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Abstract 
The increase of wave energy in electricity production is an objective shared by 
many countries to meet growing demand and global warming. To analyze 
devices capable of converting the energy of sea waves into electrical energy, it 
is important to master the various theories of gravity waves and generation. 
We will in our work consider a numerical waves tank for an amplitude 0.5A = , 
a wavelength 0.25λ = , an average height 10eH =  and a Froude number 
fixed at 1 × 105. Numerical wave channel analysis is used to reproduce the 
natural phenomenon of wave propagation in an experimental model. Wave 
makers are usually used to generate waves in the channel. In theory, the in-
fluence of an incident wave can be considered, as in the case of our study. In 
this study, the evolution of the hydrodynamic parameters and the energy 
transported in one wavelength can be determined by calculation. A change of 
variable will be done in this work to facilitate the writing of the boundary 
conditions at the free surface and at the bottom. The nonlinear Stokes theory 
will be studied in this case in order to provide hydrodynamic solutions through 
the Navier-Stokes equations to finally deduce the energetic results. To do this, 
the finite difference method will be used for the hydrodynamic results such as 
the velocity potential and the free surface elevation and the trapezium me-
thod of Newton for the energetic results. Thus, we will determine the ener-
getic potential according to the decrease in the slope of the tank. To do this, 
we will take as values of beta representing the inverse of the slope of the tank, 

100β = , 105β = , 110β =  and 115β = . 
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1. Introduction 

The increase of renewable energy in electricity production is an objective shared 
by many countries to meet growing demand and global warming. In this energy 
mix, the part of marine energies remains very low. Most of the technologies are 
not yet mature and only off-shore wind power today participates in the produc-
tion of energy of marine origin. However, the swell can be an exploitable source 
of energy for the production of electricity. For this purpose; over the past thirty 
years, a number of wave energy systems (wave energy recovery systems) have 
been proposed and studied, all over the world but mainly in Europe. According 
to Cruz and Sarmento (2004), the oceans, containing the greatest of all natural 
resources, have enormous energy potential, which can contribute significantly to 
the growing energy needs at the global level. One way to investigate this poten-
tial is to perform computer simulations and laboratory experiments. For this, we 
use models that physically describe the phenomenon. To analyze devices capable 
of converting the energy of sea waves into electrical energy, it is important to 
master the various theories of gravity waves and their generation. The nonlinear 
Stokes theory is the oldest and the most studied, because it’s possible to under-
stand most of the phenomena related to nonlinear waves. An analytical solution 
not being accessible for such a theory, we will have recourse to numerical me-
thods or disturbances to bring solutions concerning this theory. In the case of 
the nonlinear water wave problem, Stokes (1847) was the first to develop a finite 
amplitude wave theory [1] using the perturbation method to account for nonli-
near terms [2]. Since then, many theories describing wave motions using this 
method have been derived to higher-order approximations for finite values of 
wave amplitude. This has led to an important specialized bibliography that has 
accumulated over the years. Since that time, the works carried out on the subject 
have not ceased to be published until today. Christensen et al. (2002) [3] offer a 
review of the various numerical methods currently used to study breaking waves. 
Thus, we distinguish the methods from the kinetic theory, the models based on 
the Boussinesq equations, the models based on the theory of potential flows and 
those based on the Navier-Stokes equations. In order to predict high-order wave 
loads for a cylindrical, single-tower platform exposed to regular waves, Kleps-
vik (1995) [4] solved the first-order problem using the computer program Wave 
Analysis MIT (WAMIT) to get the extra mass and wave dampening. Then, he used 
the principle of superposition to find the pitch response due to second-order and 
higher-order wave loads. Also, Molin et al. (2005) [5] and Rahman et al. (1999) 
[6] focused on the study of the interaction of second-order waves with, respec-
tively, the vertical square cylinder and the circular cylinder. Similarly, a time 
domain method is used to analyze the interactions of water waves and a group or 
network of cylinders. Nonlinear free surface boundary conditions are satis-
fied based on the perturbation method up to the second order. The first and 
second-order velocity potential problems at each time step are solved by a Finite 
Element Method (FEM). In order to analyze the inhomogeneous term involved 
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in the free surface condition for the diffraction of second-order waves on a pair 
of cylinders, Bhatta (2005) [7] derived the second-order scattered potential. Un-
der the assumption of a large spacing between the two cylinders, the waves scat-
tered by a cylinder can be replaced in the vicinity of the other cylinder by equiv-
alent plane waves accompanied by non-planning correction terms. Yang et al. 
(2013) [8] formulated a complete second-order theory for coupling numerical 
and physical waves in wave tanks [9]. The new formulation is presented in a uni-
fied form that includes both progressive and evanescent modes and covers pis-
ton and flap-type wave generator configurations. Second-order vane travel cor-
rection enables enhanced nonlinear wave generation in the physical wave reser-
voir based on target digital solutions. The performance and efficiency of the new 
model are first evaluated theoretically based on second-order Stokes waves. 
Mangoub (1992) [10] presented a numerical study on the behavior of a vortex 
concentration in the swell. The concentrated vortex can be due both to the 
presence of natural and artificial obstacles, such as the bases of structures, for 
example. They treated separately the calculation of the swell and the free surface 
on the one hand and that of the evolution of the vortex on the other hand. They 
did not consider the generation of the tourbillon: the bottom is chosen flat. 
Their goal was to develop a numerical computer code that allows following the 
evolution of a vortex concentration in the nonlinear wave field. Loukill et al. 
(2016) [11] presented a perturbation method coupled with the finite difference 
method for solving the problem of wave propagation in a wave tank. In this 
work, they proposed a semi-analytical or rather semi-numerical method for the 
resolution of nonlinear wave propagation. The principle of the method is to ap-
ply the perturbation method to the nonlinear problem at the start, which allowed 
them to have verified linear problems for the different orders (Navfey, 1973; Hinsh, 
1991). These nonlinear problems also present a great difficulty which concerns 
the writing of the boundary conditions on the free surface in an evolving domain. 
The problems being unsteady, these transformations will therefore be evolutio-
nary. The numerical resolution of transformed linear problems is carried out by 
the method of finite differences. We present solutions for higher orders (order 1, 
order 2...). A comparison with Stokes’ exact solution is presented (Subsbelles et al., 
1981) [12]. Bebassakis and Athanassoulis [13] extended the second-order Stokes 
theory to the case of a generally shaped bottom profile connecting two half-strips 
of constant (but possibly different) depths based on hydrodynamic parameters. 
Wave energy and power are commonly used and referenced in the literature for 
wave transformation as the wave approaches the shore, as well as for analysis of 
general flow dynamics. For more information, see Horikawa (1988), Dean and 
Dalrymple (1992), Van Rijn (1994), Kamphuis (2000) and CEM (2002), among 
others. The main objective of marine energy is its transformation into electricity 
to meet the high energy demand and global warming (Babarit & Mouslim [14]; 
Michard, Cosquer & Dufour [15]). To do this, it is necessary to know the evolu-
tion of hydrodynamic parameters which are the essence of energy transport in 
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the case of waves. Cheung and Childress [16] and Erikson [17] have calculated 
the hydrodynamic coefficients with the Finite Element Method (FEM) or the Fi-
nite Volume Method (FVM). 

Our goal is to study the temporal evolution of hydrodynamic parameters such 
as: the free elevation surface and the potential field for different variations of the 
bottom slope numerically under the nonlinear approximation. Finally, we will 
deduce from these results the evolution of the energy as a function of time and 
the variation of the slope of the bottom. To do this, we will simulate our model 
from a numerical wave tank initially actuated by an incident linear Stokes wave. 
The determination of the energy requires beforehand a detailed and explicit study 
of the hydrodynamic aspect, namely the evolution of the free surface elevation 
and the distribution of the velocity potential in the wave tank. 

To do this, we will first describe the physical model to be studied and describe 
the calculation through the mathematical formulation. The equations obtained 
being nonlinear, we will finally approach the numerical formulation to give the 
results. 

2. Mathematical Formulation 
2.1. System Description and Problem Formulation in the Physical 

Domain 

In order to clarify the approach used, we will expose our problem by proposing a 
numerical wave tank to describe the calculation. During the last decade, research 
has been done to develop numerical wave tanks [18]. Research has developed 
different numerical methods to simulate ocean waves. Wei et al. [19] and Chaw-
la [20] implemented a source function method to generate ocean waves, based 
on the Boussinesq model. Based on the 2D form of the Navier-Stokes equations, 
Dong and Huang [21] established a 2D numerical wave reservoir to simulate 
small amplitude waves and solitary waves. Lu [22] numerically simulated the 
overtopping of waves against levees in the case of regular waves. We consider a 
2D and irrotational flow of a non-viscous and incompressible fluid under the in-
fluence of a Stokes wave in a wave tank of length L, wavelength λ  and ampli-
tude A (see Figure 1). The bottom condition follows a linear evolution given by 

( ) 0h
z h x x

L
= =                         (1) 

We propose to numerically solve the weakly nonlinear system of Equation (2) 
representing the propagation of a Stokes wave and which are written in terms of 
the velocity potential φ  and free surface elevation ( );x tη  and consisting re-
spectively of 
• Laplace equation 
• Kinematic free surface condition: Water particles cannot cross the free sur-

face. To satisfy the condition of particle velocity z η=  must be equal to the 
normal speed at the free surface. 

• Dynamic free surface condition: The pressure at the free surface is zero for  

https://doi.org/10.4236/ojfd.2023.131005


A. M. Ndiaye et al. 
 

 

DOI: 10.4236/ojfd.2023.131005 65 Open Journal of Fluid Dynamics 
 

 
Figure 1. Geometry of the problem. 

 
any position and time. Basically consists of applying the Bernoulli equation 
to the free surface. 

• Bottom condition: The bottom can be considered as variable and impermeable. 

( ) ( )
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∂ ∂ ∂ ∂ = − + = ≤ ≤ ∂ ∂ ∂ ∂
  ∂ ∂ ∂    + + + = = ≤ ≤     ∂ ∂ ∂     
∂ ∂ ∂

− = = ≤ ≤ ∂ ∂ ∂

   (2) 

To remove the difficulties of knowing the treatment of the problem in unsteady 
regime and the determination of the conditions at the entry and exit boundaries, 
we will consider an incident linear wave upstream of the tank propagating on a 
flat bottom of constant depth He of which we know all its hydrodynamics cha-
racteristics and which will drive the movement. The hydrodynamic parameters 
of the incident wave are given by 

( ) ( ); cosx t A kx tη ω= −                      (3) 

( )
( )
( ) ( )

cosh
; ; sin

sinh
e

e

k H zAx z t kx t
k kH
ωφ ω

 + = −             (4) 

Thus, we can give the initial conditions and complete with the boundary con-
ditions by giving the entry and exit conditions for the free surface elevation η  
and the velocity potential φ . 
• Initial condition 

At 0t = , the tank is initially disturbed by a linear Stokes wave 

( ) ( ); 0 cosex t H A kxη = = +                    (5) 

( )
( )
( ) ( )

cosh
; ; 0 sin

sinh
e

e

k z HAgx z t kx
kH

φ
ω

 + = =              (6) 
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• Entry condition 
For the entry conditions, we consider that the incident wave upstream of the 

tank is a linear Stokes wave and that its impact at the entrance creates the wave 
motion at 0t > . We then have for the entry conditions the free surface eleva-
tion and the velocity potential 

( ) ( )0; cos et A t Hη ω= +                      (7) 

( )
( )
( ) ( )

cosh
0; ; sin

sinh
e

e

k z HAgz t t
kH

φ ω
ω

 + = −               (8) 

• Exit condition 
For the exit conditions, we consider a solid impermeable wall. We will then have 

for the exit conditions of the free surface elevation and of the velocity potential 

( ) ( ); cos eL t A kL t Hη ω= − +                    (9) 

0
x z
φ φ∂ ∂
= =

∂ ∂
                        (10) 

2.2. Energy 

Wave propagation in water gives it a kinetic energy, due to the mouvements of 
the particles, as well as a variation of its potential energy due to the displacement 
of the free surface. The hydrodynamic results obtained will allow us to deduce 
the energy contained in a wavelength λ  inside the tank per width unit which is 
the sum of the potential and kinetic energies which are given respectively by 

( )0
d dp h x

E gz x z
λ η

ρ= ∫ ∫                      (11) 

By taking as a reference level for the potential energy at the bottom. 
And 

( )

2 2

0

1 d d
2c h x

E x z
x z

λ η φ φρ
 ∂ ∂   = +    ∂ ∂     

∫ ∫               (12) 

3. Dimensionless Study 

Considering the multiplicity of the parameters which intervene in the whole of 
the system of equation of our mathematical model, it would be useful to find a 
technique to reduce them. To do this, we can agglomerate them in the form of 
dimensionless grouping having a physical significance and which allow 
• Obtain information on the solution before solving the problem. 
• To optimize a possible experimental approach. 

Dimensionless quantities and number 
To each quantity of the equations which govern the flow, one can correspond 

to a dimensionless quantity from the characteristic quantities. Indeed, we have: 

*
0t t t= ; *x x L= ; *

0z z h= ; *
0  hη η= ; 

2
*

0

 L
t

φ φ= ; *k k L=  

*
0A A h= ; *

0e eH H h=  
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With 0 ,t L  and 0h  respectively the time, the characteristic length along the 
x axis and the characteristic length along the z axis. 

We thus obtain from the dimensionless system dimensionless numbers, namely 
the Froude number and a number characteristic of the geometry of the channel 
which we will note  β . 
• The Froude number being the ratio between the forces of inertia and the forces 

of gravity and its expression is given by 
2

0 0 0
2 2 2

1 gh t gh
Fr L L ω

= =                       (13) 

• The characteristic number of the geometry of the problem is given by 

0

L
h

β =                            (14) 

This number tells us about the shape of the slope of the wave tank. 
This problem as it is proposed, essentially presents the following difficulties: 

nonlinear, unsteady problem, written on a domain with curved and evolutionary 
border. 

3.1. Dimensionless Formulation in Curvilinear Coordinates 

( );χ ζ∗ ∗  

In order to facilitate the processing of boundary conditions on these boundaries, 
an orthogonal curvilinear coordinate system will be used. In this work we use a 
system of curvilinear coordinates which makes it possible to marry the shape of 
the free surface at all times and to take account of the irregularity of the bottom. 
This transformation facilitates the writing of boundary conditions on the irregu-
lar and evolving boundaries of the domain. The homotopic transformation T which 
transforms the physical region (D) into a rectangular domain (Dt) at each di-
mensionless instant *t  is defined by 

( ) ( )* * * *

:

, ,

T D Dt

x z χ ξ

→

 

 

With 
( )

( ) ( )
* * *

* * * * *
* * * * *

; ;
;

z h x
x t t

x t h x
χ ζ

η

−
= = =

−
           (15) 

We then move from the physical domain to a rectangular mathematical do-
main to describe the numerical calculation as shown in Figure 2. 

The new system to be solved consisting of the Laplace equation; the condi-
tions at the boundaries of the tank and the initial conditions will be written ac-
cording to the curvilinear coordinates in the transformed and dimensionless 
domain. 

3.2. Dimensionless Equations in Curvilinear Coordinates System 

• Laplace equation for * *0 1;0 1ζ χ< < ≤ ≤  
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Figure 2. Transformation of the physical domain into rectangular domain. 
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With 

( ) ( ) ( )
( )* *

* * * *
** * * * *

;1; 1 1
;

t
G

t h

η χ
χ ζ ζ

χη χ χ

  ∂
  = − −
  ∂−   

      (17) 

• Free surface kinematic condition for * *1;0 1ζ χ= ≤ ≤   

( )
( ) ( )

( )

( )

2* * * * * **
2

* * ** * * * *

* * **

* *

; ;1
;

;
0

t t

t t h

t

η χ η χφ β
ζ χη χ χ

η χφ
χ χ

  ∂ ∂∂   − +  ∂ ∂ ∂−    

∂∂
+ =
∂ ∂

     (18) 

• Free surface Dynamic condition for * *1;0 1ζ χ= ≤ ≤  

( ) ( )
( )

( ) ( ) ( )

2* ** * *

* * * ** * * * *

2
*

2 * * *
* * * * *

;1 1
2 ;

1 1 ; 0
;

t

t t h

t
Frt h

η χφ φ φ
χ χ ζη χ χ

φβ η χ
ζη χ χ

 ∂∂ ∂ ∂ + − ∂ ∂ ∂ ∂− 
 ∂  + + = ∂−  

        (19) 

• Bottom condition for * *0;0 1ζ χ= ≤ ≤  

( ) ( )
* 2 *

* 2 2 ** ?* * * *

1 1 1 0
;t h

φ β φ
ζ β β χη χ χ

 ∂ + ∂
− = ∂ ∂−  

          (20) 

• Initial condition for * *0 1;0 1χ ζ< < < <  
At * 0t = , 
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( ) ( )* * * * * * *; 0 coset H A kη χ χ= = +                 (21) 

( )

( )( )( )
( ) ( )

* * * *

*
* * * * * * *

* * *
* *

; ; 0

cosh ; 0
1 sin

sinh

e

e

t

k t H
A k

Fr k H

φ χ ζ

ζ η χ χ χ
β

χ
β

=

 
∗ = − + + 

 =

   (22) 

• Entry condition for * *0;0 1x ζ= < <  

( ) ( )* * * * *0; cos et A t Hη = +                    (23) 

( )
( )( )

( ) ( )
* * * * * *

* * * * *
* *

cosh 0;10; ; sin
sinh

e

e

k t k H
t A t

Fr k H

ζ η β
φ ζ

β

 ∗ + = −     (24) 

• Exit condition for * *1;0 1x ζ= < <  

( ) ( )* * * * * *1; cos et A k t Hη = − +                  (25) 

* * *
*

* * * *

1 1 1 0
1

φ η φζ
χ η χ ζ

  ∂ ∂ ∂
+ − − =   ∂ − ∂ ∂  

             (26)  

The kinematic condition and the Laplace equation give respectively the free 
surface elevation and the velocity potential. 

3.3. Dimensionless Energy in Curvilinear Coordinates System 

The dimensionless potential and kinetic energies in the new system calculated 
on a wavelength λ  are respectively given by 

( )( )
*

* * * * * * * *
0

1

0

1   d dpE J
Fr

λ
ζ η χ χ χ ζ

β
= − +∫ ∫            (27) 

( )

( ) ( )

*
2* *

* * * *
* *0 0

2
*

* * *
** ? * * *

1

*

1 , ?
2

1  d d
;

cE G

J
t h

λ φ φχ ζ
β χ ζ

φβ χ ζ
ζη χ χ

 ∂ ∂= + 
∂ ∂ 

 ∂  +  ∂−  

∫ ∫
         (28) 

With *J  represents the dimensionless Jacobian of the transformation and is 
given by 

* * * J η χ= −                         (29) 

Notice that the reference of potential energy is taken at the bottom. 

4. Numerical Procedure 

The discretization of the differential equations makes it possible to transform 
these differential equations into algebraic equations where the continuous varia-
tions of the variables of the flow are represented by values at discrete points. 
Discrete locations in space are represented by nodal points (or nodes) chosen 
from a numerical grid (mesh) that subdivides the flow domain as shown in Fig-
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ure 3. The discretization procedure makes approximations to the spatial deriva-
tives of the variables of the flow present in the differential equation, at each node 
of the grid. 

The spatial partial derivatives obtained from the equations of the system will 
be approximated by classical finite difference schemes [23] all of order 2, namely 
the scheme decentered downstream or upstream for the parietal conditions and 
the scheme centered inside of the domain (Laplace condition). The choice of the 
upstream or downstream off-center diagram will be justified according to the 
geometry of our problem and will be elucidated in the discretization calculation. 
The purpose of this choice is to ensure that the movement of the fluid involved 
is confined within the calculation domain. 

To approximate the time derivative, we want to use an implicit two-level scheme 
of the Euler type with a constant time step δt. 

Numerical Resolution Technic 

To determine the numerical results of the free surface elevation and the potential 
field inside the domain we will solve the matrix systems respectively from the 
kinematic condition at the free surface and from the Laplace condition using 
iterative methods which are based on the repeated application of a simple algo-
rithm leading to eventual convergence after a finite number of repetitions (itera-
tions). We will use in this work the iterative method of relaxation line by line of 
Gauss-Siedel [24] by using the Successive Over Relaxation (SOR) [25]. The prin-
ciple of iterative methods consists in seeking the solution of the system using a 
series of successive approximations. By giving an arbitrary vector of components 

( )k
i , we can find ( ) 1k

i
+

  at the next iteration. The process is stopped when 
the following convergence criterion is met Equation (30) 

( ) ( )
( )

1

1

1

1

m

m

k ki i
i ii

ki i
ii

ε

+=

=

+=

=

−
≤

∑

∑


 


                   (30) 

 

 
Figure 3. Meshing of the study area. 
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Besides the criterion of convergence of the iterative processes Equation (30) it 
is also necessary to define a criterion for stopping the calculation program. We 
stop the calculations. 

When, at high times, the variations of our functions between two consecutive 
times are very small. Under these conditions, we take as stopping criterion 

{ }  min ;e e Crη φ ≤                        (31) 

Avec 
( ) ( )

( )

1

1

1

1

m

m

n ni i
i ii

ni i
ii

e

+=

=

+=

=

−
=
∑

∑


 


                (32) 

For the numerical calculation of the energy, we will approach all the integrals 
using Newton’s trapezium method [26]. 

5. Results and Discussion 

In this chapter, we present the numerical results obtained from the calculation 
code that we developed with the FORTRAN 2003 Double Precision software and 
that simulates the propagation of a non-linear Stokes wave in a variable bottom 
wave tank. 

5.1. Numerical Results and Interpretations 

These results mainly concern the evolution of the free surface and the distribu-
tion of the velocity potential over time. Thus, we will deduce the numerical evo-
lution of the energy as a function of the slope over time. The fixed dimensionless 
physical parameters of the problem in our modelling are listed in Table 1 for a 
Froude number fixed at 1 × 105. 

The results presented are from simulations performed for 100β = , 105β = ,
110β =  and 115β = . The error criteria for the convergence of the iterative 

calculations for the free surface elevation and the velocity potential are given in 
Table 2. 

After writing the calculation program in FORTRAN language, we will visual-
ize the numerical results using MATLAB software to see the influence of the  

 
Table 1. Dimensionless physicals parameters. 

Dimensionless physicals parameters 

Amplitude Mean height Wavelength 

0.5A =  10eH =  0.25λ =  
 

Table 2. Error criteria for the convergence of iterative calculations 

 
Hydrodynamics parameters 

Free surface elevation Velocity potential 

ε  0.001 0.001 
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variation of the slope on the temporal evolution of the hydrodynamic parame-
ters and the energy. 

5.2. Free Surface Elevation and Velocity Potential Profile for β = 
100 

Figure 4 shows the longitudinal variations of the free surface and velocity po-
tential at different times. At the initial time, the tank is influenced by a periodic 
Stokes wave with a crest height equal to the depth of the trough. In the course of 
time the crest height decreases in favour of an increase in the depth of the trough. 
Thus, the exit condition being an impermeable wall has the effect of causing 
the wave to dip while decreasing the height of the crests and increasing the depth 
of the troughs over time. 

The propagation of the wave in the tank influences the movement of the par-
ticles from the free surface to the bottom by considering the velocity poten-
tial (Figure 4 (left)). Thus, for * 32.5 10t −≤ ×  (Figure 4(a)), there is a periodic 
movement of the particles with a maximum intensity at the free surface which 
decreases until it is cancelled out as it approaches the bottom. The movement is 
under the crests in the direction of propagation of the wave (positive potential) 
and in the opposite direction under the troughs (negative potential). In the 
course of time, the decrease in the height of the crest in favour of the increase in 
the depth of the trough decreases the intensity of the movement under the crest 
and increases that under the trough. At the final time (Figure 4(d)), there is 
a movement only under the trough and the movement under the crest is 
cancelled. This is because the exit condition totally reflects the wave and the 
movement of the particles. The crest height and the trough depth influence the 
movement of the particles. Decreasing the crest height decreases the movement 
below the crest. Increasing the trough depth increases the movement below the 
trough. 

5.3. Influence of β on Hydrodynamics Parameters 

Figures 5-7 show the influence of β on the hydrodynamic parameters η and ϕ at 
different times. 

Figure 5 and Figure 6 show that for times less than 1.7 and for 105β ≥  the 
variations of β do not affect the longitudinal variations of the free surface. How-
ever, it can be observed that there is a small decrease in the intensity of move-
ment at the free surface under the crests and troughs as β increases. 

Figure 7 shows that for * 1.7t = , an increase in β for 105β ≥  results in a 
slight decrease in the height of the crest and a trough depth that increases more 
and more as we approach the exit and there is a small decrease in the intensity of 
movement at the free surface. The movement is only in the opposite direction of 
the wave propagation under the troughs (negative potential). 

Note also that the values of 105β ≤  do not affect the profile of the free sur-
face for * 1.7t   or slightly for * 1.7t =  There is also a decrease in the intensity of  
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Figure 4. Free surface (left) and velocity potential (right) at different times. (a) * 32.5 10t −= × ; (b) * 0.36t = ; (c) 

* 0.8t = ; (d) * 1.7t = . 
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Figure 5. Free surface and velocity potential profiles for * 32.5 10t −= ×  for different values of β. 
 
 

 
Figure 6. Free surface and velocity potential profiles for * 0.36t =  for different values of β. 
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Figure 7. Free surface and velocity potential profiles for * 1.7t =  for different values of β. 
 

 
Figure 8. (a) Evolution of the energy over time for each β; (b) Evolution of the energy over β at fixed times. 
 

the movement when β increases. The movement of the particles then stabilizes 
when the linear slope of the bottom becomes lower and lower. 

5.4. Influence of β on Wave Energy 

Figure 8 shows respectively the evolution of the energy over time for each β and 
the influence of the slope on the energy at fixed times. 

Figure 8(a) shows that there is an increasing in energy over time for each 
value of β. The “impermeable wall” exit condition has the effect of reflecting the 
wave without energy absorption. Thus, the superposition of incident and reflected 
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waves increases the energy over time. 
Figure 8(b) shows that the energy of the wave increases linearly with β. The 

lower the slope, the higher the energy. This shows that the linear slope of the bot-
tom plays a role in the variation of the energy. 

6. Conclusions 

A numerical wave tank was studied in this work to observe the effect of a linearly 
bottom slope on the wave energy contained in a wavelength. For this purpose, 
we observed a simulation using the nonlinear Stokes theory to describe the cal-
culation in a hydrodynamic approach first. The hydrodynamic results are ob-
tained using the finite difference method. 

The numerical simulations show that the particles’ movement is influenced by 
the passage of the Stokes wave. The “impermeable wall” exit condition influences 
the longitudinal variation of the wave and consequently the particles’ movement. 
Also, the linear slope of the bottom influences the movement of the particles es-
pecially at the free surface and the longitudinal profile of the wave in high time 
by playing an attenuating role when it decreases. 

Finally, we deduced from the hydrodynamic results the energetic results by the 
Newtonian numerical method. We found an increase in energy with time under 
the assumption of the “impermeable wall” exit condition. 

However, we found that with the increase of β, i.e. the decrease of the bottom 
slope that the energy increases. Thus, we get a better energy output when the li-
near slope of the bottom is low. In the opposite case, we note a decrease in energy 
due to a frictional interaction with the linear slope of the bottom. 

Finally, the “impermeable wall” exit condition and the linear slope of the bot-
tom are important factors to take into account when monitoring the evolution of 
the hydrodynamic and energy parameters. Our study allowed us to know the ideal 
location of wave generators (far or close to the coast) as a function of depth by 
considering a numerical wave channel with a linearly variable bottom. For onshore 
wave generators, see the studies of Youness and Lafon [27] and offshore those of 
Drew, Plumer and Sahinkaya [28]. 
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Nomenclature 
Latin Letters 

A: wave amplitude, m 

rC  : criterion for stopping the temporal iterative process 
e : relative error of the temporal iterative process 
Ep, Ec: potential and kinetic energy over a wavelength, J∙m−1 
Fr: Froude number 
g: gravity intensity, m 
h(x): bottom profile, m 
h0: slope height at the exit of the tank, m 
He: mean height of the tank, m 
J: Jacobian of the transformation, m 
k; wave number, m−1 
L: lenght of the tank, m 
t: time, s 
x, z: horizontal and vertical coordinates in physical domain, m 

Greek Symbols 

η : free surface elevation, m 
φ : velocity potential, m2∙s−1 
ω : wave pulse, rad∙s−1 
λ : wavelength, m 
β ; parameter providing information on the slope 

* *,χ ζ : dimensionless horizontal and vertical curvilinear coordinates 
ε : criterion for stopping the itterative process 
 : free surface elevation or velocity potential 

Superscripts 

∗ : related to dimensionless parameters 
n: related to time 
k: related to number of iteration 
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