We apply the various solvers within the root-finding algorithm for 
Flow over backward facing step systems. The particularity of Flow over 
backward facing step system is an interesting case for studying the perfor-
mance and solution strategy of a turbulence model. In this case, the flow is 
subjected to a sudden increase of cross-sectional area, resulting in a separa-
tion of flow starting at the point of expansion, making the system of differen-
tial equations particularly stiff. We assess the performance of the direct and 
iterative solvers in terms of computational time, numbers of Newton itera-
tions and time steps. 
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1. Introduction 

Numerical solution of the Navier-Stokes equations is a crucial problem in engi-
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neering and physical sciences. We consider the solution of the incompressible 
Navier-Stokes equations governing the flow of viscous Newtonian fluids whose 
form reads  

2 dans
0 dans ,

u u u p f
u

− ∇ + ⋅∇ +∇ = Ω

∇ ⋅ = Ω

v                  (1) 

where u is the velocity vector, p the pressure and f the field of external forces. 
The constant 0v >  is the kinematic viscosity. The first equation models the 
conservation of momentum fluid. The second equation models the conservation 
of mass. We consider the problem posed on a domain Ω  of dimension 2 or 3 
with boundary conditions defined by  
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where n  denote normal vector and D N∂Ω = ∂Ω ∪Ω . We consider the follow-
ing notations  
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and Sobolev space is defined as follow: 
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We define solution and test spaces: 
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The variational formulation of such problems is the following (1) find  
( )1

Eu H∈ Ω  and ( )2p L∈ Ω  such that: 
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Let k ku u uδ= +  et k kp p pδ= + . The linearized form of (3) is given as fol-
low find 
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where  
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Ev H∀ ∈  et ( )2q L∀ ∈ Ω . We use finite dimensional spaces. Let 
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et ( )2
hQ L⊂ Ω , the discret form of (4) is defined as follow: find h

hu V∈  and 
hp Q∈   
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for all h
hv V∈  and h

hq Q∈ . 
Then we use (5) as in function of the basis hV  and hQ , to find the following 

saddle point system  
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where ( ) ( ) ( )1k k ku u u+∆ = − , ( ) ( ) ( )1k k kp p p+∆ = − , A denote the laplacian matrix  

, ,, : , , 1, , .i j i j i j uA a a i j nφ ψ
Ω

 = = ∇ ∇ =  ∫   

B denote the divergence matrix  

, ,, , 1, , ; 1, , .k j k j k j u pB b b j n k nψ φ
Ω

 = = − ⋅∇ = =  ∫    

D is the nonlinear matrix  
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where 1, , ui n=  , 1, , uj n=   et 1, , pk n=  . The right-hand side is defined as 
follow  
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For finding the root, the Newton method is often implemented. It is an itera-
tive algorithm consisting in assigning the root of the linearized equation at the 
current iterate to the next iterate to refine the solution until a convergence crite-
rion is satisfied. Implementing the Newton method requires evaluating the Jaco-
bian matrix. In the Newton method, algebraic linear systems (6) involving the 
Newton matrices must thus be solved at each iterate. We are thus interested in 
the following linear system:  

,X b=                            (7) 

where matrix N N×∈  is generally nonsymmetric and vector Nb∈  is the 
right-hand side at the current iterate. This linear system can be solved directly by 
decomposing the Newton matrix into the product of a lower triangular and up-
per triangular factor (LU factorization) and by solving the two resulting triangu-
lar systems through forward and backward substitutions. Whenever it is prohi-
bitively costly to assemble Newton matrix  , the linear system (1) is to be 
solved using a matrix free method. It is indeed possible to resort to iterative li-
near methods, for instance a Krylov subspace projection technique. Implement-
ing any iterative method in this context would require to repeatedly compute the 
application of the Newton matrix on the current iterate. Numerical differentia-
tion via the difference quotient being prone to truncation and round-off errors, 
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this inexact way of proceeding is usually referred to as the inexact Newton me-
thod. More general approximations of the Newton matrix can be used to per-
form the Newton iterations. Proceeding this way precisely amounts to imple-
menting a modified Newton method. This means that an approximate inverse of 
the Newton matrix is employed to indicate the tangent direction. The exact 
Newton method resorting to the exact Newton matrix  , as opposed to the in-
exact or modified Newton methods, is seldom used because assembling the exact 
Newton matrix at each iteration is computationally too expensive in most prac-
tical problems of interest. In this work, we investigate three alternative strategies 
to perform the Newton iterations based on the factorization of an approximate 
Newton matrix. 

The first strategy consists in implementing a modified Newton method and 
solving the linear systems (7) appearing at the Newton iterations using lower- 
upper factorization (LU). Is an efficient solver to perform the LU factorization of 
a sparse matrix and the triangular resolutions. Factoring the Newton matrix be-
ing computationally intensive, the task is done occasionally, not at every Newton 
iteration nor even time step. The previously updated Newton matrix is recycled 
several times. The Newton matrix is computed again when the number of New-
ton iterations to satisfy the converge criterion exceeds a certain parameter value. 
This is the default way of proceeding of the IFISS software [1] used in numerous 
incompressible flow simulation [2]. The second strategy is to solve the linear 
systems occurring during the Newton iterations using an iterative method. Any 
iterative solver consists in generating a sequence of improving approximate so-
lutions by repeatedly applying the current approximate onto the matrix until a 
convergence criterion is satisfied. It can possibly be implemented within both 
the modified and inexact Newton methods, depending on whether the matrix- 
vector product involves an approximate Newton matrix or is computed inexactly 
from a different quotient approximating the exact Newton matrix. We apply the 
generalized minimum residual (GMRES) method [3] [4] [5]. This iterative me-
thod is based on the standard Arnoldi algorithm [6], is a particular Krylov sub-
space projection method and is well adapted to nonsymmetric indefinite linear 
systems of equations, unlike the conjugate gradient method that rather deals 
with symmetric definite positive matrices. Krylov subspace projection methods 
are suited to solve linear systems in which the involved matrix is large and sparse. 
An important number of iterations are however necessary to obtain a reliable 
approximate of the solution when the condition number of the matrix is large. 
For ill-conditioned matrices, it is preferable to apply a preconditioner to accele-
rate the convergence of the associated GMRES method. In practice, the precon-
ditionning matrix   should be chosen close to the inverse of the Newton ma-
trix. Here, we consider the Newton matrix obtained at a previous time stem and 
compute its LU factorization [7] or an incomplete LU factorization [8]. Precon-
ditioning then amounts to applying the inverted matrix on the current approx-
imate by solving the two associated triangular linear systems by forward and 
backward substitutions. 
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The third strategy consists in solving the linear systems using a Schur ap-
proach. The goal is to take advantage of the particular structure of the saddle 
point matrix. N corresponds to the number of differential equations. The saddle 
point system to solve can be rewritten as follows:  

T

,

X b

x fA BX
y gB O

    
= =    

    
 



                      (8) 

where: ( ) n nA A D ×= + ∈v   is a sparse and nonsymmetric matrix, n mB ×∈  
maybe a rank deficient matrix with ( )rank B m< , m mD ×∈  is a dense matrix, 

nf ∈  and mg∈  are given vectors. Besides, we have N n m= +  with  
n m . The Schur approach consists in computing the Schur complement of the 
partitioned Newton matrix, in which the linear system associated with the large 
sparse block is handled by LU factorization. The paper is organized as follows. 
We next introduce the direct approach (Section 2.1), iterative approach (Section 
2.2) and Schur approach (Section 2.3) used for solving the saddle point systems 
arising within the modified or inexact Newton algorithms. We present simula-
tion results for the lid driven cavity and chanel flow systems obtained using the 
various solvers in Section 3. We finally conclude in Section 4 and give some 
recommendation on which approach to implement depending on the nature of 
the problem. 

2. Implementation of Methods 

With the exact Newton method, the saddle point matrix must be assembled at 
every iteration, which represents a costly task. A modified Newton method that 
is often computationally more efficient in practice consists in reusing the New-
ton matrix several times. This way of proceeding usually necessitates more 
Newton iterations, but these ones are performed faster. In all implementations of 
Newton methods, we allow at most 10 Newton iterations, but this limit can be 
changed by the user. The input constants used by the main solver (maximum 
number of Newton) as well as their meaning are described in detail in Ref [1]. 

2.1. Direct Approach 

Linear Equation (8) is solved directly by resorting to lower-upper factorization 
implemented [9]. Once the saddle point matrix has been factorized into LU= , 
the linear system (8) is solved via forward and backward substitution. This 
amounts to successively solving the two following triangular systems of equa-
tions  

,LY b=                           (9) 

.UX Y=                          (10) 

The solution Y of system (9) as obtained via forward substitution is to be in-
jected into system (10), yielding X via backward substitution. Solving the two 
triangular linear systems amounts to performing a modified Newton iteration 
whose cost is much smaller than that of factoring the Newton matrix. 
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2.2. Preconditioned Iterative Approach 

Iterative methods are ideally suited to solve high-dimensional sparse linear sys-
tems of equations of the form (7). Their advantage over direct methods is that 
they don’t require to factorize saddle point matrix   nor even evaluate it. This 
is the case for Krylov subspace projection methods and, among them the 
GMRES method implemented in the following. The only request is the ability to 
compute the application of the matrix on any vector v. In the present context, 
this task can be done without evaluating the saddle point matrix. Hence, vector 

v  can be obtained through a finite difference along direction v. 
The drawback of iterative methods is that they are inexact and may require a 

large number of iterations so that the iterate satisfies the tolerance condition. 
The remedy to this technical drawback is called preconditioning. Here, the pre-
conditioner   applies a linear transformation to system (7) so as to reduce the 
condition number of the transformed matrix 1−  . The preconditioned linear 
system to solve writes:  

1 1 .X b− −=                           (11) 

If the condition number of the transformed matrix 1S−  is smaller than that 
of matrix   then the number of iterations is generally reduced. Several ways of 
implementing the preconditioned iterative approach can be designed depending 
on the choice of the preconditioning linear transformation   and Newton 
matrix  . We furthermore consider the preconditioner built upon the incom-
plete lower-upper (ILU) factorization of the last-updated Newton matrix. Its po-
tential advantage resides in the smaller amount of memory necessary to perform 
an incomplete factorization. This feature is useful when the model system is very 
large and the Newton matrix cannot be factored due to memory limitations. The 
three preconditioners are denoted by D, T and R respectively, while notations 
DGMRES, TGMRES and RGMRES stand for the corresponding precondi-
tioned GMRES methods. When solving Equation (11) using any of the precon-
ditioned GMRES methods described above, the iterations are stopped as soon as 
the Euclidean norm of the current residue is lower than a tolerance threshold 
( { }, ,j D T R∈ ):  

( )1 1

2
1

2

,
k

j j

j

b X

b
ε

− −

−

−
<

  


                   (12) 

where ( )kX  denotes the current iterate and 610ε −=  is the threshold value. 
The maximum number of iteration of the GMRES is 200. 

2.3. Schur Approach 

The Schur approach is an alternative direct method aiming at solving linear sys-
tem (8). The goal is to take advantage of the structure of the saddle point matrix 
 . The preliminary steps for implementing the Schur approach consists in 
computing the Schur complement matrix schurS  associated with matrix   as 
illustrated in Figure 1 and listed below:  
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Figure 1. Schematic diagram illustrating the block LDU decomposition of S and the 
computation of the Schur complement matrix. 
 

1) Perform the block decomposition of   into four block matrices such that 
the diagonal block A  and matrix D.  

2) Formally perform the lower-diagonal-upper block decomposition (LDU) of 

schurS .  
3) Formally define the Schur complement matrix schurS .  
4) Solve the systems TA B= , with multiple right-hand sides T n mB ×∈  

using LU factorization.  
5) Evaluate the Schur complement SchurS  by computing the product of TB  

and  .  
The next steps of the Schur approach consist in solving the two triangular 

systems of linear block equations using the block LDU factorization so as to ob-
tain the solution of overall linear system (8). These additional steps are depicted 
in Figure 2 and detailed below: 

1) The matrix, unknown and right-hand side of linear system (8) are first par-
titioned.  

2) The solution part y is computed through forward block substitution; the 
dense system involving the previously computed Schur matrix   is solved 
through LU factorization.  

3) The solution part x is computed through backward substitution and the 
sublinear system involving A is solved directly using LU.  

4) The solution X of block linear system (8) is eventually obtained by conca-
tenating partial solutions x and y.  

2.4. Modified Newton Method 

In the following applications, the root-finding algorithm will be a modified 
Newton method when used in combination with preconditioned iterative solver, 
also Schur approach and direct approach. In this situation, the Newton matrix 
  is computed at a previous time step and is fixed throughout the nonlinear 
iterations. When used in combination with an iterative approach, i.e. the pre-
conditioned GMRES method, the root-finding algorithm is either a modified 
Newton method, depending on whether the matrix-vector products v  is 
computed using a partially updated Newton matrix. 
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Figure 2. Schematic diagram of forward and backward block substitution in Schur ap-
proach. The main costs at each modified Newton iteration consist in solving the two sub- 
linear systems involving the sparse high-dimensional matrix Ae. The small and dense li-
near system involving matrix S is solved using LU factorization since the dimension of 
the matrix is too small. 

3. Numerical Results 

In this section, we carry out two numerical example simulations, to assess the 
relative efficiencies of the various algebraic numerical methods described in Sec-
tions 2.1, 2.2 and 2.3. For the direct, iterative and Schur approaches, In the 
meanwhile the feasibility and effectiveness of the approaches, from the point of 
view of the elapsed Central Process Units time for the solution of saddle point 
problem (8) (denoted by CPU) as well as the number of iterations of GMRES. 
The parameters introduced in the lid driven cavity and flow over backward fac-
ing step are listed in Table 1, for more details see [1]. We use the IFISS software 
package developed by Elman et al. [1] to generate the linear systems corres-
ponding to 4l = , 5l =  and 6l = . The IFISS software provides the matrices A, 
B, and the right-hand side f and g. Generic information of the test problems, in-
cluding n and m, are provided in Table 1.  

In practice, the preconditioners used for solving (6) are D , T  and R , 
where D , T  and R  are given as follows:  

T

, and .R T D

A O A OA B
B Q O QB Qα

     
= = =     

    
            (13) 

Here S is a sparse approximation of the pressure Schur complement  
1 T

SchurS BA B−= , and Q is one of the matrices I or (S). The parameter of the R  
preconditioner is chosen as to implement the regularized preconditioner effe-
ciently, we need to choose the parameters α appropriately since the analytic de-
termination of the parameters which results in the fastest convergence of the 
preconditioned GMRES iteration appears to be quite a difficult problem. In all 
Tables, to implement the regularized preconditioner efficiently, we need to 
choose the parameters α appropriately since the analytic determination of the 
parameters which results in the fastest convergence of the preconditioned 
GMRES iteration appears to be quite a difficult problem. In the regularized pre-
conditioner, the parameter α is taken as ( ) ( )T

2 2 22
B B A Sα = , which 

balances the matrices A and T 1B S B−  in the Euclidean norm.  
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Example: Flow over backward facing step  
We consider the Flow over backward facing step. The simulation parameters 

used for Lid driven cavity model are summarized in Table 1, for more details see 
[1]. Numerical results for all approaches are presented in Tables 2-4. 

In all Tables indicates that the R preconditioner with Q I=  leads to much 
better numerical results than the D and T preconditioned GMRES methods 
less CPU times in all trials and iteration. the preconditioned RGMRES method 
with the proper parameter α has a better performance than the preconditioned 
DGMRES and the preconditioned TGMRES methods in terms of the iterations 
and CPU times. In the following figures, we display a streamline plot for the ve-
locity solution, and a plot of the pressure solution of the Flow in a symmetric 
step channel, over a plate and over a backward facing step. 

Figure 3 illustrates that the flow and pressure rendering in a rectangular duct 
containing a sudden expansion. We set the conditions of Dirichlet at the entry of 
the rectangular conduit and the conditions of Neumann at the exit of the duct. 
The vertical speed is zero, which means that the lines of the fluid flow propagate 
in a parallel way to the rectangular duct walls. Rendering pressure becomes clos-
er to zero at the exit of the duct. 
 
Table 1. The size of the matrices A and B on 2 2l l× . 

Flow over backward facing stepa 

l n m size of A size of B 

4 578 192 578 × 578 578 × 192 

5 2178 768 2178 × 2178 2178 × 766 

6 8450 3070 8450 × 8450 8450 × 3070 

7 33,282 12,288 33,282 × 33,282 33,282 × 12,288 

aFlow over backward facing step. 
 
Table 2. The numerical results of direct, Iterative and schur approaches. 

4l =  
Direct solvera Iterative solverb Schur solverc 

LU DGMRES TGMRES RGMRES Direct Iterative 

CPU † 0.73 0.75 0.07 † † 

ITER † 282 217 4 † † 

aDirect solver. bIterative solver. cSchur solver. 
 
Table 3. The numerical results of direct, iterative and schur approaches. 

5l =  
Direct solvera Iterative solverb Schur solverc 

LU DGMRES TGMRES RGMRES Direct Iterative 

CPU † 4.73 3.96 0.90 † † 

ITER † 296 254 4   

aDirect solver. bIterative solver. cSchur solver. 
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Figure 3. The velocity and pressure solutions of flow over backward facing step. 
 
Table 4. The numerical results of direct, iterative and schur approaches. 

6l =  
Direct solvera Iterative solverb Schur solverc 

LU DGMRES TGMRES RGMRES Direct Iterative 

CPU † 46.54 38.72 17.42 † † 

ITER † 322 271 4   

aDirect solver. bIterative solver. cSchur solver. 

4. Conclusion 

The numerical results reported in Section 3 show that the preconditioned 
GMRES methods are more efficient than LU and Schur approaches. The two 
latter approaches are more expensive computationally in term of CPU times 
outperforms the other methods. For the test presently illustrated, the speed-up 
factors increases with the size of the Jacobian matrix and reaches a value of 
three. The Flow over backward facing systems for which the GMRES method 
preconditioning exhibits speed-ups that are even more important compared 
with the implementation of Schur and direct approaches. As a result, the system 
of ordinary differential equations is extremely stiff. The stiffness implies that the 
saddle point matrix has a large condition number, i.e. is ill-conditioned. In this 
situation, Modified-Newton methods based on the inverse of the approximate 
Jacobian matrix require an important number of iterations. With RGMRES, the 
iterations are based on the exact Jacobian inverse and for this reason the method 
reverts to the standard Newton method that converges in fewer iterations. Fu-
ture developments will focus on the deterministic/Navier-Stokes that is enabled 
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in [1] code when the simulated system is too large. When this situation occurs, 
the linear solver being very sensitive to solve the linear system, other direct li-
near solver will be tested. Future research should be devoted to the construction 
of parallel iterative solvers robust with respect to higher order virtual element 
discretizations and non-symmetric problems, such as saddle point systems de-
riving from discretizations of the Navier-Stokes equations. 
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