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Abstract 
In this work, a continuum 2D model is proposed to study the interaction at 
the interface of reactive transport processes in porous media. The analysis of 
the segregation produced by poor reactant homogenization at the poral scale is 
addressed by a parametric heuristic model that considers the relative gradient 
of the reacting species involved in the process. The micro inhomogeneities are 
incorporated by means of longitudinal and transversal mechanical dispersion 
coefficients. A two-dimensional continuous model for the bimolecular reactive 
transport is considered where modelling parameters are estimated numerically 
from experimental data. A competitive effect between segregation and disper-
sion is observed that is analyzed by means of numerical experiments. The 
two-dimensional model reproduces properly both the total mass of the prod-
uct as well as its increase with the velocity of flow and the inhomogeneity of the 
advanced front. The methodology used is simple and fast, and the numerical 
results presented here indicate its effectiveness. 
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1. Introduction 

The number of studies related to the transport of reactive species of dissolved 
compounds in porous media has considerably increased during the last few years. 
Generally, the spatial-temporal distribution of the solutes is significantly influ-
enced by the variations at the microscale of the variables that control the reactive 
transport process (concentration, velocity) caused by the absence of homogeni-
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zation, which cannot be addressed by a continuous model. Hence, when flow proc-
esses in a porous media with multiple reactive species are studied, it is important 
to consider the nature of reactions and the role of small-scale fluctuations (Edery 
et al., 2013) [1]. 

There exists a negative correlation between the product of the concentration 
fluctuations around the average value of reactants (Kapoor et al., 1997) [2] that 
describes the influence of flow spatial variation at the microscale on the average 
concentrations of solutes and on the reaction rate. An effective reaction rate can 
be modelled by incorporating a segregation term that depends on the product of 
the gradients of the solute concentrations (see also Kapoor et al., 1998) [3]. 

Then, the processes of dispersion and mixing are not straightforward and de-
serve a deeper analysis. Cirpka (2002) [4] considers that the heterogeneity of the 
velocity field influences the coefficient of dispersion. So, the dispersion coeffi-
cient obtained in non-reactive transport cannot be used to model the reactive 
transport under the same flow conditions. Oates and Harvey (2007) [5] present a 
model of reactive transport that describes the segregation and mixing of reac-
tants at the small scale by their joint distribution. Meanwhile, Willingham et al. 
(2008) [6] evaluate the effects of the porous media geometry in transversal mix-
ing. 

In Gramling et al.’s (2002) study [7], the authors present experimental results 
corresponding to an irreversible bimolecular reaction A + B → C and analyse the 
process by means of a model that assumes that solutes are instantaneously mixed, 
the Standard Pore-Scale Mixed (SPSM) Model. This continuum approach produces 
erroneous results since reactants are considered homogenized in the Darcy scale, 
but they are not perfectly mixed at the poral scale where chemical reactions oc-
cur (see also Raje & Kapoor, 2000) [8]. 

The quantitative treatment of fluctuations at the poral scale was approached 
in different ways. For instance, Edery et al. (2009, 2016) [9] [10] provide an inter-
pretation of Gramling’s experiment via a continuous time random walk particle 
tracking approach. Alhashmi et al. (2015) [11] develop a particle tracking model 
for flow and transport while the reaction occurs with a randomly assigned prob-
ability. Sanchez-Vila et al. (2010) [12] reinterpret the same experiment and describe 
the macroscopic chemical behaviour of the system by means of a kinetic reaction 
rate. Differences in the velocity of species at the poral scale are considered by means 
of an effective dispersion coefficient (to be adjusted). The segregation concept has 
also been analysed with a heuristic proposal by Rubio et al. (2008) [13], with a cor-
rection term that involves a phenomenological parameter that can be evaluated. 
In Ginn’s (2018) [14] study, segregation zones generated by dispersion that limit 
mixing are considered. Besides, Gurung and Ginn develop a time-local model 
suitable for mixed boundary initial value transport problems by making the dis-
persion coefficient a function of the exposure time to the flow field (Gurung & 
Ginn, 2020) [15]. 

A very interesting review on the mixing-limited reaction of two solutes form-
ing a product in porous media analysing experiments, theory, and numerical 
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methods was given by Valocchi et al. (2019) [16]. 
While most of the precedent treatments are based on a one-dimensional proc-

ess, there are very few pieces of new research, but in a numerically simulated 
3D porous media using a high-performance computing infrastructure. A set of 
high-resolution simulations were performed, and the results provided, which go 
beyond the original experiment, shed light on explaining the observations of 
Gramling’s experiment (Sole-Mari et al., 2023) [17]. 

On another way, Porta et al. (2012) [18] proposed a macroscopic mathemati-
cal model, considering an instantaneous reaction, going from the poral scale to 
the laboratory scale through an average in volumes. Chiogna and Bellin (2013) 
[19] propose to model the effect of incomplete mixing at scales smaller than the 
Darcy scale assuming that the mixing is distributed within a Representative Ele-
mentary Volume (REV) according to a Beta distribution. 

In this paper, we use a model that changes the rate of reaction in the transport 
equation incorporating poral scale effects, or segregation. We model the problem 
considering a two-dimensional Advection Reaction Diffusion Equation (ADRE) 
model that includes three free parameters, one related to segregation term (α) and 
the other two for the dispersion (longitudinal Dx and transversal Dy). Our analy-
sis is based on the experimental results of Gramling et al. (2002) [7]. 

The mathematical modelling of the segregation intensity (s) from first principles 
is not straightforward, so heuristic proposals (Kapoor et al., 1997 [2]; Meeder & 
Nieuwstadt, 2000 [20]; Meile & Tuncay, 2006 [21]) are used to reproduce ex-
perimental results. An effective reaction term is defined as Γeff = Γ(1 + s), where 

1 2 1 2s c c c c′ ′=  is the segregation and ic′  is the variation of the concentration of 
the species “i” with respect to the average. Meyle and Tuncay (2006) [21] approach 
the product of the variation in concentrations of the species in terms of the prod-
uct of the gradients of the macroscopic concentrations. Specifically, for reactive 
diffusive transport, we propose ( ) 1 2 1 2s c c c cα θ≈ ∇ ∇  where the parameter α de-
pends on pore geometry, dispersivity and flux velocity, among other factors. 

This article is organized as follows. In Section 2, the problem formulation is 
presented. In Section 3, the mathematical 2D model is stated. In Section 4, the nu-
merical experiments are included and the results are discussed. Finally, the con-
clusions are given in section 5. 

2. Problem Formulation 

In a previous work (Cuch et al., 2015) [22], we considered a 1D parameter esti-
mation problem where the fitting parameters were the segregation and the dis-
persion coefficients, s and D, respectively. For the latter one, we obtained a lower 
value (D = 0.0012 cm2/s) than the one measured experimentally in batch (D = 
0.00175 cm2/s), reported by Gramling et al. (2002) [7]. For the ADRE model, it is 
assumed that the transport process obeys the Fick’s Law ( j D c= − ∇ ). Since the 
reaction time is several orders of magnitude smaller than the one of the advection 
and dispersion, and the production rate is high, reactive substances are quickly 
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consumed in the region of the reaction front. This generates a reaction product 
that also participates in the transport process separating the reactants and result-
ing in very large concentration gradients in that area. This fact might explain the 
differences between the estimated and the experimental D values. 

In this work, we use a 2D model that considers poral scale issues using a mac-
roscopic approach. We assume that variations in flow velocity are due to multi-
ple microscopic causes like variation in velocity at pore scale and tortuosity of 
the path, as shown in Figure 1. 

Dispersions in longitudinal (Dx) and transversal (Dy) directions to the flow are 
included in the model to consider deviations around the mean velocity. Since the 
two fluid regions mix not only in the flow (longitudinal) direction, but also in the 
transversal direction to the flow, both dispersion coefficients affect the mixing and, 
therefore, the reaction rate (Willingham et al., 2008 [6]). We expect to obtain a 
smaller value for the longitudinal dispersion coefficient than the one for the 1D 
model, since the transversal dispersion coefficient will also contribute to the mixing. 

3. Mathematical Model 

We consider two reactive solutes A and B, with concentrations cA and cB respec-
tively, where A displaces B with a macroscopic averaged velocity V, producing C 
at the interface, with a concentration cC. Assuming a stationary adsorption process 
between the solid and liquid phases and homogeneity of the reactants, we have a 
reactive bimolecular transport process. For the bimolecular reactive transport prob-
lem studied by Gramling et al. (2002), we use a 2D model that considers the varia-
tions in the flow velocity. At each node of the two-dimensional computational 
domain, the velocity has the same direction as the corresponding to the macro-
scopic flow (X in Figure 1) and its average intensity, for a fixed X, is equal to that 
reported by Gramling et al. (2002) [7] (for example 0.0121 cm/s). 

The process can be described by the following second order partial differential 
equation system: 

( ) ( ) ( ) ( ) ( )

( )

2 2

2 2

, , , , , , , ,
, ,

, , 1, 2,3

i i i i
x x y

c t x y c t x y c t x y c t x y
V t x y D D

t x x y
R t x y i

∂ ∂ ∂ ∂
+ − −

∂ ∂ ∂ ∂

= =

   (1) 

 

 
Figure 1. Velocity variation at poral scale. (a) Higher velocity towards the centre of the 
pores than near the surface of the solid matrix. (b) Tortuosity of the path. 
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where ( ) [ ] [ ], , 0, 0, 0,x yt x y T L L ∈Ω = × ×    and c1 = cA, c2 = cB, c3 = cC. 
Here, ci(t, x, y) and Vx(t, x, y) are the mean values for the corresponding Rep-

resentative Elementary Volume (REV). The source term is modelled as an effec-
tive reaction term R = Γ(1 + s)c1c2, where s is the segregation factor (Kapoor et 
al., 1997) [2], Γ is the reaction rate, Vx (t, x, y) is the longitudinal velocity at each 
point of the spatial domain, Dx is the longitudinal dispersion coefficient and Dy 
is the transverse dispersion coefficient. 

For the segregation factor, we use the heuristic model proposed by Meile and 
Tuncay (2006) [21] for a Diffusion Reaction Equation (DRE): 

1 2

1 2

c cs
c c

α
θ
∇ ∇⋅

⋅
=                         (2) 

where the parameter α depends on the geometry of the pores, the dispersion, 
and the flow velocity. A similar function was used by Cuch et al. (2009) [23] for 
the one-dimensional case. The intensity of segregation, given by the negative 
correlation between the concentrations of reactants, can be seen as the product 
of the reactive concentration gradient: when the concentration gradient is low, 
the fluctuations will be small and the segregation negligible; while high gradients 
yield large fluctuations, and therefore a large segregation effect. 

It can be seen in Equations (1) and (2) that the concentration of each species 
ci, i = 1, 2 depends not only on the position and time but also on the parameters 
α, Dx and Dy, so that it can be written as ci (t, x, y, α, Dx, Dy). 

We use a finite difference method for the estimation of segregation and dis-
persion parameters (longitudinal and transversal) but other methods give similar 
results (Hou et al., 2015) [24]. The numerical scheme is centred in space and for-
ward in time, which guarantees a precision of first order in time and second or-
der in space. As the reactants move by advection and mechanical dispersion, we use 
a velocity distribution with a dispersion of 20% around the average given by Gram-
ling et al. (2002). We have tested other values of dispersion of velocity obtaining 
similar results. At each temporal step, we use an Operator Splitting technique 
(Wheeler & Dawson, 1987) [25], solving first the advection-dispersion equation 
and then, for a much shorter time interval, we solve the equation where only the 
source term is included (Rubio et al., 2008) [13]. Then, the three parameters α, 
Dx and Dy are estimated by minimizing the square errors. The numerical method 
used to adjust the pre-processed experimental data is described by Cuch et al. 
(2015) [22]. 

4. Results 

In Gramling et al.’s (2002) study [7], the authors reported, for a given flow (Q = 
2.67 ml/min), the concentration of product CC at each point x of the column, at 
four different instants (619 s, 916 s, 1114 s and 1510 s). Data from those profiles 
are used to minimize the square errors between the simulated and the pre-processed 
experimental data. The values of the characteristic constants of the experiment: 
reaction rate (Γ), length and height of the tube (Lx, Ly), porosity (θ) and initial 
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concentrations C0 for both CA and CB, are assumed to be known (Gramling et al., 
2002) [7]. 

Figure 2 shows the results considering a flow rate Q = 2.67 ml/min. red circles 
correspond to the experimental data and the solid blue line correspond to our 
numerically simulated ones. It can be seen a good agreement between numerical 
simulation and experimental measurements. 

Table 1 shows the average values of the adjusted parameters and the ratio 
between longitudinal and transversal mechanical dispersion. The results show 
that Dy is of the same order of magnitude as Dx, which justifies its inclusion in 
the 2D model. 

Here, we also obtain a lower value of Dx (0.000846 cm2/s) than the estimated 
one using the one-dimensional model. This was expected since we have included 
the transverse coefficient Dy in the model. It also happens using other techniques, 
as reported by Ginn (2018) [14]. Table 2 shows that variations around the aver-
age are negligible, being able to use their average values as representative for that 
flow. 

On the other hand, Figure 3 shows the results for the total product mass 
(integral of the profiles in Figure 2) for different settings for the previous work  

 

 

Figure 2. Circles correspond to the experimental data, solid line correspond to our simu-
lation results for a flow rate of 2.67ml minQ =  at times T = 619 s, 916 s, 1114 s and 
1510 s. 0 0.02C M= .  

 
Table 1. Average values of the adjusted parameters ( ), ,x yD Dα  and relation between 

longitudinal and transverse mechanical dispersion for a flow rate of Q = 2.67 ml/min. 

( )2cmα
 ( )2cm sxD

 ( )2cm syD
 x yD D  

0.159 0.000846 0.000351 2.409 
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Table 2. Percentage variation of the adjusted parameters. 

Q (ml/min) T (s) ∆α (%) ∆Dx (%) ∆Dy (%) 

2.67 619 −0.63 5.59 7.05 

2.67 916 −0.63 −3.28 −1.78 

2.67 1114 1.89 −1.63 −2.92 

2.67 1510 −0.63 −0.68 −2.35 

 

 

Figure 3. Total mass of product for several adjustments, one-dimensional and two- 
dimensional models. 

 
(one-dimensional model) and the two-dimensional model, where an improve-
ment of the 2D case can be observed. 

The modelling of the ADRE by means of finite differences in 2D produces a 
better adjustment than the 1D model and shows an improvement in the results 
for longer time, suggesting that it takes some time to reach the proposed flow 
conditions. In fact, in the onset of the experiment there is a transitory regime, 
since initially only one of the solutes occupies the entire chamber, so that ini-
tially they are completely disaggregated. Then, the other solute is injected and 
mixing, and reaction start, and it takes time to reach stable values of speed and 
dispersion. 

Gramling et al. (2002) [7] shows, in their Figure 5(b), for two other flow set-
tings, the product concentration profile at just an instant: 157 s for a flow rate Q 
= 16 ml/min and at 20.23 s for Q = 150 ml/min. For those instants, the centre of 
the reaction front is approximately at x = 13 cm, which coincides with that of the 
advance front at 1114 s for the flow Q = 2.67 ml/min, being able, then, to com-
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pare the production level of the product with respect to flow rate and dispersion 
around the maximum peak. 

Table 3 shows the estimated segregation and longitudinal and transversal 
mechanical dispersion coefficients for the three flows given at approximately the 
same point of the device (equal pore volume). The mass of the product for each 
one of the three cases is also shown. It can be observed that as the flow increases, 
the longitudinal and transverse dispersion coefficients increase too. This is con-
sistent with the theory that predicts that the dispersion is proportional to a power 
between 1 and 2 of the speed (Bear, 1988) [26]. Also, as the dispersion increases, the 
mixing increases too and with it increases the production of product. 

In Table 3, it can also be observed the dependency of the mechanical disper-
sion coefficient on the velocity. The values obtained for Dx are lower than those 
reported in batch (Gramling et al., 2002) [7]. Since the reaction time is several 
orders of magnitude smaller than the one for advection and dispersion, and the 
production rate is high, reactive substances are quickly consumed in the region 
of the reaction front generating a reaction product that also participates in the 
transport process. 

By increasing the speed, the dispersion coefficient increases and with it the 
mixing and the product formation. Figure 4 shows the widening of the reaction 
zone caused by the increase in dispersion. It should be noted that Dx increases 
with speed favouring the mixture. But when dealing with fast reactive processes, 
the reaction product is quickly generated around the central zone, which con-
tributes to the separation of reactants (segregation) in a competitive process. In  

 

 
Figure 4. Best fit for different flows: 2.67ml min ,16ml minQ =  and 50ml min . The advance front corresponds approx-
imately to the same point of the device (equal pore volume). The circles correspond to the experimental data and the solid line 
to the simulated results.  

 
Table 3. Estimated parameters values ( ), ,x yD Dα  different flow quantities (Q). 

Q 
(ml/min) 

v 
(cm/s) 

T 
(s) 

vT 
(cm) 

α 
(cm2) 

Dx 
(cm2/s) 

Dy 
(cm2/s) 

Mc 
(g) 

2.67 0.0121 1114 13.48 0.159 0.00084 0.00035 0.08543 

16 0.0832 157 13.06 0.195 0.0085 0.005 0.10358 

150 0.67 20.23 13.56 0.24 0.145 0.0964 0.12463 
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this sense, the magnitude of the reactant gradients depends on the values of the 
dispersion coefficient and the reaction rate. 

We can compare the dependence of the segregation term on the velocity while 
the rest of the parameters are constant. The product formation rate, Γ, is the 
same for the three flow settings and the comparison occurs in approximately the 
same point in the chamber. 

As the flow increases the product mass increases too (see Table 3), then the 
segregation term s must be lower (in absolute values), i.e. for the three cases of 
flow that we are considering. 

1 2 3S S S> >                         (3) 

1

1i

i

S
S +

>                            (4) 

On the other hand, based on the results of our numerical experiments, 

1 2 3α α α< <                          (5) 

1 1i

i

α
α
+ >                            (6) 

From the Equation (2), considering the relations (4) and (6), we have, 

1

1 1 1

1 1

1

A BA B

A BA Bi ii i i i

i i i i A BA B

A B A Bi i

c cc c
c cc cS S

S S c cc c
c c c c

α α
α α

+

+ + +

+ +

 ∇ ∇  ∇ ∇
  

   ≅ ⇒ ≅ >
   ∇ ∇ ∇ ∇
   
   

       (7) 

That is to say, 

1

A B A B

A B A Bi i

c c c c
c c c c

+

 ∇ ∇   ∇ ∇ 
>   

   
                   (8) 

According to expression (8), as the speed increases, the ratio of the product of 
the solute gradients with respect to the product of their average concentration 
decreases, given different effective reaction rates. Because of it, in cases like this, 
where the reaction rates coefficients are the same, we expect those reactive ex-
periments (competitive process) that have higher segregation (less mass is pro-
duced for the same reaction rate) to show larger gradients with respect to con-
centration. So is the lesser dispersion that affects the mixing and therefore the 
production of the product of reaction. 

Figure 5 shows our numerical result in the X-Y plane for the advancing front 
for Q = 2.67 ml/min at four times: 619 s, 916 s. 1213 s and 1510 s. We colour our 
results with the same colours used in Figure 3(b) by Gramling et al. (2002), for 
easy comparison (reproduced here in Figure 6). It is clearly observed that the 
concentration of reactants and product are not homogeneous in the reaction front. 
This inhomogeneity leads to an increase in cross-sectional dispersion and justi-
fies the consideration of a two-dimensional model and the inclusion of Dy. 

To analyse the predicting capacity of our model, we use the mean values of the  
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Figure 5. Our simulation for product concentration profile for 619 s, 916 s, 1114 s and 
1510 s. Compare with Figure 6 (Gramling et al., 2002, Figure 3(b)). 

 

 

Figure 6. Product concentration profile for 619 s, 916 s, 1114 s and 1510 s (Gramling et 
al., 2002 result, Figure 3(b), with permission). 

 
three parameters obtained in the adjustment made (Table 1). We calculate the 
total product mass for different times, for flow rate of 2.67 ml/min, and we 
compare it with the experimental results, as shown in Figure 7. Gramling et al. 
(2002) [7] show the total product mass (the integral of the product concentration 
profiles throughout the cell) for several moments (results from Gramling et al. 
2002, Figure 6(a), with permission). 

We point out that our model does not consider the initial transitory regime 
due to the experimental setup. This fact explains the difference in the total mass 
for pore volume smaller than 0.15 %. This discrepancy is also observed in other 
models (Alhashmi et al., 2015 [11]; Ginn, 2018 [14]). A good adjustment of our 
2D model is observed once this initial transitory regime (when CA begins to dis-
place CB) is overcome. 

5. Conclusions 

We present a continuous 2D model that incorporates a non-uniform velocity field 
and includes not only a longitudinal dispersion coefficient, but also a trans-
versal mechanical dispersion coefficient, to analyse the segregation problem. This  
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Figure 7. Total mass of product versus pore volume. In continue line, the SPSM predic-
tion, in black circles the experimental results by Gramling et al. (2002, Figure 6(a), with 
permission) and in red circles our prediction, for a flow rate of 2.67 ml/min. 

 
model was applied for the first time to a bimolecular reactive transport process 
and is part of a doctoral thesis  
(http://repositorio.ungs.edu.ar:8080/xmlui/bitstream/handle/UNGS/730/Cuch.p
df?sequence=1&isAllowed=y).  

The three modelling parameters (α, Dx and Dy) are estimated by minimizing 
the square errors when fitting the experimental results. A good agreement with 
the experimental data is obtained, as shown in Figure 2. The fact that Dy is of 
the order of Dx is worth noting and justifies the use of a 2D model since trans-
versal dispersivity cannot be ignored. 

The resulting estimated values for Dx are lower than those reported in the ex-
perimental setup that was measured in batch. It was observed the widening of 
the reaction zone was caused by the increase in the dispersion with the velocity. 
This should stimulate the mixture but, as the reaction time is very short, the re-
action product is quickly generated around the central zone contributing to the 
segregation in a competitive process that makes it very difficult to carry out a de-
tailed analysis of the process. By means of data fitting, we estimated the value of the 
parameter α that characterizes the segregation factors, and in this way, we have 
verified that as the velocity increases, the product of the solute gradients in rela-
tion to its average concentration decreases. In this sense, the magnitude of the 
gradients of the reactants depends on the values of the dispersion coefficient and 
the reaction rate. 

Finally, we evaluate the predictive capacity of this model determining the total 
product mass. The resulting values are compared with the experimental values 
measured by Gramling et al. (2002), Figure 6(a), with permission. Good fitting 
was shown after 0.15% pore volume. In the experiment to pump the incoming 
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fluid through the porous plate, a syringe with five input ports was used. It is pos-
sible that the difficulty in modelling these initial moments is related to the time 
that takes the flow to distribute evenly in the porous medium across the width of 
the chamber, simulating a piston flow. This could also explain the advance of the 
fronts in the simulations with respect to the corresponding experimental ones. In 
our case, the numerical values obtained coincide with the experimental ones, ob-
taining a better approximation than the one previously obtained. We conclude 
that the two-dimensional model proposed here, reproduces properly both the 
total mass of the product as well as its increase with the velocity of flow and the 
inhomogeneity of the advanced front. The methodology used is simple and fast, 
and the numerical results presented here indicate its effectiveness. The use of mac-
roscopic (continuous) models, although it has its limitations, is useful for quick 
and easy analysis of many phenomena. 
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